| 1 | 
greg | 
1.1 | 
<html> | 
| 2 | 
  | 
  | 
<head> | 
| 3 | 
  | 
  | 
<title> | 
| 4 | 
greg | 
1.4 | 
The RADIANCE 3.6 Synthetic Imaging System | 
| 5 | 
greg | 
1.1 | 
</title> | 
| 6 | 
  | 
  | 
</head> | 
| 7 | 
  | 
  | 
<body> | 
| 8 | 
  | 
  | 
 | 
| 9 | 
  | 
  | 
<p> | 
| 10 | 
  | 
  | 
 | 
| 11 | 
  | 
  | 
<h1> | 
| 12 | 
greg | 
1.4 | 
The RADIANCE 3.6 Synthetic Imaging System | 
| 13 | 
greg | 
1.1 | 
</h1> | 
| 14 | 
  | 
  | 
 | 
| 15 | 
  | 
  | 
<p> | 
| 16 | 
  | 
  | 
 | 
| 17 | 
greg | 
1.4 | 
Building Technologies Program<br> | 
| 18 | 
greg | 
1.1 | 
Lawrence Berkeley National Laboratory<br> | 
| 19 | 
  | 
  | 
1 Cyclotron Rd., 90-3111<br> | 
| 20 | 
  | 
  | 
Berkeley, CA  94720<br> | 
| 21 | 
  | 
  | 
<a HREF="http://radsite.lbl.gov/radiance"</a> | 
| 22 | 
  | 
  | 
http://radsite.lbl.gov/radiance<br> | 
| 23 | 
  | 
  | 
 | 
| 24 | 
  | 
  | 
<p>  | 
| 25 | 
  | 
  | 
<hr> | 
| 26 | 
  | 
  | 
 | 
| 27 | 
  | 
  | 
<h2> | 
| 28 | 
  | 
  | 
<a NAME="Overview">Overview</a> | 
| 29 | 
  | 
  | 
</h2> | 
| 30 | 
  | 
  | 
        <ol> | 
| 31 | 
  | 
  | 
        <li><a HREF="#Intro">Introduction</a><!P> | 
| 32 | 
  | 
  | 
        <li><a HREF="#Scene">Scene Description</a><!P> | 
| 33 | 
  | 
  | 
                <ol> | 
| 34 | 
  | 
  | 
                <li><a HREF="#Primitive"> Primitive Types</a> | 
| 35 | 
  | 
  | 
                        <ol> | 
| 36 | 
  | 
  | 
                        <li><a HREF="#Surfaces">Surfaces</a> | 
| 37 | 
  | 
  | 
                        <li><a HREF="#Materials">Materials</a> | 
| 38 | 
  | 
  | 
                        <li><a HREF="#Textures">Textures</a> | 
| 39 | 
  | 
  | 
                        <li><a HREF="#Patterns">Patterns</a> | 
| 40 | 
  | 
  | 
                        <li><a HREF="#Mixtures">Mixtures</a> | 
| 41 | 
  | 
  | 
                        </ol><!P> | 
| 42 | 
  | 
  | 
                <li><a HREF="#Auxiliary">Auxiliary Files</a> | 
| 43 | 
  | 
  | 
                        <ol> | 
| 44 | 
  | 
  | 
                        <li><a HREF="#Function">Function Files</a> | 
| 45 | 
  | 
  | 
                        <li><a HREF="#Data">Data Files</a> | 
| 46 | 
  | 
  | 
                        <li><a HREF="#Font">Font Files</a> | 
| 47 | 
  | 
  | 
                        </ol><!P> | 
| 48 | 
  | 
  | 
                <li><a HREF="#Generators">Generators</a> | 
| 49 | 
  | 
  | 
                </ol><!P> | 
| 50 | 
  | 
  | 
        <li><a HREF="#Image">Image Generation</a><!P> | 
| 51 | 
  | 
  | 
        <li><a HREF="#License">License</a><!P> | 
| 52 | 
  | 
  | 
        <li><a HREF="#Ack">Acknowledgements</a><!P> | 
| 53 | 
  | 
  | 
        <li><a HREF="#Ref">References</a><!P> | 
| 54 | 
  | 
  | 
        <li><a HREF="#Index">Types Index</a><!P> | 
| 55 | 
  | 
  | 
        </ol> | 
| 56 | 
  | 
  | 
 | 
| 57 | 
  | 
  | 
<p> | 
| 58 | 
  | 
  | 
<hr> | 
| 59 | 
  | 
  | 
 | 
| 60 | 
  | 
  | 
<h2> | 
| 61 | 
  | 
  | 
<a NAME="Intro">1.  Introduction</a> | 
| 62 | 
  | 
  | 
</h2> | 
| 63 | 
  | 
  | 
 | 
| 64 | 
  | 
  | 
RADIANCE was developed as a research tool for  predicting  | 
| 65 | 
  | 
  | 
the  distribution  of  visible radiation in illuminated spaces.   | 
| 66 | 
  | 
  | 
It takes as  input  a  three-dimensional  geometric model  | 
| 67 | 
  | 
  | 
of  the  physical  environment, and produces a map of | 
| 68 | 
  | 
  | 
spectral radiance values in a color image.   | 
| 69 | 
  | 
  | 
The technique of ray-tracing  follows light backwards | 
| 70 | 
  | 
  | 
from the image plane to the source(s).   | 
| 71 | 
  | 
  | 
Because it can produce realistic images from a | 
| 72 | 
  | 
  | 
simple description, RADIANCE has a wide range of applications  | 
| 73 | 
  | 
  | 
in  graphic  arts,  lighting  design,  | 
| 74 | 
  | 
  | 
computer-aided engineering and architecture. | 
| 75 | 
  | 
  | 
 | 
| 76 | 
  | 
  | 
<p> | 
| 77 | 
  | 
  | 
<img SRC="diagram1.gif"> | 
| 78 | 
  | 
  | 
<p> | 
| 79 | 
  | 
  | 
Figure 1 | 
| 80 | 
  | 
  | 
<p> | 
| 81 | 
  | 
  | 
The diagram in Figure 1 shows the flow between programs (boxes)  and  data   | 
| 82 | 
  | 
  | 
(ovals).    | 
| 83 | 
  | 
  | 
The central program is <i>rpict</i>, which produces a picture from a scene | 
| 84 | 
  | 
  | 
description. | 
| 85 | 
  | 
  | 
<i>Rview</i> is a  variation  of  rpict  that  computes  and displays images  | 
| 86 | 
  | 
  | 
interactively, and rtrace computes single ray values. | 
| 87 | 
  | 
  | 
Other programs (not shown) connect many of these elements together,  | 
| 88 | 
  | 
  | 
such as the executive programs | 
| 89 | 
  | 
  | 
<i>rad</i> | 
| 90 | 
  | 
  | 
and | 
| 91 | 
  | 
  | 
<i>ranimate</i>, | 
| 92 | 
  | 
  | 
the interactive rendering program | 
| 93 | 
  | 
  | 
<i>rholo</i>, | 
| 94 | 
  | 
  | 
and the animation program | 
| 95 | 
  | 
  | 
<i>ranimove</i>. | 
| 96 | 
  | 
  | 
The program | 
| 97 | 
  | 
  | 
<i>obj2mesh</i> | 
| 98 | 
  | 
  | 
acts as both a converter and scene compiler, converting a Wavefront .OBJ | 
| 99 | 
  | 
  | 
file into a compiled mesh octree for efficient rendering. | 
| 100 | 
  | 
  | 
 | 
| 101 | 
  | 
  | 
<p> | 
| 102 | 
  | 
  | 
A scene description file lists the surfaces and materials | 
| 103 | 
  | 
  | 
that  make up a specific environment.   | 
| 104 | 
  | 
  | 
The current surface types are  spheres,  polygons,  cones,  and  cylinders. | 
| 105 | 
  | 
  | 
There is also a composite surface type, called mesh, and a pseudosurface | 
| 106 | 
  | 
  | 
type, called instance, which facilitates very complex geometries. | 
| 107 | 
  | 
  | 
Surfaces can be made from materials such as plastic, metal, and glass.   | 
| 108 | 
  | 
  | 
Light sources can be distant disks as well as  local spheres, disks | 
| 109 | 
  | 
  | 
and polygons. | 
| 110 | 
  | 
  | 
 | 
| 111 | 
  | 
  | 
<p> | 
| 112 | 
  | 
  | 
From a three-dimensional scene description and a specified  view,  | 
| 113 | 
  | 
  | 
<i>rpict</i> produces a two-dimensional image.   | 
| 114 | 
  | 
  | 
A picture file is a compressed binary representation of the | 
| 115 | 
  | 
  | 
pixels  in  the  image.   | 
| 116 | 
  | 
  | 
This picture can be scaled in size and brightness, | 
| 117 | 
  | 
  | 
anti-aliased, and sent to a graphics output device. | 
| 118 | 
  | 
  | 
 | 
| 119 | 
  | 
  | 
<p> | 
| 120 | 
  | 
  | 
A header in each picture file lists the program(s) | 
| 121 | 
  | 
  | 
and parameters that produced it.   | 
| 122 | 
  | 
  | 
This is useful for identifying a picture without having to display it.   | 
| 123 | 
  | 
  | 
The information can be read by the program <i>getinfo</i>. | 
| 124 | 
  | 
  | 
 | 
| 125 | 
  | 
  | 
<p> | 
| 126 | 
  | 
  | 
<hr> | 
| 127 | 
  | 
  | 
 | 
| 128 | 
  | 
  | 
<h2> | 
| 129 | 
  | 
  | 
<a name="Scene">2.  Scene Description</a> | 
| 130 | 
  | 
  | 
</h2> | 
| 131 | 
  | 
  | 
 | 
| 132 | 
  | 
  | 
A scene description file represents a three-dimensional physical  environment in Cartesian (rectilinear) world coordinates.   | 
| 133 | 
  | 
  | 
It is stored as ASCII  text,  with  the  following basic format: | 
| 134 | 
  | 
  | 
 | 
| 135 | 
  | 
  | 
<pre> | 
| 136 | 
  | 
  | 
        # comment | 
| 137 | 
  | 
  | 
 | 
| 138 | 
  | 
  | 
        modifier type identifier | 
| 139 | 
  | 
  | 
        n S1 S2 "S 3" .. Sn | 
| 140 | 
  | 
  | 
        0 | 
| 141 | 
  | 
  | 
        m R1 R2 R3 .. Rm | 
| 142 | 
  | 
  | 
 | 
| 143 | 
  | 
  | 
        modifier alias identifier reference | 
| 144 | 
  | 
  | 
 | 
| 145 | 
  | 
  | 
        ! command | 
| 146 | 
  | 
  | 
 | 
| 147 | 
  | 
  | 
         ... | 
| 148 | 
  | 
  | 
</pre> | 
| 149 | 
  | 
  | 
 | 
| 150 | 
  | 
  | 
A comment line begins with a pound sign, `#'. | 
| 151 | 
  | 
  | 
 | 
| 152 | 
  | 
  | 
<p> | 
| 153 | 
  | 
  | 
The <a NAME="scene_desc">scene description primitives</a> | 
| 154 | 
  | 
  | 
all have the same general  format,  and  can  be either surfaces or modifiers.   | 
| 155 | 
  | 
  | 
A primitive has a modifier, a  type,  and  an  identifier.    | 
| 156 | 
  | 
  | 
<p> | 
| 157 | 
  | 
  | 
A <a NAME="modifier"><b>modifier</b></a>  is  either  the | 
| 158 | 
  | 
  | 
identifier of a previously defined primitive, or "void".   | 
| 159 | 
  | 
  | 
<br> | 
| 160 | 
  | 
  | 
[ The most recent definition of a modifier  is  the | 
| 161 | 
  | 
  | 
one used,  and  later definitions do not cause relinking | 
| 162 | 
  | 
  | 
of loaded primitives. | 
| 163 | 
  | 
  | 
Thus, the same  identifier  may  be used  repeatedly, | 
| 164 | 
  | 
  | 
and each new definition will apply to the primitives following it. ] | 
| 165 | 
  | 
  | 
<p> | 
| 166 | 
  | 
  | 
An <a NAME="identifier"><b>identifier</b></a> can be any string | 
| 167 | 
  | 
  | 
(i.e., any sequence of non-white characters). | 
| 168 | 
  | 
  | 
<p> | 
| 169 | 
  | 
  | 
The arguments associated with  a primitive can be strings or real numbers.   | 
| 170 | 
  | 
  | 
<ul> | 
| 171 | 
  | 
  | 
<li>    The first integer following the identifier is  the  number  of  <b>string arguments</b>,   | 
| 172 | 
  | 
  | 
        and  it  is followed by the arguments themselves (separated by white space or enclosed in quotes).   | 
| 173 | 
  | 
  | 
<li>    The next integer is the  number of  integer  arguments, and is followed by the <b>integer arguments</b>.   | 
| 174 | 
  | 
  | 
        (There are currently no primitives  that  use  them, however.)   | 
| 175 | 
  | 
  | 
<li>    The  next integer is the real argument count, and it is followed by the <b>real arguments</b>. | 
| 176 | 
  | 
  | 
</ul> | 
| 177 | 
  | 
  | 
 | 
| 178 | 
  | 
  | 
<p> | 
| 179 | 
  | 
  | 
An <a NAME="alias"><b>alias</b></a> gets its type and arguments from | 
| 180 | 
  | 
  | 
a previously defined primitive.   | 
| 181 | 
  | 
  | 
This is useful when the same material is | 
| 182 | 
  | 
  | 
used with a different modifier, or as  a  convenient  naming mechanism.   | 
| 183 | 
  | 
  | 
The reserved modifier name "inherit" may be used to specificy that | 
| 184 | 
  | 
  | 
an alias will inherit its modifier from the original. | 
| 185 | 
  | 
  | 
Surfaces cannot be aliased. | 
| 186 | 
  | 
  | 
 | 
| 187 | 
  | 
  | 
<p> | 
| 188 | 
  | 
  | 
A line beginning with an  exclamation  point,  `!',  | 
| 189 | 
  | 
  | 
is interpreted  as a command.   | 
| 190 | 
  | 
  | 
It is executed by the shell, and its output is read as input to  the  program. | 
| 191 | 
  | 
  | 
The  command must  not  try to read from its standard input, or confusion | 
| 192 | 
  | 
  | 
will result.   | 
| 193 | 
  | 
  | 
A command may be continued over multiple lines using a | 
| 194 | 
  | 
  | 
backslash, `\', to escape the newline. | 
| 195 | 
  | 
  | 
 | 
| 196 | 
  | 
  | 
<p> | 
| 197 | 
  | 
  | 
White space is generally ignored, except as  a  separator.   | 
| 198 | 
  | 
  | 
The exception is the newline character after a command or comment.   | 
| 199 | 
  | 
  | 
Commands, comments and primitives may appear in any | 
| 200 | 
  | 
  | 
combination, so long as they are not intermingled. | 
| 201 | 
  | 
  | 
 | 
| 202 | 
  | 
  | 
<p> | 
| 203 | 
  | 
  | 
<hr> | 
| 204 | 
  | 
  | 
 | 
| 205 | 
  | 
  | 
<h3> | 
| 206 | 
  | 
  | 
<a NAME="Primitive">2.1.  Primitive Types</a> | 
| 207 | 
  | 
  | 
</h3> | 
| 208 | 
  | 
  | 
 | 
| 209 | 
  | 
  | 
Primitives can be <a HREF="#Surfaces">surfaces</a>, | 
| 210 | 
  | 
  | 
<a HREF="#Materials">materials</a>, | 
| 211 | 
  | 
  | 
<a HREF="#Textures">textures</a> or | 
| 212 | 
  | 
  | 
<a HREF="#Patterns">patterns</a>.    | 
| 213 | 
  | 
  | 
Modifiers can be <a HREF="#Materials">materials</a>, | 
| 214 | 
  | 
  | 
<a HREF="#Mixtures">mixtures</a>, | 
| 215 | 
  | 
  | 
<a HREF="#Textures">textures</a> or <a HREF="#Patterns">patterns</a>. | 
| 216 | 
  | 
  | 
Simple surfaces must have one material in their modifier list. | 
| 217 | 
  | 
  | 
 | 
| 218 | 
  | 
  | 
<p> | 
| 219 | 
  | 
  | 
<hr> | 
| 220 | 
  | 
  | 
 | 
| 221 | 
  | 
  | 
<h4> | 
| 222 | 
  | 
  | 
<a NAME="Surfaces">2.1.1.  Surfaces</a> | 
| 223 | 
  | 
  | 
</h4> | 
| 224 | 
  | 
  | 
<dl> | 
| 225 | 
  | 
  | 
 | 
| 226 | 
  | 
  | 
A scene description will consist  mostly  of  surfaces. | 
| 227 | 
  | 
  | 
The basic types are given below. | 
| 228 | 
  | 
  | 
 | 
| 229 | 
  | 
  | 
<p> | 
| 230 | 
  | 
  | 
 | 
| 231 | 
  | 
  | 
<dt> | 
| 232 | 
  | 
  | 
        <a NAME="Source"> | 
| 233 | 
  | 
  | 
        <b>Source </b>     | 
| 234 | 
  | 
  | 
        </a> | 
| 235 | 
  | 
  | 
<dd> | 
| 236 | 
  | 
  | 
        A source is not really a surface, but  a  solid  angle. | 
| 237 | 
  | 
  | 
        It  is  used for specifying light sources that are very distant.   | 
| 238 | 
  | 
  | 
        The direction to the center of  the  source  and  the number  of  degrees  subtended by its disk are given as follows: | 
| 239 | 
  | 
  | 
 | 
| 240 | 
  | 
  | 
<pre> | 
| 241 | 
  | 
  | 
        mod source id | 
| 242 | 
  | 
  | 
        0 | 
| 243 | 
  | 
  | 
        0 | 
| 244 | 
  | 
  | 
        4 xdir ydir zdir angle | 
| 245 | 
  | 
  | 
</pre> | 
| 246 | 
  | 
  | 
 | 
| 247 | 
  | 
  | 
<p> | 
| 248 | 
  | 
  | 
 | 
| 249 | 
  | 
  | 
<dt> | 
| 250 | 
  | 
  | 
        <a NAME="Sphere"> | 
| 251 | 
  | 
  | 
        <b>Sphere</b> | 
| 252 | 
  | 
  | 
        </a> | 
| 253 | 
  | 
  | 
<dd> | 
| 254 | 
  | 
  | 
        A sphere is given by its center and radius: | 
| 255 | 
  | 
  | 
 | 
| 256 | 
  | 
  | 
<pre> | 
| 257 | 
  | 
  | 
        mod sphere id | 
| 258 | 
  | 
  | 
        0 | 
| 259 | 
  | 
  | 
        0 | 
| 260 | 
  | 
  | 
        4 xcent ycent zcent radius | 
| 261 | 
  | 
  | 
</pre> | 
| 262 | 
  | 
  | 
 | 
| 263 | 
  | 
  | 
<p> | 
| 264 | 
  | 
  | 
 | 
| 265 | 
  | 
  | 
<dt> | 
| 266 | 
  | 
  | 
        <a NAME="Bubble"> | 
| 267 | 
  | 
  | 
        <b>Bubble</b> | 
| 268 | 
  | 
  | 
        </a> | 
| 269 | 
  | 
  | 
 | 
| 270 | 
  | 
  | 
<dd> | 
| 271 | 
  | 
  | 
        A bubble is simply a sphere whose surface normal points inward. | 
| 272 | 
  | 
  | 
 | 
| 273 | 
  | 
  | 
<p> | 
| 274 | 
  | 
  | 
 | 
| 275 | 
  | 
  | 
<dt> | 
| 276 | 
  | 
  | 
        <a NAME="Polygon"> | 
| 277 | 
  | 
  | 
        <b>Polygon</b> | 
| 278 | 
  | 
  | 
        </a> | 
| 279 | 
  | 
  | 
<dd> | 
| 280 | 
  | 
  | 
        A polygon is given by a list of three-dimensional  vertices,  | 
| 281 | 
  | 
  | 
        which  are  ordered counter-clockwise as viewed from the | 
| 282 | 
  | 
  | 
        front side (into the surface normal).  | 
| 283 | 
  | 
  | 
        The  last  vertex is   automatically   connected  to  the  first.    | 
| 284 | 
  | 
  | 
        Holes  are represented in polygons as interior  vertices  | 
| 285 | 
  | 
  | 
        connected  to the outer perimeter by coincident edges (seams). | 
| 286 | 
  | 
  | 
 | 
| 287 | 
  | 
  | 
<pre> | 
| 288 | 
  | 
  | 
        mod polygon id | 
| 289 | 
  | 
  | 
        0 | 
| 290 | 
  | 
  | 
        0 | 
| 291 | 
  | 
  | 
        3n | 
| 292 | 
  | 
  | 
                x1      y1      z1 | 
| 293 | 
  | 
  | 
                x2      y2      z2 | 
| 294 | 
  | 
  | 
                ... | 
| 295 | 
  | 
  | 
                xn      yn      zn | 
| 296 | 
  | 
  | 
</pre> | 
| 297 | 
  | 
  | 
 | 
| 298 | 
  | 
  | 
<p> | 
| 299 | 
  | 
  | 
 | 
| 300 | 
  | 
  | 
<dt> | 
| 301 | 
  | 
  | 
        <a NAME="Cone"> | 
| 302 | 
  | 
  | 
        <b>Cone</b> | 
| 303 | 
  | 
  | 
        </a> | 
| 304 | 
  | 
  | 
<dd> | 
| 305 | 
  | 
  | 
        A cone is a megaphone-shaped object.   | 
| 306 | 
  | 
  | 
        It  is  truncated by two planes perpendicular to its axis, | 
| 307 | 
  | 
  | 
        and one of its ends may come to a point.   | 
| 308 | 
  | 
  | 
        It is given as two axis endpoints, and the starting and ending radii: | 
| 309 | 
  | 
  | 
 | 
| 310 | 
  | 
  | 
<pre> | 
| 311 | 
  | 
  | 
        mod cone id | 
| 312 | 
  | 
  | 
        0 | 
| 313 | 
  | 
  | 
        0 | 
| 314 | 
  | 
  | 
        8 | 
| 315 | 
  | 
  | 
                x0      y0      z0 | 
| 316 | 
  | 
  | 
                x1      y1      z1 | 
| 317 | 
  | 
  | 
                r0      r1 | 
| 318 | 
  | 
  | 
</pre> | 
| 319 | 
  | 
  | 
 | 
| 320 | 
  | 
  | 
<p> | 
| 321 | 
  | 
  | 
 | 
| 322 | 
  | 
  | 
<dt> | 
| 323 | 
  | 
  | 
        <a NAME="Cup"> | 
| 324 | 
  | 
  | 
        <b>Cup</b> | 
| 325 | 
  | 
  | 
        </a> | 
| 326 | 
  | 
  | 
<dd> | 
| 327 | 
  | 
  | 
        A cup is an inverted <a HREF="#Cone">cone</a> (i.e., has  an  | 
| 328 | 
  | 
  | 
        inward  surface normal). | 
| 329 | 
  | 
  | 
 | 
| 330 | 
  | 
  | 
<p> | 
| 331 | 
  | 
  | 
 | 
| 332 | 
  | 
  | 
<dt> | 
| 333 | 
  | 
  | 
        <a NAME="Cylinder"> | 
| 334 | 
  | 
  | 
        <b>Cylinder</b> | 
| 335 | 
  | 
  | 
        </a> | 
| 336 | 
  | 
  | 
<dd> | 
| 337 | 
  | 
  | 
        A cylinder is like a <a HREF="#Cone">cone</a>, but its | 
| 338 | 
  | 
  | 
        starting and  ending radii are equal. | 
| 339 | 
  | 
  | 
 | 
| 340 | 
  | 
  | 
<pre> | 
| 341 | 
  | 
  | 
        mod cylinder id | 
| 342 | 
  | 
  | 
        0 | 
| 343 | 
  | 
  | 
        0 | 
| 344 | 
  | 
  | 
        7 | 
| 345 | 
  | 
  | 
                x0      y0      z0 | 
| 346 | 
  | 
  | 
                x1      y1      z1 | 
| 347 | 
  | 
  | 
                rad | 
| 348 | 
  | 
  | 
</pre> | 
| 349 | 
  | 
  | 
 | 
| 350 | 
  | 
  | 
<p> | 
| 351 | 
  | 
  | 
 | 
| 352 | 
  | 
  | 
<dt> | 
| 353 | 
  | 
  | 
        <a NAME="Tube"> | 
| 354 | 
  | 
  | 
        <b>Tube</b> | 
| 355 | 
  | 
  | 
        </a> | 
| 356 | 
  | 
  | 
<dd> | 
| 357 | 
  | 
  | 
        A tube is an inverted <a HREF="#Cylinder">cylinder</a>. | 
| 358 | 
  | 
  | 
 | 
| 359 | 
  | 
  | 
<p> | 
| 360 | 
  | 
  | 
 | 
| 361 | 
  | 
  | 
<dt> | 
| 362 | 
  | 
  | 
        <a NAME="Ring"> | 
| 363 | 
  | 
  | 
        <b>Ring</b> | 
| 364 | 
  | 
  | 
        </a> | 
| 365 | 
  | 
  | 
<dd> | 
| 366 | 
  | 
  | 
        A ring is a circular disk given by its center, | 
| 367 | 
  | 
  | 
        surface normal, and inner and outer radii: | 
| 368 | 
  | 
  | 
 | 
| 369 | 
  | 
  | 
<pre> | 
| 370 | 
  | 
  | 
        mod ring id | 
| 371 | 
  | 
  | 
        0 | 
| 372 | 
  | 
  | 
        0 | 
| 373 | 
  | 
  | 
        8 | 
| 374 | 
  | 
  | 
                xcent   ycent   zcent | 
| 375 | 
  | 
  | 
                xdir    ydir    zdir | 
| 376 | 
  | 
  | 
                r0      r1 | 
| 377 | 
  | 
  | 
</pre> | 
| 378 | 
  | 
  | 
 | 
| 379 | 
  | 
  | 
<p> | 
| 380 | 
  | 
  | 
 | 
| 381 | 
  | 
  | 
<dt> | 
| 382 | 
  | 
  | 
        <a NAME="Instance"> | 
| 383 | 
  | 
  | 
        <b>Instance</b> | 
| 384 | 
  | 
  | 
        </a> | 
| 385 | 
  | 
  | 
<dd> | 
| 386 | 
  | 
  | 
        An instance is a compound surface, given | 
| 387 | 
  | 
  | 
        by the contents of an octree file (created by oconv). | 
| 388 | 
  | 
  | 
 | 
| 389 | 
  | 
  | 
<pre> | 
| 390 | 
  | 
  | 
        mod instance id | 
| 391 | 
  | 
  | 
        1+ octree transform | 
| 392 | 
  | 
  | 
        0 | 
| 393 | 
  | 
  | 
        0 | 
| 394 | 
  | 
  | 
</pre> | 
| 395 | 
  | 
  | 
 | 
| 396 | 
  | 
  | 
        If the modifier is "void", then surfaces will | 
| 397 | 
  | 
  | 
        use the modifiers  given  in  the  original  description.   | 
| 398 | 
  | 
  | 
        Otherwise, the modifier specified is used in their  place.    | 
| 399 | 
  | 
  | 
        The  transform moves the octree to the desired location in the scene.   | 
| 400 | 
  | 
  | 
        Multiple instances using the  same  octree  take  | 
| 401 | 
  | 
  | 
        little  extra memory,  hence  very  complex  | 
| 402 | 
  | 
  | 
        descriptions  can be rendered using this primitive. | 
| 403 | 
  | 
  | 
 | 
| 404 | 
  | 
  | 
<p> | 
| 405 | 
  | 
  | 
        There are a number of important limitations to be aware of | 
| 406 | 
  | 
  | 
        when using instances.   | 
| 407 | 
  | 
  | 
        First, the scene description used to generate the octree must | 
| 408 | 
  | 
  | 
        stand on its own, without referring to modifiers in the | 
| 409 | 
  | 
  | 
        parent description.   | 
| 410 | 
  | 
  | 
        This is necessary for oconv to create the octree.   | 
| 411 | 
  | 
  | 
        Second, light  sources in the octree will not be | 
| 412 | 
  | 
  | 
        incorporated correctly in the calculation, | 
| 413 | 
  | 
  | 
        and they are not recommended.   | 
| 414 | 
  | 
  | 
        Finally,  there  is no  advantage  (other  than  | 
| 415 | 
  | 
  | 
        convenience)  to using a single instance of an octree,  | 
| 416 | 
  | 
  | 
        or an octree containing  only  a  few surfaces.    | 
| 417 | 
  | 
  | 
        An  <a HREF="../man_html/xform.1.html">xform</a> command | 
| 418 | 
  | 
  | 
        on the subordinate description is prefered in such cases. | 
| 419 | 
  | 
  | 
</dl> | 
| 420 | 
  | 
  | 
 | 
| 421 | 
  | 
  | 
<p> | 
| 422 | 
  | 
  | 
 | 
| 423 | 
  | 
  | 
<dt> | 
| 424 | 
  | 
  | 
        <a NAME="Mesh"> | 
| 425 | 
  | 
  | 
        <b>Mesh</b> | 
| 426 | 
  | 
  | 
        </a> | 
| 427 | 
  | 
  | 
<dd> | 
| 428 | 
  | 
  | 
        A mesh is a compound surface, made up of many triangles and | 
| 429 | 
  | 
  | 
        an octree data structure to accelerate ray intersection. | 
| 430 | 
  | 
  | 
        It is typically converted from a Wavefront .OBJ file using the | 
| 431 | 
  | 
  | 
        <i>obj2mesh</i> program. | 
| 432 | 
  | 
  | 
 | 
| 433 | 
  | 
  | 
<pre> | 
| 434 | 
  | 
  | 
        mod mesh id | 
| 435 | 
  | 
  | 
        1+ meshfile transform | 
| 436 | 
  | 
  | 
        0 | 
| 437 | 
  | 
  | 
        0 | 
| 438 | 
  | 
  | 
</pre> | 
| 439 | 
  | 
  | 
 | 
| 440 | 
  | 
  | 
        If the modifier is "void", then surfaces will | 
| 441 | 
  | 
  | 
        use the modifiers  given  in  the  original  mesh description.   | 
| 442 | 
  | 
  | 
        Otherwise, the modifier specified is used in their  place.    | 
| 443 | 
  | 
  | 
        The  transform moves the mesh to the desired location in the scene.   | 
| 444 | 
  | 
  | 
        Multiple instances using the same meshfile take little extra memory, | 
| 445 | 
  | 
  | 
        and the compiled mesh itself takes much less space than individual | 
| 446 | 
  | 
  | 
        polygons would. | 
| 447 | 
  | 
  | 
        In the case of an unsmoothed mesh, using the mesh primitive reduces | 
| 448 | 
  | 
  | 
        memory requirements by a factor of 30 relative to individual triangles. | 
| 449 | 
  | 
  | 
        If a mesh has smoothed surfaces, we save a factor of 50 or more, | 
| 450 | 
  | 
  | 
        permitting very detailed geometries that would otherwise exhaust the | 
| 451 | 
  | 
  | 
        available memory. | 
| 452 | 
  | 
  | 
        In addition, the mesh primitive can have associated (u,v) coordinates | 
| 453 | 
  | 
  | 
        for pattern and texture mapping. | 
| 454 | 
  | 
  | 
        These are made available to function files via the Lu and Lv variables. | 
| 455 | 
  | 
  | 
 | 
| 456 | 
  | 
  | 
</dl> | 
| 457 | 
  | 
  | 
 | 
| 458 | 
  | 
  | 
<p> | 
| 459 | 
  | 
  | 
<hr> | 
| 460 | 
  | 
  | 
 | 
| 461 | 
  | 
  | 
<h4> | 
| 462 | 
  | 
  | 
<a NAME="Materials">2.1.2.  Materials</a> | 
| 463 | 
  | 
  | 
</h4> | 
| 464 | 
  | 
  | 
 | 
| 465 | 
  | 
  | 
A material defines the way light interacts with a  surface.  The basic types are given below. | 
| 466 | 
  | 
  | 
 | 
| 467 | 
  | 
  | 
<p> | 
| 468 | 
  | 
  | 
 | 
| 469 | 
  | 
  | 
<dl> | 
| 470 | 
  | 
  | 
 | 
| 471 | 
  | 
  | 
<dt> | 
| 472 | 
  | 
  | 
        <a NAME="Light"> | 
| 473 | 
  | 
  | 
        <b>Light</b> | 
| 474 | 
  | 
  | 
        </a> | 
| 475 | 
  | 
  | 
<dd> | 
| 476 | 
  | 
  | 
        Light is the basic material for self-luminous  surfaces (i.e., | 
| 477 | 
  | 
  | 
        light  sources).    | 
| 478 | 
  | 
  | 
        In  addition  to the <a HREF="#Source">source</a> surface type,   | 
| 479 | 
  | 
  | 
        <a HREF="#Sphere">spheres</a>,   | 
| 480 | 
  | 
  | 
        discs  (<a HREF="#Ring">rings</a>  with  zero  inner   radius), | 
| 481 | 
  | 
  | 
        <a HREF="#Cylinder">cylinders</a>  (provided they are long enough), and <a HREF="#Polygon">polygons</a> can act as light sources.   | 
| 482 | 
  | 
  | 
        Polygons work best when they are rectangular.   | 
| 483 | 
  | 
  | 
        Cones cannot be used at this time.   | 
| 484 | 
  | 
  | 
        A pattern may be used to specify a light output  distribution.    | 
| 485 | 
  | 
  | 
        Light  is defined simply as a RGB radiance value (watts/steradian/m2): | 
| 486 | 
  | 
  | 
 | 
| 487 | 
  | 
  | 
<pre> | 
| 488 | 
  | 
  | 
        mod light id | 
| 489 | 
  | 
  | 
        0 | 
| 490 | 
  | 
  | 
        0 | 
| 491 | 
  | 
  | 
        3 red green blue | 
| 492 | 
  | 
  | 
</pre> | 
| 493 | 
  | 
  | 
 | 
| 494 | 
  | 
  | 
<p> | 
| 495 | 
  | 
  | 
 | 
| 496 | 
  | 
  | 
<dt> | 
| 497 | 
  | 
  | 
        <a NAME="Illum"> | 
| 498 | 
  | 
  | 
        <b>Illum</b> | 
| 499 | 
  | 
  | 
        </a> | 
| 500 | 
  | 
  | 
 | 
| 501 | 
  | 
  | 
<dd> | 
| 502 | 
  | 
  | 
        Illum is used for secondary light  sources  with  broad distributions.   | 
| 503 | 
  | 
  | 
        A secondary light source is treated like any other light source, except when viewed  directly.    | 
| 504 | 
  | 
  | 
        It then acts like it is made of a different material (indicated by | 
| 505 | 
  | 
  | 
        the string argument), or becomes invisible (if no string argument is given, | 
| 506 | 
  | 
  | 
        or the argument is "void"). | 
| 507 | 
  | 
  | 
        Secondary sources are useful when modeling  windows or brightly illuminated surfaces. | 
| 508 | 
  | 
  | 
 | 
| 509 | 
  | 
  | 
<pre> | 
| 510 | 
  | 
  | 
        mod illum id | 
| 511 | 
  | 
  | 
        1 material | 
| 512 | 
  | 
  | 
        0 | 
| 513 | 
  | 
  | 
        3 red green blue | 
| 514 | 
  | 
  | 
</pre> | 
| 515 | 
  | 
  | 
 | 
| 516 | 
  | 
  | 
<p> | 
| 517 | 
  | 
  | 
 | 
| 518 | 
  | 
  | 
<dt> | 
| 519 | 
  | 
  | 
        <a NAME="Glow"> | 
| 520 | 
  | 
  | 
        <b>Glow</b> | 
| 521 | 
  | 
  | 
        </a> | 
| 522 | 
  | 
  | 
 | 
| 523 | 
  | 
  | 
<dd> | 
| 524 | 
  | 
  | 
        Glow is used for surfaces that are  self-luminous,  but limited in their effect.   | 
| 525 | 
  | 
  | 
        In addition to the radiance value, a maximum radius for shadow testing is given: | 
| 526 | 
  | 
  | 
 | 
| 527 | 
  | 
  | 
<pre> | 
| 528 | 
  | 
  | 
        mod glow id | 
| 529 | 
  | 
  | 
        0 | 
| 530 | 
  | 
  | 
        0 | 
| 531 | 
  | 
  | 
        4 red green blue maxrad | 
| 532 | 
  | 
  | 
</pre> | 
| 533 | 
  | 
  | 
 | 
| 534 | 
  | 
  | 
        If maxrad is zero, then the surface will never be tested for shadow,  although  it  may participate in an interreflection calculation.   | 
| 535 | 
  | 
  | 
        If maxrad is negative, then the  surface  will never  contribute  to scene illumination.   | 
| 536 | 
  | 
  | 
        Glow sources will never illuminate objects on the other side of an illum  surface.    | 
| 537 | 
  | 
  | 
        This  provides  a convenient way to illuminate local light fixture geometry without overlighting nearby objects. | 
| 538 | 
  | 
  | 
 | 
| 539 | 
  | 
  | 
<p> | 
| 540 | 
  | 
  | 
 | 
| 541 | 
  | 
  | 
<dt> | 
| 542 | 
  | 
  | 
        <a NAME="Spotlight"> | 
| 543 | 
  | 
  | 
        <b>Spotlight</b> | 
| 544 | 
  | 
  | 
        </a> | 
| 545 | 
  | 
  | 
 | 
| 546 | 
  | 
  | 
<dd> | 
| 547 | 
  | 
  | 
        Spotlight is used  for  self-luminous  surfaces  having directed  output.    | 
| 548 | 
  | 
  | 
        As well as radiance, the full cone angle (in degrees) and orientation (output direction)  vector  are given.   | 
| 549 | 
  | 
  | 
        The length of the orientation vector is the distance of the effective | 
| 550 | 
  | 
  | 
        focus behind the  source  center  (i.e., the focal length). | 
| 551 | 
  | 
  | 
 | 
| 552 | 
  | 
  | 
<pre> | 
| 553 | 
  | 
  | 
        mod spotlight id | 
| 554 | 
  | 
  | 
        0 | 
| 555 | 
  | 
  | 
        0 | 
| 556 | 
  | 
  | 
        7 red green blue angle xdir ydir zdir | 
| 557 | 
  | 
  | 
</pre> | 
| 558 | 
  | 
  | 
 | 
| 559 | 
  | 
  | 
<p> | 
| 560 | 
  | 
  | 
 | 
| 561 | 
  | 
  | 
<dt> | 
| 562 | 
  | 
  | 
        <a NAME="Mirror"> | 
| 563 | 
  | 
  | 
        <b>Mirror</b> | 
| 564 | 
  | 
  | 
        </a> | 
| 565 | 
  | 
  | 
 | 
| 566 | 
  | 
  | 
<dd> | 
| 567 | 
  | 
  | 
        Mirror is used for planar surfaces that produce  secondary source reflections.   | 
| 568 | 
  | 
  | 
        This material should be used sparingly, as it may cause the light source calculation to  blow up  if  it is applied to many small surfaces.   | 
| 569 | 
  | 
  | 
        This material is only supported for flat surfaces  such  as  <a HREF="#Polygon">polygons</a>  and <a HREF="#Ring">rings</a>.   | 
| 570 | 
  | 
  | 
        The arguments are simply the RGB reflectance values, which should be between 0 and 1.   | 
| 571 | 
  | 
  | 
        An optional  string  argument  may be used like the illum type to specify a different material to be used for shading non-source rays. | 
| 572 | 
  | 
  | 
        If this alternate material is given as "void", then the mirror surface will be invisible. | 
| 573 | 
  | 
  | 
This is only appropriate if the surface hides other (more detailed) geometry with the same overall reflectance. | 
| 574 | 
  | 
  | 
 | 
| 575 | 
  | 
  | 
<pre> | 
| 576 | 
  | 
  | 
        mod mirror id | 
| 577 | 
  | 
  | 
        1 material | 
| 578 | 
  | 
  | 
        0 | 
| 579 | 
  | 
  | 
        3 red green blue | 
| 580 | 
  | 
  | 
</pre> | 
| 581 | 
  | 
  | 
 | 
| 582 | 
  | 
  | 
<p> | 
| 583 | 
  | 
  | 
 | 
| 584 | 
  | 
  | 
<dt> | 
| 585 | 
  | 
  | 
        <a NAME="Prism1"> | 
| 586 | 
  | 
  | 
        <b>Prism1</b> | 
| 587 | 
  | 
  | 
        </a> | 
| 588 | 
  | 
  | 
 | 
| 589 | 
  | 
  | 
<dd> | 
| 590 | 
  | 
  | 
        The prism1 material is for  general  light  redirection from prismatic glazings, generating secondary light sources. | 
| 591 | 
  | 
  | 
        It can only be used  to  modify  a  planar  surface   | 
| 592 | 
  | 
  | 
        (i.e.,  a <a HREF="#Polygon">polygon</a>  or <a HREF="#Ring">disk</a>)  | 
| 593 | 
  | 
  | 
        and should not result in either light concentration or scattering.   | 
| 594 | 
  | 
  | 
        The new direction of the ray  can be  on either side of the material,  | 
| 595 | 
  | 
  | 
        and the definitions must have the correct bidirectional properties to  work  properly with  secondary light sources.   | 
| 596 | 
  | 
  | 
        The arguments give the coefficient for the redirected light and its direction. | 
| 597 | 
  | 
  | 
 | 
| 598 | 
  | 
  | 
<pre> | 
| 599 | 
  | 
  | 
        mod prism1 id | 
| 600 | 
  | 
  | 
        5+ coef dx dy dz funcfile transform | 
| 601 | 
  | 
  | 
        0 | 
| 602 | 
  | 
  | 
        n A1 A2 .. An | 
| 603 | 
  | 
  | 
</pre> | 
| 604 | 
  | 
  | 
 | 
| 605 | 
  | 
  | 
        The new direction variables dx, dy and dz need not produce a normalized  vector.   | 
| 606 | 
  | 
  | 
        For convenience, the variables DxA, DyA and DzA are defined as the normalized direction to the  target  light  source.   | 
| 607 | 
  | 
  | 
        See <a HREF="#Function">section 2.2.1</a> on function files for further information. | 
| 608 | 
  | 
  | 
 | 
| 609 | 
  | 
  | 
<p> | 
| 610 | 
  | 
  | 
 | 
| 611 | 
  | 
  | 
<dt> | 
| 612 | 
  | 
  | 
        <a NAME="Prism2"> | 
| 613 | 
  | 
  | 
        <b>Prism2</b> | 
| 614 | 
  | 
  | 
        </a> | 
| 615 | 
  | 
  | 
 | 
| 616 | 
  | 
  | 
<dd> | 
| 617 | 
  | 
  | 
        The material prism2 is identical to <a HREF="#Prism1">prism1</a> except  that it provides for two ray redirections rather than one. | 
| 618 | 
  | 
  | 
 | 
| 619 | 
  | 
  | 
<pre> | 
| 620 | 
  | 
  | 
        mod prism2 id | 
| 621 | 
  | 
  | 
        9+ coef1 dx1 dy1 dz1 coef2 dx2 dy2 dz2 funcfile transform | 
| 622 | 
  | 
  | 
        0 | 
| 623 | 
  | 
  | 
        n A1 A2 .. An | 
| 624 | 
  | 
  | 
</pre> | 
| 625 | 
  | 
  | 
 | 
| 626 | 
  | 
  | 
<p> | 
| 627 | 
  | 
  | 
 | 
| 628 | 
  | 
  | 
<dt> | 
| 629 | 
  | 
  | 
        <a NAME="Mist"> | 
| 630 | 
  | 
  | 
        <b>Mist</b> | 
| 631 | 
  | 
  | 
        </a> | 
| 632 | 
  | 
  | 
 | 
| 633 | 
  | 
  | 
<dd> | 
| 634 | 
  | 
  | 
        Mist is a virtual material used to delineate a volume | 
| 635 | 
  | 
  | 
        of participating atmosphere. | 
| 636 | 
  | 
  | 
        A list of important light sources may be given, along with an | 
| 637 | 
  | 
  | 
        extinction coefficient, scattering albedo and scattering eccentricity | 
| 638 | 
  | 
  | 
        parameter. | 
| 639 | 
  | 
  | 
        The light sources named by the string argument list | 
| 640 | 
  | 
  | 
        will be tested for scattering within the volume. | 
| 641 | 
  | 
  | 
        Sources are identified by name, and virtual light sources may be indicated | 
| 642 | 
  | 
  | 
        by giving the relaying object followed by '>' followed by the source, i.e: | 
| 643 | 
  | 
  | 
 | 
| 644 | 
  | 
  | 
<pre> | 
| 645 | 
  | 
  | 
        3  source1  mirror1>source10  mirror2>mirror1>source3 | 
| 646 | 
  | 
  | 
</pre> | 
| 647 | 
  | 
  | 
 | 
| 648 | 
  | 
  | 
Normally, only one source is given per mist material, and there is an | 
| 649 | 
  | 
  | 
upper limit of 32 to the total number of active scattering sources. | 
| 650 | 
  | 
  | 
The extinction coefficient, if given, is added the the global | 
| 651 | 
  | 
  | 
coefficient set on the command line. | 
| 652 | 
  | 
  | 
Extinction is in units of 1/distance (distance based on the world coordinates), | 
| 653 | 
  | 
  | 
and indicates the proportional loss of radiance over one unit distance. | 
| 654 | 
  | 
  | 
The scattering albedo, if present, will override the global setting within | 
| 655 | 
  | 
  | 
the volume. | 
| 656 | 
  | 
  | 
An albedo of 0 0 0 means a perfectly absorbing medium, and an albedo of | 
| 657 | 
  | 
  | 
1 1 1 means | 
| 658 | 
  | 
  | 
a perfectly scattering medium (no absorption). | 
| 659 | 
  | 
  | 
The scattering eccentricity parameter will likewise override the global | 
| 660 | 
  | 
  | 
setting if it is present. | 
| 661 | 
  | 
  | 
Scattering eccentricity indicates how much scattered light favors the | 
| 662 | 
  | 
  | 
forward direction, as fit by the Heyney-Greenstein function: | 
| 663 | 
  | 
  | 
 | 
| 664 | 
  | 
  | 
<pre> | 
| 665 | 
  | 
  | 
        P(theta) = (1 - g*g) / (1 + g*g - 2*g*cos(theta))^1.5 | 
| 666 | 
  | 
  | 
</pre> | 
| 667 | 
  | 
  | 
 | 
| 668 | 
  | 
  | 
A perfectly isotropic scattering medium has a g parameter of 0, and | 
| 669 | 
  | 
  | 
a highly directional material has a g parameter close to 1. | 
| 670 | 
  | 
  | 
Fits to the g parameter may be found along with typical extinction | 
| 671 | 
  | 
  | 
coefficients and scattering albedos for various atmospheres and | 
| 672 | 
  | 
  | 
cloud types in USGS meteorological tables. | 
| 673 | 
  | 
  | 
(A pattern will be applied to the extinction values.) | 
| 674 | 
  | 
  | 
 | 
| 675 | 
  | 
  | 
<pre> | 
| 676 | 
  | 
  | 
        mod mist id | 
| 677 | 
  | 
  | 
        N src1 src2 .. srcN | 
| 678 | 
  | 
  | 
        0 | 
| 679 | 
  | 
  | 
        0|3|6|7 [ rext gext bext [ ralb galb balb [ g ] ] ] | 
| 680 | 
  | 
  | 
</pre> | 
| 681 | 
  | 
  | 
 | 
| 682 | 
  | 
  | 
There are two usual uses of the mist type. | 
| 683 | 
  | 
  | 
One is to surround a beam from a spotlight or laser so that it is | 
| 684 | 
  | 
  | 
visible during rendering. | 
| 685 | 
  | 
  | 
For this application, it is important to use a <a HREF="#Cone">cone</a> | 
| 686 | 
  | 
  | 
(or <a HREF="#Cylinder">cylinder</a>) that | 
| 687 | 
  | 
  | 
is long enough and wide enough to contain the important visible portion. | 
| 688 | 
  | 
  | 
Light source photometry and intervening objects will have the desired | 
| 689 | 
  | 
  | 
effect, and crossing beams will result in additive scattering. | 
| 690 | 
  | 
  | 
For this application, it is best to leave off the real arguments, and | 
| 691 | 
  | 
  | 
use the global rendering parameters to control the atmosphere. | 
| 692 | 
  | 
  | 
The second application is to model clouds or other localized media. | 
| 693 | 
  | 
  | 
Complex boundary geometry may be used to give shape to a uniform medium, | 
| 694 | 
  | 
  | 
so long as the boundary encloses a proper volume. | 
| 695 | 
  | 
  | 
Alternatively, a pattern may be used to set the line integral value | 
| 696 | 
  | 
  | 
through the cloud for a ray entering or exiting a point in a given | 
| 697 | 
  | 
  | 
direction. | 
| 698 | 
  | 
  | 
For this application, it is best if cloud volumes do not overlap each other, | 
| 699 | 
  | 
  | 
and opaque objects contained within them may not be illuminated correctly | 
| 700 | 
  | 
  | 
unless the line integrals consider enclosed geometry. | 
| 701 | 
  | 
  | 
 | 
| 702 | 
  | 
  | 
<dt> | 
| 703 | 
  | 
  | 
        <a NAME="Plastic"> | 
| 704 | 
  | 
  | 
        <b>Plastic</b> | 
| 705 | 
  | 
  | 
        </a> | 
| 706 | 
  | 
  | 
 | 
| 707 | 
  | 
  | 
<dd> | 
| 708 | 
  | 
  | 
        Plastic is a material with uncolored highlights.   | 
| 709 | 
  | 
  | 
        It is given  by  its RGB reflectance, its fraction of specularity, and its roughness value.   | 
| 710 | 
  | 
  | 
        Roughness is specified as the  rms slope of surface facets.   | 
| 711 | 
  | 
  | 
        A value of 0 corresponds to a perfectly smooth surface, and a value of  1  would  be  a  very rough  surface.    | 
| 712 | 
  | 
  | 
        Specularity fractions greater than 0.1 and roughness values greater than 0.2 are  not  very  realistic. | 
| 713 | 
  | 
  | 
        (A  pattern  modifying  plastic  will  affect  the  material color.) | 
| 714 | 
  | 
  | 
 | 
| 715 | 
  | 
  | 
<pre> | 
| 716 | 
  | 
  | 
        mod plastic id | 
| 717 | 
  | 
  | 
        0 | 
| 718 | 
  | 
  | 
        0 | 
| 719 | 
  | 
  | 
        5 red green blue spec rough | 
| 720 | 
  | 
  | 
</pre> | 
| 721 | 
  | 
  | 
 | 
| 722 | 
  | 
  | 
<p> | 
| 723 | 
  | 
  | 
 | 
| 724 | 
  | 
  | 
<dt> | 
| 725 | 
  | 
  | 
        <a NAME="Metal"> | 
| 726 | 
  | 
  | 
        <b>Metal</b> | 
| 727 | 
  | 
  | 
        </a> | 
| 728 | 
  | 
  | 
 | 
| 729 | 
  | 
  | 
<dd> | 
| 730 | 
  | 
  | 
        Metal is similar to <a HREF="#Plastic">plastic</a>,  but  specular  highlights are  modified  by the material color.   | 
| 731 | 
  | 
  | 
        Specularity of metals is usually .9 or greater.   | 
| 732 | 
  | 
  | 
        As for plastic, roughness  values above .2 are uncommon. | 
| 733 | 
  | 
  | 
 | 
| 734 | 
  | 
  | 
<p> | 
| 735 | 
  | 
  | 
 | 
| 736 | 
  | 
  | 
<dt> | 
| 737 | 
  | 
  | 
        <a NAME="Trans"> | 
| 738 | 
  | 
  | 
        <b>Trans</b> | 
| 739 | 
  | 
  | 
        </a> | 
| 740 | 
  | 
  | 
 | 
| 741 | 
  | 
  | 
<dd> | 
| 742 | 
  | 
  | 
        Trans is a translucent material,  similar  to  <a HREF="#Plastic">plastic</a>. | 
| 743 | 
  | 
  | 
        The transmissivity is the fraction of penetrating light that travels all the way through the material.    | 
| 744 | 
  | 
  | 
        The  transmitted specular component is the fraction of transmitted light that is  not  diffusely  scattered.    | 
| 745 | 
  | 
  | 
        Transmitted  and  diffusely reflected light is modified by the material color.   | 
| 746 | 
  | 
  | 
        Translucent objects are infinitely thin. | 
| 747 | 
  | 
  | 
 | 
| 748 | 
  | 
  | 
<pre> | 
| 749 | 
  | 
  | 
        mod trans id | 
| 750 | 
  | 
  | 
        0 | 
| 751 | 
  | 
  | 
        0 | 
| 752 | 
  | 
  | 
        7 red green blue spec rough trans tspec | 
| 753 | 
  | 
  | 
</pre> | 
| 754 | 
  | 
  | 
 | 
| 755 | 
  | 
  | 
<p> | 
| 756 | 
  | 
  | 
 | 
| 757 | 
  | 
  | 
<dt> | 
| 758 | 
  | 
  | 
        <a NAME="Plastic2"> | 
| 759 | 
  | 
  | 
        <b>Plastic2</b> | 
| 760 | 
  | 
  | 
        </a> | 
| 761 | 
  | 
  | 
 | 
| 762 | 
  | 
  | 
<dd> | 
| 763 | 
  | 
  | 
        Plastic2 is similar to <a HREF="#Plastic">plastic</a>,  but  with  anisotropic roughness.    | 
| 764 | 
  | 
  | 
        This  means that highlights in the surface will appear elliptical rather than round.   | 
| 765 | 
  | 
  | 
        The orientation of the anisotropy  is determined by the unnormalized direction vector ux uy uz.   | 
| 766 | 
  | 
  | 
        These three expressions (separated  by  white space)  are  evaluated  in  the context of the function file funcfile.   | 
| 767 | 
  | 
  | 
        If no function file is required (i.e.,  no  special variables  or functions are required), a period (`.') may be given in its place.   | 
| 768 | 
  | 
  | 
        (See the discussion of  <a HREF="#Function">Function  Files</a> in  the  Auxiliary Files section).   | 
| 769 | 
  | 
  | 
        The urough value defines the roughness along the u vector given  projected  onto  the surface.   | 
| 770 | 
  | 
  | 
        The vrough value defines the roughness perpendicular to this vector.   | 
| 771 | 
  | 
  | 
        Note that the highlight  will  be  narrower  in  the  direction  of  the  smaller roughness value. | 
| 772 | 
  | 
  | 
        Roughness values of zero are not allowed for efficiency reasons since the behavior would be the same as regular plastic in that case. | 
| 773 | 
  | 
  | 
 | 
| 774 | 
  | 
  | 
<pre> | 
| 775 | 
  | 
  | 
        mod plastic2 id | 
| 776 | 
  | 
  | 
        4+ ux uy uz funcfile transform | 
| 777 | 
  | 
  | 
        0 | 
| 778 | 
  | 
  | 
        6 red green blue spec urough vrough | 
| 779 | 
  | 
  | 
</pre> | 
| 780 | 
  | 
  | 
 | 
| 781 | 
  | 
  | 
<p> | 
| 782 | 
  | 
  | 
 | 
| 783 | 
  | 
  | 
<dt> | 
| 784 | 
  | 
  | 
        <a NAME="Metal2"> | 
| 785 | 
  | 
  | 
        <b>Metal2</b> | 
| 786 | 
  | 
  | 
        </a> | 
| 787 | 
  | 
  | 
 | 
| 788 | 
  | 
  | 
<dd> | 
| 789 | 
  | 
  | 
        Metal2  is  the  same  as  <a HREF="#Plastic2">plastic2</a>,  except  that  the highlights are modified by the material color. | 
| 790 | 
  | 
  | 
 | 
| 791 | 
  | 
  | 
<p> | 
| 792 | 
  | 
  | 
 | 
| 793 | 
  | 
  | 
<dt> | 
| 794 | 
  | 
  | 
        <a NAME="Trans2"> | 
| 795 | 
  | 
  | 
        <b>Trans2</b> | 
| 796 | 
  | 
  | 
        </a> | 
| 797 | 
  | 
  | 
 | 
| 798 | 
  | 
  | 
<dd> | 
| 799 | 
  | 
  | 
        Trans2 is the anisotropic version of <a HREF="#Trans">trans</a>.   | 
| 800 | 
  | 
  | 
        The string arguments  are  the same as for plastic2, and the real arguments are the same as  for  trans  but  with  an  additional roughness value. | 
| 801 | 
  | 
  | 
 | 
| 802 | 
  | 
  | 
<pre> | 
| 803 | 
  | 
  | 
        mod trans2 id | 
| 804 | 
  | 
  | 
        4+ ux uy uz funcfile transform | 
| 805 | 
  | 
  | 
        0 | 
| 806 | 
  | 
  | 
        8 red green blue spec urough vrough trans tspec | 
| 807 | 
  | 
  | 
</pre> | 
| 808 | 
  | 
  | 
 | 
| 809 | 
  | 
  | 
<p> | 
| 810 | 
  | 
  | 
 | 
| 811 | 
  | 
  | 
<dt> | 
| 812 | 
  | 
  | 
        <a NAME="Dielectric"> | 
| 813 | 
  | 
  | 
        <b>Dielectric</b> | 
| 814 | 
  | 
  | 
        </a> | 
| 815 | 
  | 
  | 
 | 
| 816 | 
  | 
  | 
<dd> | 
| 817 | 
  | 
  | 
        A dielectric material is transparent, and  it  refracts light  as well as reflecting it.   | 
| 818 | 
  | 
  | 
        Its behavior is determined by the  index  of  refraction  and  transmission coefficient  in  each wavelength  band  per unit length.   | 
| 819 | 
  | 
  | 
        Common glass has a index of refraction  (n)  around  1.5,  and  a  transmission coefficient  of roughly  0.92 over an inch.   | 
| 820 | 
  | 
  | 
        An additional number, the Hartmann constant, describes how the index of refraction changes as  a  function of wavelength.   | 
| 821 | 
  | 
  | 
        It is usually zero.  (A <a HREF="#Patterns">pattern</a> modifies only the refracted value.) | 
| 822 | 
  | 
  | 
 | 
| 823 | 
  | 
  | 
<pre> | 
| 824 | 
  | 
  | 
        mod dielectric id | 
| 825 | 
  | 
  | 
        0 | 
| 826 | 
  | 
  | 
        0 | 
| 827 | 
  | 
  | 
        5 rtn gtn btn n hc | 
| 828 | 
  | 
  | 
</pre> | 
| 829 | 
  | 
  | 
 | 
| 830 | 
  | 
  | 
<p> | 
| 831 | 
  | 
  | 
 | 
| 832 | 
  | 
  | 
<dt> | 
| 833 | 
  | 
  | 
        <a NAME="Interface"> | 
| 834 | 
  | 
  | 
        <b>Interface</b> | 
| 835 | 
  | 
  | 
        </a> | 
| 836 | 
  | 
  | 
 | 
| 837 | 
  | 
  | 
<dd> | 
| 838 | 
  | 
  | 
        An interface is a  boundary  between  two  dielectrics. | 
| 839 | 
  | 
  | 
        The  first transmission coefficient and refractive index are for the inside; the second  ones  are  for  the  outside.    | 
| 840 | 
  | 
  | 
        Ordinary dielectrics are surrounded by a vacuum (1 1 1 1). | 
| 841 | 
  | 
  | 
 | 
| 842 | 
  | 
  | 
<pre> | 
| 843 | 
  | 
  | 
        mod interface id | 
| 844 | 
  | 
  | 
        0 | 
| 845 | 
  | 
  | 
        0 | 
| 846 | 
  | 
  | 
        8 rtn1 gtn1 btn1 n1 rtn2 gtn2 btn2 n2 | 
| 847 | 
  | 
  | 
</pre> | 
| 848 | 
  | 
  | 
 | 
| 849 | 
  | 
  | 
<p> | 
| 850 | 
  | 
  | 
 | 
| 851 | 
  | 
  | 
<dt> | 
| 852 | 
  | 
  | 
        <a NAME="Glass"> | 
| 853 | 
  | 
  | 
        <b>Glass</b> | 
| 854 | 
  | 
  | 
        </a> | 
| 855 | 
  | 
  | 
 | 
| 856 | 
  | 
  | 
<dd> | 
| 857 | 
  | 
  | 
        Glass is similar to <a HREF="#Dielectric">dielectric</a>, but it is optimized for thin glass surfaces (n = 1.52).   | 
| 858 | 
  | 
  | 
        One transmitted ray and one reflected ray is produced.   | 
| 859 | 
  | 
  | 
        By using a single surface is  in place of two, internal reflections are avoided.   | 
| 860 | 
  | 
  | 
        The surface orientation is irrelevant, as it is for <a HREF="#Plastic">plastic</a>, <a HREF="#Metal">metal</a>,  and <a HREF="#Trans">trans</a>.    | 
| 861 | 
  | 
  | 
        The only specification  required is the transmissivity at normal incidence.   | 
| 862 | 
  | 
  | 
        (Transmissivity is the amount of light not absorbed in one traversal | 
| 863 | 
  | 
  | 
        of the material. | 
| 864 | 
  | 
  | 
        Transmittance -- the value usually measured -- is the total light | 
| 865 | 
  | 
  | 
        transmitted through the pane including multiple reflections.) | 
| 866 | 
  | 
  | 
        To compute transmissivity  (tn) from transmittance (Tn) use: | 
| 867 | 
  | 
  | 
 | 
| 868 | 
  | 
  | 
<pre> | 
| 869 | 
  | 
  | 
        tn = (sqrt(.8402528435+.0072522239*Tn*Tn)-.9166530661)/.0036261119/Tn | 
| 870 | 
  | 
  | 
</pre> | 
| 871 | 
  | 
  | 
 | 
| 872 | 
  | 
  | 
        Standard 88% transmittance glass  has  a  transmissivity  of 0.96.    | 
| 873 | 
  | 
  | 
        (A <a HREF="#Patterns">pattern</a> modifying glass will affect the transmissivity.)  | 
| 874 | 
  | 
  | 
        If a fourth real argument is given,  it  is  interpreted as the index of refraction to use instead of 1.52. | 
| 875 | 
  | 
  | 
 | 
| 876 | 
  | 
  | 
<pre> | 
| 877 | 
  | 
  | 
        mod glass id | 
| 878 | 
  | 
  | 
        0 | 
| 879 | 
  | 
  | 
        0 | 
| 880 | 
  | 
  | 
        3 rtn gtn btn | 
| 881 | 
  | 
  | 
</pre> | 
| 882 | 
  | 
  | 
 | 
| 883 | 
  | 
  | 
<p> | 
| 884 | 
  | 
  | 
 | 
| 885 | 
  | 
  | 
<dt> | 
| 886 | 
  | 
  | 
        <a NAME="Plasfunc"> | 
| 887 | 
  | 
  | 
        <b>Plasfunc</b> | 
| 888 | 
  | 
  | 
        </a> | 
| 889 | 
  | 
  | 
 | 
| 890 | 
  | 
  | 
<dd> | 
| 891 | 
  | 
  | 
        Plasfunc in  used  for  the  procedural  definition  of plastic-like  materials  | 
| 892 | 
  | 
  | 
        with arbitrary bidirectional reflectance distribution functions  (BRDF's).    | 
| 893 | 
  | 
  | 
        The  arguments  to this  material include the color and specularity,  | 
| 894 | 
  | 
  | 
        as well as the function defining the specular distribution and the auxiliary file where it may be found. | 
| 895 | 
  | 
  | 
 | 
| 896 | 
  | 
  | 
<pre> | 
| 897 | 
  | 
  | 
        mod plasfunc id | 
| 898 | 
  | 
  | 
        2+ refl funcfile transform | 
| 899 | 
  | 
  | 
        0 | 
| 900 | 
  | 
  | 
        4+ red green blue spec A5 .. | 
| 901 | 
  | 
  | 
</pre> | 
| 902 | 
  | 
  | 
 | 
| 903 | 
  | 
  | 
        The function refl takes four arguments, the x, y and z | 
| 904 | 
  | 
  | 
        direction towards the incident light, and the solid angle | 
| 905 | 
  | 
  | 
        subtended by the source. | 
| 906 | 
  | 
  | 
        The solid angle is provided to facilitate averaging, and is usually | 
| 907 | 
  | 
  | 
        ignored. | 
| 908 | 
  | 
  | 
        The refl function should integrate to 1 over | 
| 909 | 
  | 
  | 
        the projected hemisphere to maintain energy balance. | 
| 910 | 
  | 
  | 
        At  least  four  real arguments  must be given, and these are made available along with any additional  values  to  the  reflectance  function. | 
| 911 | 
  | 
  | 
        Currently,  only  the contribution from direct light sources is considered in  the  specular  calculation.    | 
| 912 | 
  | 
  | 
        As  in  most material types, the surface normal is always altered to face the incoming ray. | 
| 913 | 
  | 
  | 
 | 
| 914 | 
  | 
  | 
<p> | 
| 915 | 
  | 
  | 
 | 
| 916 | 
  | 
  | 
<dt> | 
| 917 | 
  | 
  | 
        <a NAME="Metfunc"> | 
| 918 | 
  | 
  | 
        <b>Metfunc</b> | 
| 919 | 
  | 
  | 
        </a> | 
| 920 | 
  | 
  | 
 | 
| 921 | 
  | 
  | 
<dd> | 
| 922 | 
  | 
  | 
        Metfunc is identical to <a HREF="#Plasfunc">plasfunc</a>  and  takes  the  same arguments,   | 
| 923 | 
  | 
  | 
        but the specular component is multiplied also by the material color. | 
| 924 | 
  | 
  | 
 | 
| 925 | 
  | 
  | 
<p> | 
| 926 | 
  | 
  | 
 | 
| 927 | 
  | 
  | 
<dt> | 
| 928 | 
  | 
  | 
        <a NAME="Transfunc"> | 
| 929 | 
  | 
  | 
        <b>Transfunc</b> | 
| 930 | 
  | 
  | 
        </a> | 
| 931 | 
  | 
  | 
 | 
| 932 | 
  | 
  | 
<dd> | 
| 933 | 
  | 
  | 
        Transfunc is similar to <a HREF="#Plasfunc">plasfunc</a> but with an  arbitrary bidirectional   transmittance  distribution   | 
| 934 | 
  | 
  | 
        as  well  as  a reflectance    distribution.  | 
| 935 | 
  | 
  | 
        Both    reflectance and transmittance are specified with the same function. | 
| 936 | 
  | 
  | 
 | 
| 937 | 
  | 
  | 
<pre> | 
| 938 | 
  | 
  | 
        mod transfunc id | 
| 939 | 
  | 
  | 
        2+ brtd funcfile transform | 
| 940 | 
  | 
  | 
        0 | 
| 941 | 
  | 
  | 
        6+ red green blue rspec trans tspec A7 .. | 
| 942 | 
  | 
  | 
</pre> | 
| 943 | 
  | 
  | 
 | 
| 944 | 
  | 
  | 
        Where trans is the total light transmitted and tspec is  the non-Lambertian  fraction of transmitted light.   | 
| 945 | 
  | 
  | 
        The function brtd should integrate to 1 over each projected hemisphere. | 
| 946 | 
  | 
  | 
 | 
| 947 | 
  | 
  | 
<p> | 
| 948 | 
  | 
  | 
 | 
| 949 | 
  | 
  | 
<dt> | 
| 950 | 
  | 
  | 
        <a NAME="BRTDfunc"> | 
| 951 | 
  | 
  | 
        <b>BRTDfunc</b> | 
| 952 | 
  | 
  | 
        </a> | 
| 953 | 
  | 
  | 
 | 
| 954 | 
  | 
  | 
<dd> | 
| 955 | 
  | 
  | 
        The material BRTDfunc  gives  the  maximum  flexibility over  surface  reflectance  and transmittance,  | 
| 956 | 
  | 
  | 
        providing for spectrally-dependent  specular  rays  and  reflectance   and transmittance distribution functions. | 
| 957 | 
  | 
  | 
 | 
| 958 | 
  | 
  | 
<pre> | 
| 959 | 
  | 
  | 
        mod BRTDfunc id | 
| 960 | 
  | 
  | 
        10+  rrefl  grefl  brefl | 
| 961 | 
  | 
  | 
             rtrns  gtrns  btrns | 
| 962 | 
  | 
  | 
             rbrtd  gbrtd  bbrtd | 
| 963 | 
  | 
  | 
             funcfile  transform | 
| 964 | 
  | 
  | 
        0 | 
| 965 | 
  | 
  | 
        9+   rfdif gfdif bfdif | 
| 966 | 
  | 
  | 
             rbdif gbdif bbdif | 
| 967 | 
  | 
  | 
             rtdif gtdif btdif | 
| 968 | 
  | 
  | 
             A10 .. | 
| 969 | 
  | 
  | 
</pre> | 
| 970 | 
  | 
  | 
 | 
| 971 | 
  | 
  | 
        The variables rrefl, grefl and brefl specify the color coefficients  for  the ideal specular (mirror) reflection of the surface.   | 
| 972 | 
  | 
  | 
        The variables rtrns, gtrns and btrns  specify  the color coefficients for the ideal specular transmission.   | 
| 973 | 
  | 
  | 
        The functions rbrtd, gbrtd and bbrtd take the direction to the incident light (and its solid angle) and   | 
| 974 | 
  | 
  | 
        compute the color coefficients for the directional diffuse part of reflection and transmission.   | 
| 975 | 
  | 
  | 
        As a  special  case, three identical values of '0' may be given in place of these function names to indicate no  directional diffuse component. | 
| 976 | 
  | 
  | 
 | 
| 977 | 
  | 
  | 
<p> | 
| 978 | 
  | 
  | 
        Unlike most other material types, the surface normal is not  altered  to face the incoming ray.   | 
| 979 | 
  | 
  | 
        Thus, functions and variables must pay attention to the orientation of the  surface  and make adjustments appropriately.   | 
| 980 | 
  | 
  | 
        However, the special variables for the perturbed  dot  product  and  surface normal, RdotP, NxP, NyP and NzP are reoriented  | 
| 981 | 
  | 
  | 
        as if the ray hit the front surface for convenience. | 
| 982 | 
  | 
  | 
 | 
| 983 | 
  | 
  | 
<p> | 
| 984 | 
  | 
  | 
        A diffuse reflection component may  be  given  for  the front side with rfdif, gfdif and bfdif for the front side of the surface  | 
| 985 | 
  | 
  | 
        or rbdif, gbdif and bbdif  for  the  back  side.   | 
| 986 | 
  | 
  | 
        The  diffuse  transmittance (must be the same for both sides by physical law) is given by rtdif, gtdif and btdif.   | 
| 987 | 
  | 
  | 
        A pattern  will  modify these diffuse scattering values, and will be available through the special variables CrP, CgP and CbP. | 
| 988 | 
  | 
  | 
 | 
| 989 | 
  | 
  | 
<p> | 
| 990 | 
  | 
  | 
        Care must be taken when using  this  material  type  to produce  a  physically  valid reflection model.   | 
| 991 | 
  | 
  | 
        The reflectance functions should be bidirectional, and under  no  circumstances  should the sum of reflected diffuse,  | 
| 992 | 
  | 
  | 
        transmitted diffuse, reflected specular, transmitted  specular  and  the integrated  directional  diffuse  component  be greater than one. | 
| 993 | 
  | 
  | 
 | 
| 994 | 
  | 
  | 
<p> | 
| 995 | 
  | 
  | 
 | 
| 996 | 
  | 
  | 
<dt> | 
| 997 | 
  | 
  | 
        <a NAME="Plasdata"> | 
| 998 | 
  | 
  | 
        <b>Plasdata</b> | 
| 999 | 
  | 
  | 
        </a> | 
| 1000 | 
  | 
  | 
 | 
| 1001 | 
  | 
  | 
<dd> | 
| 1002 | 
  | 
  | 
        Plasdata is used for arbitrary  BRDF's  that  are  most conveniently  given  as interpolated data.   | 
| 1003 | 
  | 
  | 
        The arguments to this material are the <a HREF="#Data">data file</a> and coordinate  index  functions,   | 
| 1004 | 
  | 
  | 
        as  well as a function to optionally modify the data values. | 
| 1005 | 
  | 
  | 
 | 
| 1006 | 
  | 
  | 
<pre> | 
| 1007 | 
  | 
  | 
        mod plasdata id | 
| 1008 | 
  | 
  | 
        3+n+ | 
| 1009 | 
  | 
  | 
                func datafile | 
| 1010 | 
  | 
  | 
                funcfile x1 x2 .. xn transform | 
| 1011 | 
  | 
  | 
        0 | 
| 1012 | 
  | 
  | 
        4+ red green blue spec A5 .. | 
| 1013 | 
  | 
  | 
</pre> | 
| 1014 | 
  | 
  | 
 | 
| 1015 | 
  | 
  | 
        The coordinate indices (x1, x2, etc.) are  themselves  functions  of  the  x,  y and z direction to the incident light, plus the solid angle | 
| 1016 | 
  | 
  | 
        subtended by the light source (usually ignored). | 
| 1017 | 
  | 
  | 
        The data function (func) takes five variables, the | 
| 1018 | 
  | 
  | 
        interpolated value from the n-dimensional data file, followed by the | 
| 1019 | 
  | 
  | 
        x, y and z direction to the incident light and the solid angle of the source. | 
| 1020 | 
  | 
  | 
        The light source direction and size may of course be ignored by the function. | 
| 1021 | 
  | 
  | 
 | 
| 1022 | 
  | 
  | 
<p> | 
| 1023 | 
  | 
  | 
 | 
| 1024 | 
  | 
  | 
<dt> | 
| 1025 | 
  | 
  | 
        <a NAME="Metdata"> | 
| 1026 | 
  | 
  | 
        <b>Metdata</b> | 
| 1027 | 
  | 
  | 
        </a> | 
| 1028 | 
  | 
  | 
 | 
| 1029 | 
  | 
  | 
<dd> | 
| 1030 | 
  | 
  | 
        As metfunc is to  plasfunc,  metdata  is  to  <a HREF="#Plasdata">plasdata</a>.   | 
| 1031 | 
  | 
  | 
        Metdata takes the same arguments as plasdata, but the specular component is modified by the given material color. | 
| 1032 | 
  | 
  | 
 | 
| 1033 | 
  | 
  | 
<p> | 
| 1034 | 
  | 
  | 
 | 
| 1035 | 
  | 
  | 
<dt>     | 
| 1036 | 
  | 
  | 
        <a NAME="Transdata"> | 
| 1037 | 
  | 
  | 
        <b>Transdata</b> | 
| 1038 | 
  | 
  | 
        </a> | 
| 1039 | 
  | 
  | 
 | 
| 1040 | 
  | 
  | 
<dd> | 
| 1041 | 
  | 
  | 
        Transdata  is  like  <a HREF="#Plasdata">plasdata</a>  but  the   specification includes  transmittance as well as reflectance.   | 
| 1042 | 
  | 
  | 
        The parameters are as follows. | 
| 1043 | 
  | 
  | 
 | 
| 1044 | 
  | 
  | 
<pre> | 
| 1045 | 
  | 
  | 
        mod transdata id | 
| 1046 | 
  | 
  | 
        3+n+ | 
| 1047 | 
  | 
  | 
                func datafile | 
| 1048 | 
  | 
  | 
                funcfile x1 x2 .. xn transform | 
| 1049 | 
  | 
  | 
        0 | 
| 1050 | 
  | 
  | 
        6+ red green blue rspec trans tspec A7 .. | 
| 1051 | 
  | 
  | 
</pre> | 
| 1052 | 
  | 
  | 
 | 
| 1053 | 
  | 
  | 
<p> | 
| 1054 | 
  | 
  | 
 | 
| 1055 | 
  | 
  | 
<dt> | 
| 1056 | 
  | 
  | 
        <a NAME="Antimatter"> | 
| 1057 | 
  | 
  | 
        <b>Antimatter</b> | 
| 1058 | 
  | 
  | 
        </a> | 
| 1059 | 
  | 
  | 
 | 
| 1060 | 
  | 
  | 
<dd> | 
| 1061 | 
  | 
  | 
        Antimatter is a material that  can  "subtract"  volumes from other volumes.   | 
| 1062 | 
  | 
  | 
        A ray passing into an antimatter object becomes blind to all the specified modifiers: | 
| 1063 | 
  | 
  | 
 | 
| 1064 | 
  | 
  | 
<pre> | 
| 1065 | 
  | 
  | 
        mod antimatter id | 
| 1066 | 
  | 
  | 
        N mod1 mod2 .. modN | 
| 1067 | 
  | 
  | 
        0 | 
| 1068 | 
  | 
  | 
        0 | 
| 1069 | 
  | 
  | 
</pre> | 
| 1070 | 
  | 
  | 
 | 
| 1071 | 
  | 
  | 
        The first modifier will also be used to shade  the  area  leaving the  antimatter  volume and entering the regular volume.   | 
| 1072 | 
  | 
  | 
        If mod1 is void, the antimatter volume is completely invisible. | 
| 1073 | 
  | 
  | 
        Antimatter  does  not  work  properly with the material type <a HREF="#Trans">"trans"</a>,  | 
| 1074 | 
  | 
  | 
        and multiple antimatter  surfaces  should  be  disjoint.    | 
| 1075 | 
  | 
  | 
        The viewpoint must be outside all volumes concerned for a correct rendering. | 
| 1076 | 
  | 
  | 
 | 
| 1077 | 
  | 
  | 
</dl> | 
| 1078 | 
  | 
  | 
 | 
| 1079 | 
  | 
  | 
<p> | 
| 1080 | 
  | 
  | 
<hr> | 
| 1081 | 
  | 
  | 
 | 
| 1082 | 
  | 
  | 
<h4> | 
| 1083 | 
  | 
  | 
<a NAME="Textures">2.1.3.  Textures</a> | 
| 1084 | 
  | 
  | 
</h4> | 
| 1085 | 
  | 
  | 
 | 
| 1086 | 
  | 
  | 
A texture is a perturbation of the surface normal,  and is given by either a function or data. | 
| 1087 | 
  | 
  | 
 | 
| 1088 | 
  | 
  | 
<p> | 
| 1089 | 
  | 
  | 
 | 
| 1090 | 
  | 
  | 
<dl> | 
| 1091 | 
  | 
  | 
 | 
| 1092 | 
  | 
  | 
<dt> | 
| 1093 | 
  | 
  | 
        <a NAME="Texfunc"> | 
| 1094 | 
  | 
  | 
        <b>Texfunc</b> | 
| 1095 | 
  | 
  | 
        </a> | 
| 1096 | 
  | 
  | 
 | 
| 1097 | 
  | 
  | 
<dd> | 
| 1098 | 
  | 
  | 
        A texfunc uses an auxiliary function file to specify  a procedural texture: | 
| 1099 | 
  | 
  | 
 | 
| 1100 | 
  | 
  | 
<pre> | 
| 1101 | 
  | 
  | 
        mod texfunc id | 
| 1102 | 
  | 
  | 
        4+ xpert ypert zpert funcfile transform | 
| 1103 | 
  | 
  | 
        0 | 
| 1104 | 
  | 
  | 
        n A1 A2 .. An | 
| 1105 | 
  | 
  | 
</pre> | 
| 1106 | 
  | 
  | 
 | 
| 1107 | 
  | 
  | 
<p> | 
| 1108 | 
  | 
  | 
 | 
| 1109 | 
  | 
  | 
<dt> | 
| 1110 | 
  | 
  | 
        <a NAME="Texdata"> | 
| 1111 | 
  | 
  | 
        <b>Texdata</b> | 
| 1112 | 
  | 
  | 
        </a> | 
| 1113 | 
  | 
  | 
 | 
| 1114 | 
  | 
  | 
<dd> | 
| 1115 | 
  | 
  | 
        A texdata texture uses three data files to get the surface  normal  perturbations.   | 
| 1116 | 
  | 
  | 
        The variables xfunc, yfunc and zfunc take three arguments each from the interpolated values in xdfname, ydfname and zdfname. | 
| 1117 | 
  | 
  | 
 | 
| 1118 | 
  | 
  | 
<pre> | 
| 1119 | 
  | 
  | 
        mod texdata id | 
| 1120 | 
  | 
  | 
        8+ xfunc yfunc zfunc xdfname ydfname zdfname vfname x0 x1 .. xf | 
| 1121 | 
  | 
  | 
        0 | 
| 1122 | 
  | 
  | 
        n A1 A2 .. An | 
| 1123 | 
  | 
  | 
</pre> | 
| 1124 | 
  | 
  | 
 | 
| 1125 | 
  | 
  | 
</dl> | 
| 1126 | 
  | 
  | 
 | 
| 1127 | 
  | 
  | 
<p> | 
| 1128 | 
  | 
  | 
<hr> | 
| 1129 | 
  | 
  | 
 | 
| 1130 | 
  | 
  | 
<h4> | 
| 1131 | 
  | 
  | 
<a NAME="Patterns">2.1.4.  Patterns</a> | 
| 1132 | 
  | 
  | 
</h4> | 
| 1133 | 
  | 
  | 
 | 
| 1134 | 
  | 
  | 
Patterns are used to modify the reflectance of  materials.  The basic types are given below. | 
| 1135 | 
  | 
  | 
 | 
| 1136 | 
  | 
  | 
<p> | 
| 1137 | 
  | 
  | 
 | 
| 1138 | 
  | 
  | 
<dl> | 
| 1139 | 
  | 
  | 
 | 
| 1140 | 
  | 
  | 
<dt> | 
| 1141 | 
  | 
  | 
        <a NAME="Colorfunc"> | 
| 1142 | 
  | 
  | 
        <b>Colorfunc</b> | 
| 1143 | 
  | 
  | 
        </a> | 
| 1144 | 
  | 
  | 
 | 
| 1145 | 
  | 
  | 
<dd> | 
| 1146 | 
  | 
  | 
A colorfunc is a procedurally  defined  color  pattern.  It is specified as follows: | 
| 1147 | 
  | 
  | 
 | 
| 1148 | 
  | 
  | 
<pre> | 
| 1149 | 
  | 
  | 
        mod colorfunc id | 
| 1150 | 
  | 
  | 
        4+ red green blue funcfile transform | 
| 1151 | 
  | 
  | 
        0 | 
| 1152 | 
  | 
  | 
        n A1 A2 .. An | 
| 1153 | 
  | 
  | 
</pre> | 
| 1154 | 
  | 
  | 
 | 
| 1155 | 
  | 
  | 
<p> | 
| 1156 | 
  | 
  | 
 | 
| 1157 | 
  | 
  | 
<dt> | 
| 1158 | 
  | 
  | 
        <a NAME="Brightfunc"> | 
| 1159 | 
  | 
  | 
        <b>Brightfunc</b> | 
| 1160 | 
  | 
  | 
        </a> | 
| 1161 | 
  | 
  | 
 | 
| 1162 | 
  | 
  | 
<dd> | 
| 1163 | 
  | 
  | 
        A brightfunc is the same as a colorfunc, except  it  is monochromatic. | 
| 1164 | 
  | 
  | 
 | 
| 1165 | 
  | 
  | 
<pre> | 
| 1166 | 
  | 
  | 
        mod brightfunc id | 
| 1167 | 
  | 
  | 
        2+ refl funcfile transform | 
| 1168 | 
  | 
  | 
        0 | 
| 1169 | 
  | 
  | 
        n A1 A2 .. An | 
| 1170 | 
  | 
  | 
</pre> | 
| 1171 | 
  | 
  | 
 | 
| 1172 | 
  | 
  | 
<p> | 
| 1173 | 
  | 
  | 
 | 
| 1174 | 
  | 
  | 
<dt> | 
| 1175 | 
  | 
  | 
        <a NAME="Colordata"> | 
| 1176 | 
  | 
  | 
        <b>Colordata</b> | 
| 1177 | 
  | 
  | 
        </a> | 
| 1178 | 
  | 
  | 
 | 
| 1179 | 
  | 
  | 
<dd> | 
| 1180 | 
  | 
  | 
        Colordata uses an interpolated data  map  to  modify  a material's  color.    | 
| 1181 | 
  | 
  | 
        The map is n-dimensional, and is stored in three auxiliary files, one for each color.    | 
| 1182 | 
  | 
  | 
        The  coordinates  used  to look up and interpolate the data are defined in another auxiliary file.   | 
| 1183 | 
  | 
  | 
        The interpolated data values are modified  by  functions  of  one or three variables.   | 
| 1184 | 
  | 
  | 
        If the functions are of one variable,  then  they  are  passed  the corresponding  color  component  (red or green or blue).   | 
| 1185 | 
  | 
  | 
        If the functions are of three variables, then they  are  passed the original red, green, and blue values as parameters. | 
| 1186 | 
  | 
  | 
 | 
| 1187 | 
  | 
  | 
<pre> | 
| 1188 | 
  | 
  | 
        mod colordata id | 
| 1189 | 
  | 
  | 
        7+n+ | 
| 1190 | 
  | 
  | 
                rfunc gfunc bfunc rdatafile gdatafile bdatafile | 
| 1191 | 
  | 
  | 
                funcfile x1 x2 .. xn transform | 
| 1192 | 
  | 
  | 
        0 | 
| 1193 | 
  | 
  | 
        m A1 A2 .. Am | 
| 1194 | 
  | 
  | 
</pre> | 
| 1195 | 
  | 
  | 
 | 
| 1196 | 
  | 
  | 
<p> | 
| 1197 | 
  | 
  | 
 | 
| 1198 | 
  | 
  | 
<dt> | 
| 1199 | 
  | 
  | 
        <a NAME="Brightdata"> | 
| 1200 | 
  | 
  | 
        <b>Brightdata</b> | 
| 1201 | 
  | 
  | 
        </a> | 
| 1202 | 
  | 
  | 
 | 
| 1203 | 
  | 
  | 
<dd> | 
| 1204 | 
  | 
  | 
        Brightdata is like colordata, except monochromatic. | 
| 1205 | 
  | 
  | 
 | 
| 1206 | 
  | 
  | 
<pre> | 
| 1207 | 
  | 
  | 
        mod brightdata id | 
| 1208 | 
  | 
  | 
        3+n+ | 
| 1209 | 
  | 
  | 
                func datafile | 
| 1210 | 
  | 
  | 
                funcfile x1 x2 .. xn transform | 
| 1211 | 
  | 
  | 
        0 | 
| 1212 | 
  | 
  | 
        m A1 A2 .. Am | 
| 1213 | 
  | 
  | 
</pre> | 
| 1214 | 
  | 
  | 
 | 
| 1215 | 
  | 
  | 
<p> | 
| 1216 | 
  | 
  | 
 | 
| 1217 | 
  | 
  | 
<dt> | 
| 1218 | 
  | 
  | 
        <a NAME="Colorpict"> | 
| 1219 | 
  | 
  | 
        <b>Colorpict</b> | 
| 1220 | 
  | 
  | 
        </a> | 
| 1221 | 
  | 
  | 
 | 
| 1222 | 
  | 
  | 
<dd> | 
| 1223 | 
  | 
  | 
        Colorpict is a special case  of  colordata,  where  the pattern  is  a  two-dimensional image stored in the RADIANCE picture format.   | 
| 1224 | 
  | 
  | 
        The dimensions of the image data are determined  by  the  picture  such  that the smaller dimension is always 1,  | 
| 1225 | 
  | 
  | 
        and the other is the ratio between the larger  and the  smaller.    | 
| 1226 | 
  | 
  | 
        For  example,  a  500x338 picture would have coordinates  (u,v)  in  the  rectangle  between  (0,0)   and (1.48,1). | 
| 1227 | 
  | 
  | 
 | 
| 1228 | 
  | 
  | 
<pre> | 
| 1229 | 
  | 
  | 
        mod colorpict id | 
| 1230 | 
  | 
  | 
        7+ | 
| 1231 | 
  | 
  | 
                rfunc gfunc bfunc pictfile | 
| 1232 | 
  | 
  | 
                funcfile u v transform | 
| 1233 | 
  | 
  | 
        0 | 
| 1234 | 
  | 
  | 
        m A1 A2 .. Am | 
| 1235 | 
  | 
  | 
</pre> | 
| 1236 | 
  | 
  | 
 | 
| 1237 | 
  | 
  | 
<p> | 
| 1238 | 
  | 
  | 
 | 
| 1239 | 
  | 
  | 
<dt> | 
| 1240 | 
  | 
  | 
        <a NAME="Colortext"> | 
| 1241 | 
  | 
  | 
        <b>Colortext</b> | 
| 1242 | 
  | 
  | 
        </a> | 
| 1243 | 
  | 
  | 
 | 
| 1244 | 
  | 
  | 
<dd> | 
| 1245 | 
  | 
  | 
        Colortext is dichromatic writing in a  polygonal  font. | 
| 1246 | 
  | 
  | 
        The   font   is  defined  in  an  auxiliary  file,  such  as helvet.fnt.   | 
| 1247 | 
  | 
  | 
        The text itself is also specified in a separate file, or can be part of the material arguments.   | 
| 1248 | 
  | 
  | 
        The character size, orientation, aspect ratio and slant is  determined by right and down motion vectors.   | 
| 1249 | 
  | 
  | 
        The upper left origin for the text block as well  as  the  foreground  and  background colors must also be given. | 
| 1250 | 
  | 
  | 
 | 
| 1251 | 
  | 
  | 
<pre> | 
| 1252 | 
  | 
  | 
        mod colortext id | 
| 1253 | 
  | 
  | 
        2 fontfile textfile | 
| 1254 | 
  | 
  | 
        0 | 
| 1255 | 
  | 
  | 
        15+ | 
| 1256 | 
  | 
  | 
                Ox Oy Oz | 
| 1257 | 
  | 
  | 
                Rx Ry Rz | 
| 1258 | 
  | 
  | 
                Dx Dy Dz | 
| 1259 | 
  | 
  | 
                rfore gfore bfore | 
| 1260 | 
  | 
  | 
                rback gback bback | 
| 1261 | 
  | 
  | 
                [spacing] | 
| 1262 | 
  | 
  | 
</pre> | 
| 1263 | 
  | 
  | 
 | 
| 1264 | 
  | 
  | 
or: | 
| 1265 | 
  | 
  | 
 | 
| 1266 | 
  | 
  | 
<pre> | 
| 1267 | 
  | 
  | 
        mod colortext id | 
| 1268 | 
  | 
  | 
        2+N fontfile . This is a line with N words ... | 
| 1269 | 
  | 
  | 
        0 | 
| 1270 | 
  | 
  | 
        15+ | 
| 1271 | 
  | 
  | 
                Ox Oy Oz | 
| 1272 | 
  | 
  | 
                Rx Ry Rz | 
| 1273 | 
  | 
  | 
                Dx Dy Dz | 
| 1274 | 
  | 
  | 
                rfore gfore bfore | 
| 1275 | 
  | 
  | 
                rback gback bback | 
| 1276 | 
  | 
  | 
                [spacing] | 
| 1277 | 
  | 
  | 
</pre> | 
| 1278 | 
  | 
  | 
 | 
| 1279 | 
  | 
  | 
<p> | 
| 1280 | 
  | 
  | 
 | 
| 1281 | 
  | 
  | 
<dt> | 
| 1282 | 
  | 
  | 
        <a NAME="Brighttext"> | 
| 1283 | 
  | 
  | 
        <b>Brighttext</b> | 
| 1284 | 
  | 
  | 
        </a> | 
| 1285 | 
  | 
  | 
 | 
| 1286 | 
  | 
  | 
<dd> | 
| 1287 | 
  | 
  | 
        Brighttext is like colortext, but the writing is  monochromatic. | 
| 1288 | 
  | 
  | 
 | 
| 1289 | 
  | 
  | 
<pre> | 
| 1290 | 
  | 
  | 
        mod brighttext id | 
| 1291 | 
  | 
  | 
        2 fontfile textfile | 
| 1292 | 
  | 
  | 
        0 | 
| 1293 | 
  | 
  | 
        11+ | 
| 1294 | 
  | 
  | 
                Ox Oy Oz | 
| 1295 | 
  | 
  | 
                Rx Ry Rz | 
| 1296 | 
  | 
  | 
                Dx Dy Dz | 
| 1297 | 
  | 
  | 
                foreground background | 
| 1298 | 
  | 
  | 
                [spacing] | 
| 1299 | 
  | 
  | 
</pre> | 
| 1300 | 
  | 
  | 
 | 
| 1301 | 
  | 
  | 
or: | 
| 1302 | 
  | 
  | 
 | 
| 1303 | 
  | 
  | 
<pre> | 
| 1304 | 
  | 
  | 
        mod brighttext id | 
| 1305 | 
  | 
  | 
        2+N fontfile . This is a line with N words ... | 
| 1306 | 
  | 
  | 
        0 | 
| 1307 | 
  | 
  | 
        11+ | 
| 1308 | 
  | 
  | 
                Ox Oy Oz | 
| 1309 | 
  | 
  | 
                Rx Ry Rz | 
| 1310 | 
  | 
  | 
                Dx Dy Dz | 
| 1311 | 
  | 
  | 
                foreground background | 
| 1312 | 
  | 
  | 
                [spacing] | 
| 1313 | 
  | 
  | 
</pre> | 
| 1314 | 
  | 
  | 
 | 
| 1315 | 
  | 
  | 
<p> | 
| 1316 | 
  | 
  | 
 | 
| 1317 | 
  | 
  | 
        By default, a uniform spacing algorithm is used that guarantees  every  character will appear in a precisely determined position.   | 
| 1318 | 
  | 
  | 
        Unfortunately, such a scheme  results  in  rather unattractive  and  difficult  to  read text with most fonts. | 
| 1319 | 
  | 
  | 
        The optional spacing  value  defines  the  distance  between characters  for  proportional  spacing.    | 
| 1320 | 
  | 
  | 
        A  positive  value selects a spacing algorithm that preserves right margins and indentation,   | 
| 1321 | 
  | 
  | 
        but  does  not provide the ultimate in proportionally spaced text.   | 
| 1322 | 
  | 
  | 
        A negative value insures that characters  are  properly  spaced, but the placement of words then varies unpredictably.   | 
| 1323 | 
  | 
  | 
        The choice depends  on  the  relative importance  of spacing versus formatting.   | 
| 1324 | 
  | 
  | 
        When presenting a section of formatted text, a positive spacing value is  usually  preferred.   | 
| 1325 | 
  | 
  | 
        A single line of text will often be accompanied by a negative spacing value.   | 
| 1326 | 
  | 
  | 
        A section of text meant to  depict  a  picture, perhaps using a special purpose font such as hexbit4x1.fnt, calls for uniform  spacing.    | 
| 1327 | 
  | 
  | 
        Reasonable  magnitudes  for  proportional  spacing are between 0.1 (for tightly spaced characters) and 0.3 (for wide spacing). | 
| 1328 | 
  | 
  | 
 | 
| 1329 | 
  | 
  | 
</dl> | 
| 1330 | 
  | 
  | 
 | 
| 1331 | 
  | 
  | 
<p> | 
| 1332 | 
  | 
  | 
<hr> | 
| 1333 | 
  | 
  | 
 | 
| 1334 | 
  | 
  | 
<h4> | 
| 1335 | 
  | 
  | 
<a NAME="Mixtures">2.1.5.  Mixtures</a> | 
| 1336 | 
  | 
  | 
</h4> | 
| 1337 | 
  | 
  | 
 | 
| 1338 | 
  | 
  | 
A mixture is a blend of one or more materials or textures and patterns. | 
| 1339 | 
  | 
  | 
The basic types are given below. | 
| 1340 | 
  | 
  | 
 | 
| 1341 | 
  | 
  | 
<p> | 
| 1342 | 
  | 
  | 
 | 
| 1343 | 
  | 
  | 
<dl> | 
| 1344 | 
  | 
  | 
 | 
| 1345 | 
  | 
  | 
<dt> | 
| 1346 | 
  | 
  | 
        <a NAME="Mixfunc"> | 
| 1347 | 
  | 
  | 
        <b>Mixfunc</b> | 
| 1348 | 
  | 
  | 
        </a> | 
| 1349 | 
  | 
  | 
 | 
| 1350 | 
  | 
  | 
<dd> | 
| 1351 | 
  | 
  | 
A mixfunc mixes  two  modifiers  procedurally.   It  is specified as follows: | 
| 1352 | 
  | 
  | 
 | 
| 1353 | 
  | 
  | 
<pre> | 
| 1354 | 
  | 
  | 
        mod mixfunc id | 
| 1355 | 
  | 
  | 
        4+ foreground background vname funcfile transform | 
| 1356 | 
  | 
  | 
        0 | 
| 1357 | 
  | 
  | 
        n A1 A2 .. An | 
| 1358 | 
  | 
  | 
</pre> | 
| 1359 | 
  | 
  | 
 | 
| 1360 | 
  | 
  | 
        Foreground and background are modifier names that must be | 
| 1361 | 
  | 
  | 
        defined earlier in the scene description. | 
| 1362 | 
  | 
  | 
        If one of these is a material, then | 
| 1363 | 
  | 
  | 
        the modifier of the mixfunc must be "void". | 
| 1364 | 
  | 
  | 
        (Either the foreground or background modifier may be "void", | 
| 1365 | 
  | 
  | 
        which serves as a form of opacity control when used with a material.) | 
| 1366 | 
  | 
  | 
        Vname is the coefficient defined in funcfile that determines  the  influence  of  foreground.    | 
| 1367 | 
  | 
  | 
        The background coefficient is always (1-vname).   | 
| 1368 | 
  | 
  | 
        Since the references are not resolved until run-time,  the  last  definitions  of  the modifier id's will be used.   | 
| 1369 | 
  | 
  | 
        This can result in modifier loops, which are detected by the renderer. | 
| 1370 | 
  | 
  | 
 | 
| 1371 | 
  | 
  | 
<p> | 
| 1372 | 
  | 
  | 
 | 
| 1373 | 
  | 
  | 
<dt> | 
| 1374 | 
  | 
  | 
        <a NAME="Mixdata"> | 
| 1375 | 
  | 
  | 
        <b>Mixdata</b> | 
| 1376 | 
  | 
  | 
        </a> | 
| 1377 | 
  | 
  | 
 | 
| 1378 | 
  | 
  | 
<dd> | 
| 1379 | 
  | 
  | 
        Mixdata combines two modifiers using an auxiliary  data file: | 
| 1380 | 
  | 
  | 
 | 
| 1381 | 
  | 
  | 
<pre> | 
| 1382 | 
  | 
  | 
        mod mixdata id | 
| 1383 | 
  | 
  | 
        5+n+ | 
| 1384 | 
  | 
  | 
                foreground background func datafile | 
| 1385 | 
  | 
  | 
                funcfile x1 x2 .. xn transform | 
| 1386 | 
  | 
  | 
        0 | 
| 1387 | 
  | 
  | 
        m A1 A2 .. Am | 
| 1388 | 
  | 
  | 
</pre> | 
| 1389 | 
  | 
  | 
 | 
| 1390 | 
  | 
  | 
<dt> | 
| 1391 | 
  | 
  | 
        <a NAME="Mixpict"> | 
| 1392 | 
  | 
  | 
        <b>Mixpict</b> | 
| 1393 | 
  | 
  | 
        </a> | 
| 1394 | 
  | 
  | 
 | 
| 1395 | 
  | 
  | 
<dd> | 
| 1396 | 
  | 
  | 
        Mixpict combines two modifiers based on a picture: | 
| 1397 | 
  | 
  | 
 | 
| 1398 | 
  | 
  | 
<pre> | 
| 1399 | 
  | 
  | 
        mod mixpict id | 
| 1400 | 
  | 
  | 
        7+ | 
| 1401 | 
  | 
  | 
                foreground background func pictfile | 
| 1402 | 
  | 
  | 
                funcfile u v transform | 
| 1403 | 
  | 
  | 
        0 | 
| 1404 | 
  | 
  | 
        m A1 A2 .. Am | 
| 1405 | 
  | 
  | 
</pre> | 
| 1406 | 
  | 
  | 
 | 
| 1407 | 
  | 
  | 
<p> | 
| 1408 | 
  | 
  | 
 | 
| 1409 | 
  | 
  | 
        The mixing coefficient function "func" takes three | 
| 1410 | 
  | 
  | 
        arguments, the red, green and blue values | 
| 1411 | 
  | 
  | 
        corresponding to the pixel at (u,v). | 
| 1412 | 
  | 
  | 
 | 
| 1413 | 
  | 
  | 
</dl> | 
| 1414 | 
  | 
  | 
<p> | 
| 1415 | 
  | 
  | 
 | 
| 1416 | 
  | 
  | 
<dt> | 
| 1417 | 
  | 
  | 
        <a NAME="Mixtext"> | 
| 1418 | 
  | 
  | 
        <b>Mixtext</b> | 
| 1419 | 
  | 
  | 
        </a> | 
| 1420 | 
  | 
  | 
 | 
| 1421 | 
  | 
  | 
<dd> | 
| 1422 | 
  | 
  | 
        Mixtext uses one modifier for the text foreground,  and one for the background: | 
| 1423 | 
  | 
  | 
 | 
| 1424 | 
  | 
  | 
<pre> | 
| 1425 | 
  | 
  | 
        mod mixtext id | 
| 1426 | 
  | 
  | 
        4 foreground background fontfile textfile | 
| 1427 | 
  | 
  | 
        0 | 
| 1428 | 
  | 
  | 
        9+ | 
| 1429 | 
  | 
  | 
                Ox Oy Oz | 
| 1430 | 
  | 
  | 
                Rx Ry Rz | 
| 1431 | 
  | 
  | 
                Dx Dy Dz | 
| 1432 | 
  | 
  | 
                [spacing] | 
| 1433 | 
  | 
  | 
</pre> | 
| 1434 | 
  | 
  | 
 | 
| 1435 | 
  | 
  | 
or: | 
| 1436 | 
  | 
  | 
 | 
| 1437 | 
  | 
  | 
<pre> | 
| 1438 | 
  | 
  | 
        mod mixtext id | 
| 1439 | 
  | 
  | 
        4+N | 
| 1440 | 
  | 
  | 
                foreground background fontfile . | 
| 1441 | 
  | 
  | 
                This is a line with N words ... | 
| 1442 | 
  | 
  | 
        0 | 
| 1443 | 
  | 
  | 
        9+ | 
| 1444 | 
  | 
  | 
                Ox Oy Oz | 
| 1445 | 
  | 
  | 
                Rx Ry Rz | 
| 1446 | 
  | 
  | 
                Dx Dy Dz | 
| 1447 | 
  | 
  | 
                [spacing] | 
| 1448 | 
  | 
  | 
</pre> | 
| 1449 | 
  | 
  | 
 | 
| 1450 | 
  | 
  | 
</dl> | 
| 1451 | 
  | 
  | 
 | 
| 1452 | 
  | 
  | 
<p> | 
| 1453 | 
  | 
  | 
<hr> | 
| 1454 | 
  | 
  | 
 | 
| 1455 | 
  | 
  | 
<h3> | 
| 1456 | 
  | 
  | 
<a NAME="Auxiliary">2.2.  Auxiliary Files</a> | 
| 1457 | 
  | 
  | 
</h3> | 
| 1458 | 
  | 
  | 
 | 
| 1459 | 
  | 
  | 
Auxiliary files  used  in  <a HREF="#Textures">textures</a>  and  <a HREF="#Patterns">patterns</a>   | 
| 1460 | 
  | 
  | 
are accessed  by  the  programs  during image generation.   | 
| 1461 | 
  | 
  | 
These files may be located in  the  working  directory,  or  in  a library  directory.   | 
| 1462 | 
  | 
  | 
The environment variable RAYPATH can be assigned an alternate set of search directories.    | 
| 1463 | 
  | 
  | 
Following is a brief description of some common file types. | 
| 1464 | 
  | 
  | 
 | 
| 1465 | 
  | 
  | 
<p> | 
| 1466 | 
  | 
  | 
 | 
| 1467 | 
  | 
  | 
<h4> | 
| 1468 | 
  | 
  | 
<a NAME="Function">12.2.1.  Function Files</a> | 
| 1469 | 
  | 
  | 
</h4> | 
| 1470 | 
  | 
  | 
 | 
| 1471 | 
  | 
  | 
A function file contains the definitions of  variables, functions  and constants used by a primitive.   | 
| 1472 | 
  | 
  | 
The transformation that accompanies the file name contains the necessary rotations,  translations  and  scalings  | 
| 1473 | 
  | 
  | 
to bring the coordinates of the function file into  agreement  with  the  world coordinates.    | 
| 1474 | 
  | 
  | 
The  transformation specification is the same as for the <a HREF="#Generators">xform</a> command.   | 
| 1475 | 
  | 
  | 
An example function file is given below: | 
| 1476 | 
  | 
  | 
 | 
| 1477 | 
  | 
  | 
<pre> | 
| 1478 | 
  | 
  | 
        { | 
| 1479 | 
  | 
  | 
                This is a comment, enclosed in curly braces. | 
| 1480 | 
  | 
  | 
                {Comments can be nested.} | 
| 1481 | 
  | 
  | 
        } | 
| 1482 | 
  | 
  | 
                                { standard expressions use +,-,*,/,^,(,) } | 
| 1483 | 
  | 
  | 
        vname = Ny * func(A1) ; | 
| 1484 | 
  | 
  | 
                                { constants are defined with a colon } | 
| 1485 | 
  | 
  | 
        const : sqrt(PI/2) ; | 
| 1486 | 
  | 
  | 
                                { user-defined functions add to library } | 
| 1487 | 
  | 
  | 
        func(x) = 5 + A1*sin(x/3) ; | 
| 1488 | 
  | 
  | 
                                { functions may be passed and recursive } | 
| 1489 | 
  | 
  | 
        rfunc(f,x) = if(x,f(x),f(-x)*rfunc(f,x+1)) ; | 
| 1490 | 
  | 
  | 
                                { constant functions may also be defined } | 
| 1491 | 
  | 
  | 
        cfunc(x) : 10*x / sqrt(x) ; | 
| 1492 | 
  | 
  | 
</pre> | 
| 1493 | 
  | 
  | 
 | 
| 1494 | 
  | 
  | 
Many variables and functions are already defined by the program, and they are listed in the file rayinit.cal.   | 
| 1495 | 
  | 
  | 
The following variables are particularly important: | 
| 1496 | 
  | 
  | 
 | 
| 1497 | 
  | 
  | 
<pre> | 
| 1498 | 
  | 
  | 
                Dx, Dy, Dz              - incident ray direction | 
| 1499 | 
  | 
  | 
                Nx, Ny, Nz              - surface normal at intersection point | 
| 1500 | 
  | 
  | 
                Px, Py, Pz              - intersection point | 
| 1501 | 
  | 
  | 
                T                       - distance from start | 
| 1502 | 
  | 
  | 
                Ts                      - single ray (shadow) distance | 
| 1503 | 
  | 
  | 
                Rdot                    - cosine between ray and normal | 
| 1504 | 
  | 
  | 
                arg(0)                  - number of real arguments | 
| 1505 | 
  | 
  | 
                arg(i)                  - i'th real argument | 
| 1506 | 
  | 
  | 
</pre> | 
| 1507 | 
  | 
  | 
 | 
| 1508 | 
  | 
  | 
For mesh objects, the local surface coordinates are available: | 
| 1509 | 
  | 
  | 
 | 
| 1510 | 
  | 
  | 
<pre> | 
| 1511 | 
  | 
  | 
                Lu, Lv                  - local (u,v) coordinates | 
| 1512 | 
  | 
  | 
</pre> | 
| 1513 | 
  | 
  | 
 | 
| 1514 | 
  | 
  | 
For BRDF types, the following variables are defined as well: | 
| 1515 | 
  | 
  | 
 | 
| 1516 | 
  | 
  | 
<pre> | 
| 1517 | 
  | 
  | 
                NxP, NyP, NzP           - perturbed surface normal | 
| 1518 | 
  | 
  | 
                RdotP                   - perturbed dot product | 
| 1519 | 
  | 
  | 
                CrP, CgP, CbP           - perturbed material color | 
| 1520 | 
  | 
  | 
</pre> | 
| 1521 | 
  | 
  | 
 | 
| 1522 | 
  | 
  | 
A unique context is set up for each file so | 
| 1523 | 
  | 
  | 
that  the  same variable may appear in different | 
| 1524 | 
  | 
  | 
function files without conflict.   | 
| 1525 | 
  | 
  | 
The variables listed above and any others defined in | 
| 1526 | 
  | 
  | 
rayinit.cal are available globally.   | 
| 1527 | 
  | 
  | 
If no file is needed by a given primitive because all | 
| 1528 | 
  | 
  | 
the  required  variables  are global,   | 
| 1529 | 
  | 
  | 
a  period  (`.')  can be given in place of the file name.   | 
| 1530 | 
  | 
  | 
It is also possible to give an expression instead | 
| 1531 | 
  | 
  | 
of a  straight  variable  name  in  a scene file,  | 
| 1532 | 
  | 
  | 
although such expressions should be kept | 
| 1533 | 
  | 
  | 
simple if possible. | 
| 1534 | 
  | 
  | 
Also, functions (requiring parameters) must be given | 
| 1535 | 
  | 
  | 
as names and not as expressions. | 
| 1536 | 
  | 
  | 
 | 
| 1537 | 
  | 
  | 
<p> | 
| 1538 | 
  | 
  | 
Constant expressions are used  as  an  optimization  in function files.   | 
| 1539 | 
  | 
  | 
They are replaced wherever they occur in an expression  by  their  value.    | 
| 1540 | 
  | 
  | 
Constant   expressions   are evaluated  only once, so they must not contain any variables or values that can change,  | 
| 1541 | 
  | 
  | 
such as the ray variables Px  and Ny  or  the primitive argument function arg().   | 
| 1542 | 
  | 
  | 
All the math library functions such as sqrt() and cos() have the constant attribute,   | 
| 1543 | 
  | 
  | 
so  they  will  be  replaced by immediate values whenever they  are  given  constant  arguments.    | 
| 1544 | 
  | 
  | 
Thus,  the subexpression cos(PI*sqrt(2)) is immediately replaced by its value, -.266255342,  | 
| 1545 | 
  | 
  | 
and does not cause any additional  overhead in the calculation. | 
| 1546 | 
  | 
  | 
 | 
| 1547 | 
  | 
  | 
<p> | 
| 1548 | 
  | 
  | 
It is generally a good idea  to  define  constants  and variables  before  they  are referred to in a function file. | 
| 1549 | 
  | 
  | 
Although evaluation does not take  place  until  later,  the interpreter does variable scoping and  | 
| 1550 | 
  | 
  | 
constant subexpression evaluation based on what it has compiled already.   | 
| 1551 | 
  | 
  | 
For example, a variable that is defined globally in rayinit.cal  | 
| 1552 | 
  | 
  | 
then referenced in the local context of a  function  file   | 
| 1553 | 
  | 
  | 
cannot subsequently  be redefined in the same file  | 
| 1554 | 
  | 
  | 
because the compiler has already determined the  scope  of  the  referenced variable  as global.   | 
| 1555 | 
  | 
  | 
To avoid such conflicts, one can state the scope of a variable explicitly by  | 
| 1556 | 
  | 
  | 
preceding the variable name  with  a  context mark (a back-quote) for a local variable,  | 
| 1557 | 
  | 
  | 
or following the name with a context mark for a global variable. | 
| 1558 | 
  | 
  | 
 | 
| 1559 | 
  | 
  | 
<p> | 
| 1560 | 
  | 
  | 
 | 
| 1561 | 
  | 
  | 
<h4> | 
| 1562 | 
  | 
  | 
<a NAME="Data">2.2.2.  Data Files</a> | 
| 1563 | 
  | 
  | 
</h4> | 
| 1564 | 
  | 
  | 
 | 
| 1565 | 
  | 
  | 
Data files contain n-dimensional arrays of real numbers used  for  interpolation.   | 
| 1566 | 
  | 
  | 
Typically, definitions in a function file determine how to index and use  interpolated  data values.   | 
| 1567 | 
  | 
  | 
The basic data file format is as follows: | 
| 1568 | 
  | 
  | 
 | 
| 1569 | 
  | 
  | 
<pre> | 
| 1570 | 
  | 
  | 
        N | 
| 1571 | 
  | 
  | 
        beg1 end1 m1 | 
| 1572 | 
  | 
  | 
        0 0 m2 x2.1 x2.2 x2.3 x2.4 .. x2.m2 | 
| 1573 | 
  | 
  | 
         ... | 
| 1574 | 
  | 
  | 
        begN endN mN | 
| 1575 | 
  | 
  | 
        DATA, later dimensions changing faster. | 
| 1576 | 
  | 
  | 
</pre> | 
| 1577 | 
  | 
  | 
 | 
| 1578 | 
  | 
  | 
N is the number of  dimensions.    | 
| 1579 | 
  | 
  | 
For  each  dimension,  the beginning  and  ending  coordinate  values and the dimension size is given.   | 
| 1580 | 
  | 
  | 
Alternatively, individual coordinate  values can  be  given when the points are not evenly spaced.   | 
| 1581 | 
  | 
  | 
These values must either be  increasing  or  decreasing  monotonically.   | 
| 1582 | 
  | 
  | 
The data is m1*m2*...*mN real numbers in ASCII form. | 
| 1583 | 
  | 
  | 
Comments may appear anywhere in the file, beginning with a pound | 
| 1584 | 
  | 
  | 
sign ('#') and continuing to the end of line. | 
| 1585 | 
  | 
  | 
 | 
| 1586 | 
  | 
  | 
<p> | 
| 1587 | 
  | 
  | 
 | 
| 1588 | 
  | 
  | 
<h4> | 
| 1589 | 
  | 
  | 
<a NAME="Font">2.2.3.  Font Files</a> | 
| 1590 | 
  | 
  | 
</h4> | 
| 1591 | 
  | 
  | 
 | 
| 1592 | 
  | 
  | 
A font file lists the polygons which make up a  character set. | 
| 1593 | 
  | 
  | 
Comments may appear anywhere in the file, beginning with a pound | 
| 1594 | 
  | 
  | 
sign ('#') and continuing to the end of line. | 
| 1595 | 
  | 
  | 
All numbers are decimal integers: | 
| 1596 | 
  | 
  | 
 | 
| 1597 | 
  | 
  | 
<pre> | 
| 1598 | 
  | 
  | 
        code n | 
| 1599 | 
  | 
  | 
                x0 y0 | 
| 1600 | 
  | 
  | 
                x1 y1 | 
| 1601 | 
  | 
  | 
                 ... | 
| 1602 | 
  | 
  | 
                xn yn | 
| 1603 | 
  | 
  | 
         ... | 
| 1604 | 
  | 
  | 
</pre> | 
| 1605 | 
  | 
  | 
 | 
| 1606 | 
  | 
  | 
The ASCII codes can appear in any order.  N is the number of vertices,  and  the  last  is automatically connected to the first.   | 
| 1607 | 
  | 
  | 
Separate polygonal sections are joined by coincident sides.    | 
| 1608 | 
  | 
  | 
The  character  coordinate  system is a square with lower left corner at (0,0), lower right at (255,0) and upper right at (255,255). | 
| 1609 | 
  | 
  | 
 | 
| 1610 | 
  | 
  | 
<p> | 
| 1611 | 
  | 
  | 
 | 
| 1612 | 
  | 
  | 
<hr> | 
| 1613 | 
  | 
  | 
 | 
| 1614 | 
  | 
  | 
<h3> | 
| 1615 | 
  | 
  | 
<a NAME="Generators">2.3.  Generators</a> | 
| 1616 | 
  | 
  | 
</h3> | 
| 1617 | 
  | 
  | 
 | 
| 1618 | 
  | 
  | 
A generator  is  any  program  that  produces  a  scene description  as its output.   | 
| 1619 | 
  | 
  | 
They usually appear as commands in a scene description file.   | 
| 1620 | 
  | 
  | 
An example of a simple generator  is genbox.   | 
| 1621 | 
  | 
  | 
 | 
| 1622 | 
  | 
  | 
<ul> | 
| 1623 | 
  | 
  | 
 | 
| 1624 | 
  | 
  | 
<li> | 
| 1625 | 
  | 
  | 
<a NAME="Genbox" HREF="../man_html/genbox.1.html"> | 
| 1626 | 
  | 
  | 
<b>Genbox</b> | 
| 1627 | 
  | 
  | 
</a> | 
| 1628 | 
  | 
  | 
takes the arguments of width, height and depth to produce a parallelepiped  description.    | 
| 1629 | 
  | 
  | 
<li> | 
| 1630 | 
  | 
  | 
<a NAME="Genprism" HREF="../man_html/genprism.1.html"> | 
| 1631 | 
  | 
  | 
<b>Genprism</b> | 
| 1632 | 
  | 
  | 
</a> | 
| 1633 | 
  | 
  | 
takes a list of 2-dimensional coordinates and extrudes them along a vector to | 
| 1634 | 
  | 
  | 
produce a 3-dimensional prism. | 
| 1635 | 
  | 
  | 
<li> | 
| 1636 | 
  | 
  | 
<a NAME="Genrev" HREF="../man_html/genrev.1.html"> | 
| 1637 | 
  | 
  | 
<b>Genrev</b> | 
| 1638 | 
  | 
  | 
</a> | 
| 1639 | 
  | 
  | 
is a more sophisticated generator that produces an object of rotation from parametric functions for radius and axis position.     | 
| 1640 | 
  | 
  | 
<li> | 
| 1641 | 
  | 
  | 
<a NAME="Gensurf" HREF="../man_html/gensurf.1.html"> | 
| 1642 | 
  | 
  | 
<b>Gensurf</b>  | 
| 1643 | 
  | 
  | 
</a> | 
| 1644 | 
  | 
  | 
tessellates  a  surface  defined  by  the parametric functions x(s,t), y(s,t),  and  z(s,t).    | 
| 1645 | 
  | 
  | 
<li> | 
| 1646 | 
  | 
  | 
<a NAME="Genworm" HREF="../man_html/genworm.1.html"> | 
| 1647 | 
  | 
  | 
<b>Genworm</b> | 
| 1648 | 
  | 
  | 
</a> | 
| 1649 | 
  | 
  | 
links  cylinders and spheres along a curve.   | 
| 1650 | 
  | 
  | 
<li> | 
| 1651 | 
  | 
  | 
<a NAME="Gensky" HREF="../man_html/gensky.1.html"> | 
| 1652 | 
  | 
  | 
<b>Gensky</b>  | 
| 1653 | 
  | 
  | 
</a> | 
| 1654 | 
  | 
  | 
produces a sun and sky distribution corresponding to a given time and date. | 
| 1655 | 
  | 
  | 
<li> | 
| 1656 | 
  | 
  | 
<a NAME="Xform" HREF="../man_html/xform.1.html"> | 
| 1657 | 
  | 
  | 
<b>Xform</b>  | 
| 1658 | 
  | 
  | 
</a> | 
| 1659 | 
  | 
  | 
is a program that transforms a scene  description from  one coordinate space to another.   | 
| 1660 | 
  | 
  | 
Xform does rotation, translation, scaling, and mirroring. | 
| 1661 | 
  | 
  | 
 | 
| 1662 | 
  | 
  | 
</ul> | 
| 1663 | 
  | 
  | 
 | 
| 1664 | 
  | 
  | 
<p> | 
| 1665 | 
  | 
  | 
<hr> | 
| 1666 | 
  | 
  | 
 | 
| 1667 | 
  | 
  | 
<h2> | 
| 1668 | 
  | 
  | 
<a NAME="Image">3.  Image Generation</a> | 
| 1669 | 
  | 
  | 
</h2> | 
| 1670 | 
  | 
  | 
 | 
| 1671 | 
  | 
  | 
Once the scene has been described in  three-dimensions, it  is  possible  to generate a two-dimensional image from a given perspective. | 
| 1672 | 
  | 
  | 
 | 
| 1673 | 
  | 
  | 
<p> | 
| 1674 | 
  | 
  | 
The image generating programs use an  <a NAME="octree"><b>octree</b></a>  to  efficiently  trace rays through the scene.   | 
| 1675 | 
  | 
  | 
An octree subdivides space into nested octants which contain  sets  of  surfaces. | 
| 1676 | 
  | 
  | 
In  RADIANCE,  an octree is created from a scene description by <a NAME="oconv1" HREF="../man_html/oconv.1.html"><b>oconv</b></a>.   | 
| 1677 | 
  | 
  | 
The details of this process  are  not  important, but  the  octree will serve as input to the ray-tracing programs and  | 
| 1678 | 
  | 
  | 
directs the use of a scene description. | 
| 1679 | 
  | 
  | 
<ul> | 
| 1680 | 
  | 
  | 
<li> | 
| 1681 | 
greg | 
1.3 | 
<a NAME="rvu" HREF="../man_html/rvu.1.html"><b>Rview</b></a>  is  ray-tracing  program  for  viewing  a  scene interactively.    | 
| 1682 | 
  | 
  | 
When  the user specifies a new perspective, rvu quickly displays a rough image on the  terminal,   | 
| 1683 | 
greg | 
1.1 | 
then progressively increases the resolution as the user looks on. | 
| 1684 | 
  | 
  | 
He can select a particular section of the image to  improve, or  move  to  a different view and start over.   | 
| 1685 | 
  | 
  | 
This mode of interaction is useful for debugging scenes as well as determining the best view for a final image. | 
| 1686 | 
  | 
  | 
 | 
| 1687 | 
  | 
  | 
<li> | 
| 1688 | 
  | 
  | 
<a NAME="rpict" HREF="../man_html/rpict.1.html"><b>Rpict</b></a> produces a high-resolution  picture  of  a  scene from  a particular perspective.   | 
| 1689 | 
  | 
  | 
This program features adaptive sampling, crash recovery and progress reporting, all of which are important for time-consuming images. | 
| 1690 | 
  | 
  | 
</ul> | 
| 1691 | 
  | 
  | 
<p> | 
| 1692 | 
  | 
  | 
A number of <a NAME="filters"><b>filters</b></a> are available for manipulating picture files: | 
| 1693 | 
  | 
  | 
        <ul> | 
| 1694 | 
  | 
  | 
        <li> <a HREF="../man_html/pfilt.1.html"><b>Pfilt</b></a> | 
| 1695 | 
  | 
  | 
              sets  the  exposure and performs antialiasing.   | 
| 1696 | 
  | 
  | 
        <li> <a HREF="../man_html/pcompos.1.html"><b>Pcompos</b></a> | 
| 1697 | 
  | 
  | 
              composites (cuts  and  pastes)  pictures. | 
| 1698 | 
  | 
  | 
        <li> <a HREF="../man_html/pcomb.1.html"><b>Pcomb</b></a> | 
| 1699 | 
  | 
  | 
                performs arbitrary math on one or more pictures. | 
| 1700 | 
  | 
  | 
        <li> <a HREF="../man_html/pcond.1.html"><b>Pcond</b></a> | 
| 1701 | 
  | 
  | 
                conditions a picture for a specific display device. | 
| 1702 | 
  | 
  | 
        <li> <a HREF="../man_html/protate.1.html"><b>Protate</b></a> | 
| 1703 | 
  | 
  | 
                rotates a picture 90 degrees clockwise. | 
| 1704 | 
  | 
  | 
        <li> <a HREF="../man_html/pflip.1.html"><b>Pflip</b></a> | 
| 1705 | 
  | 
  | 
                flips a picture horizontally, vertically, or both | 
| 1706 | 
  | 
  | 
                (180 degree rotation). | 
| 1707 | 
  | 
  | 
        <li> <a HREF="../man_html/pvalue.1.html"><b>Pvalue</b></a> | 
| 1708 | 
  | 
  | 
              converts a picture to and from simpler formats. | 
| 1709 | 
  | 
  | 
        </ul> | 
| 1710 | 
  | 
  | 
 | 
| 1711 | 
  | 
  | 
<p> | 
| 1712 | 
  | 
  | 
Pictures may be displayed directly under X11 using the program | 
| 1713 | 
  | 
  | 
<a HREF="../man_html/ximage.1.html">ximage</a>, | 
| 1714 | 
  | 
  | 
or converted a standard image format using one of the following | 
| 1715 | 
  | 
  | 
<b>translators</b>: | 
| 1716 | 
  | 
  | 
        <ul> | 
| 1717 | 
  | 
  | 
        <li> <b>Ra_avs</b> | 
| 1718 | 
  | 
  | 
                converts to and from AVS image format. | 
| 1719 | 
  | 
  | 
        <li> <a HREF="../man_html/ra_pict.1.html"><b>Ra_pict</b></a> | 
| 1720 | 
  | 
  | 
                converts to Macintosh 32-bit PICT2 format. | 
| 1721 | 
  | 
  | 
        <li> <a HREF="../man_html/ra_ppm.1.html"><b>Ra_ppm</b></a> | 
| 1722 | 
  | 
  | 
                converts to and from Poskanzer Portable Pixmap formats. | 
| 1723 | 
  | 
  | 
        <li> <a HREF="../man_html/ra_pr.1.html"><b>Ra_pr</b></a> | 
| 1724 | 
  | 
  | 
                converts to and from Sun 8-bit rasterfile format. | 
| 1725 | 
  | 
  | 
        <li> <a HREF="../man_html/ra_pr24.1.html"><b>Ra_pr24</b></a> | 
| 1726 | 
  | 
  | 
                converts to and from Sun 24-bit rasterfile format. | 
| 1727 | 
  | 
  | 
        <li> <a HREF="../man_html/ra_ps.1.html"><b>Ra_ps</b></a> | 
| 1728 | 
  | 
  | 
                converts to PostScript color and greyscale formats. | 
| 1729 | 
  | 
  | 
        <li> <a HREF="../man_html/ra_rgbe.1.html"><b>Ra_rgbe</b></a> | 
| 1730 | 
  | 
  | 
                converts to and from Radiance uncompressed picture format. | 
| 1731 | 
  | 
  | 
        <li> <a HREF="../man_html/ra_t16.1.html"><b>Ra_t16</b></a> | 
| 1732 | 
  | 
  | 
                converts to and from Targa 16 and 24-bit image formats. | 
| 1733 | 
  | 
  | 
        <li> <a HREF="../man_html/ra_t8.1.html"><b>Ra_t8</b></a> | 
| 1734 | 
  | 
  | 
                converts to and from Targa 8-bit image format. | 
| 1735 | 
  | 
  | 
        <li> <a HREF="../man_html/ra_tiff.1.html"><b>Ra_tiff</b></a> | 
| 1736 | 
  | 
  | 
                converts to and from TIFF. | 
| 1737 | 
  | 
  | 
        <li> <a HREF="../man_html/ra_xyze.1.html"><b>Ra_xyze</b></a> | 
| 1738 | 
  | 
  | 
                converts to and from Radiance CIE picture format. | 
| 1739 | 
  | 
  | 
        </ul> | 
| 1740 | 
  | 
  | 
 | 
| 1741 | 
  | 
  | 
<p> | 
| 1742 | 
  | 
  | 
 | 
| 1743 | 
  | 
  | 
<hr> | 
| 1744 | 
  | 
  | 
 | 
| 1745 | 
  | 
  | 
<h2> | 
| 1746 | 
  | 
  | 
<a NAME="License">4.  License</a> | 
| 1747 | 
  | 
  | 
</h2> | 
| 1748 | 
  | 
  | 
 | 
| 1749 | 
  | 
  | 
<pre> | 
| 1750 | 
  | 
  | 
The Radiance Software License, Version 1.0 | 
| 1751 | 
  | 
  | 
 | 
| 1752 | 
  | 
  | 
Copyright (c) 1990 - 2002 The Regents of the University of California, | 
| 1753 | 
  | 
  | 
through Lawrence Berkeley National Laboratory.   All rights reserved. | 
| 1754 | 
  | 
  | 
 | 
| 1755 | 
  | 
  | 
Redistribution and use in source and binary forms, with or without | 
| 1756 | 
  | 
  | 
modification, are permitted provided that the following conditions | 
| 1757 | 
  | 
  | 
are met: | 
| 1758 | 
  | 
  | 
 | 
| 1759 | 
  | 
  | 
1. Redistributions of source code must retain the above copyright | 
| 1760 | 
  | 
  | 
        notice, this list of conditions and the following disclaimer. | 
| 1761 | 
  | 
  | 
 | 
| 1762 | 
  | 
  | 
2. Redistributions in binary form must reproduce the above copyright | 
| 1763 | 
  | 
  | 
      notice, this list of conditions and the following disclaimer in | 
| 1764 | 
  | 
  | 
      the documentation and/or other materials provided with the | 
| 1765 | 
  | 
  | 
      distribution. | 
| 1766 | 
  | 
  | 
 | 
| 1767 | 
  | 
  | 
3. The end-user documentation included with the redistribution, | 
| 1768 | 
  | 
  | 
          if any, must include the following acknowledgment: | 
| 1769 | 
  | 
  | 
            "This product includes Radiance software | 
| 1770 | 
  | 
  | 
                (<a HREF="http://radsite.lbl.gov/">http://radsite.lbl.gov/</a>) | 
| 1771 | 
  | 
  | 
                developed by the Lawrence Berkeley National Laboratory | 
| 1772 | 
  | 
  | 
              (<a HREF="http://www.lbl.gov/">http://www.lbl.gov/</a>)." | 
| 1773 | 
  | 
  | 
      Alternately, this acknowledgment may appear in the software itself, | 
| 1774 | 
  | 
  | 
      if and wherever such third-party acknowledgments normally appear. | 
| 1775 | 
  | 
  | 
 | 
| 1776 | 
  | 
  | 
4. The names "Radiance," "Lawrence Berkeley National Laboratory" | 
| 1777 | 
  | 
  | 
      and "The Regents of the University of California" must | 
| 1778 | 
  | 
  | 
      not be used to endorse or promote products derived from this | 
| 1779 | 
  | 
  | 
      software without prior written permission. For written | 
| 1780 | 
  | 
  | 
      permission, please contact [email protected]. | 
| 1781 | 
  | 
  | 
 | 
| 1782 | 
  | 
  | 
5. Products derived from this software may not be called "Radiance", | 
| 1783 | 
  | 
  | 
      nor may "Radiance" appear in their name, without prior written | 
| 1784 | 
  | 
  | 
      permission of Lawrence Berkeley National Laboratory. | 
| 1785 | 
  | 
  | 
 | 
| 1786 | 
  | 
  | 
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED | 
| 1787 | 
  | 
  | 
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES | 
| 1788 | 
  | 
  | 
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | 
| 1789 | 
  | 
  | 
DISCLAIMED.   IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR | 
| 1790 | 
  | 
  | 
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
| 1791 | 
  | 
  | 
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
| 1792 | 
  | 
  | 
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF | 
| 1793 | 
  | 
  | 
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | 
| 1794 | 
  | 
  | 
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | 
| 1795 | 
  | 
  | 
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT | 
| 1796 | 
  | 
  | 
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
| 1797 | 
  | 
  | 
SUCH DAMAGE. | 
| 1798 | 
  | 
  | 
</pre> | 
| 1799 | 
  | 
  | 
 | 
| 1800 | 
  | 
  | 
<hr> | 
| 1801 | 
  | 
  | 
 | 
| 1802 | 
  | 
  | 
<h2> | 
| 1803 | 
  | 
  | 
<a NAME="Ack">5.  Acknowledgements</a> | 
| 1804 | 
  | 
  | 
</h2> | 
| 1805 | 
  | 
  | 
 | 
| 1806 | 
  | 
  | 
This work was supported by the Assistant  Secretary  of Conservation and Renewable Energy,  | 
| 1807 | 
  | 
  | 
Office of Building Energy Research and Development,  | 
| 1808 | 
  | 
  | 
Buildings  Equipment  Division  of the  U.S.  Department  of Energy under Contract No. DE-AC03-76SF00098. | 
| 1809 | 
  | 
  | 
 | 
| 1810 | 
  | 
  | 
<p> | 
| 1811 | 
  | 
  | 
Additional work was  sponsored  by  the  Swiss  federal government  | 
| 1812 | 
  | 
  | 
under the Swiss LUMEN Project and was carried out in the  | 
| 1813 | 
  | 
  | 
Laboratoire d'Energie Solaire  (LESO  Group)  at  the  | 
| 1814 | 
  | 
  | 
Ecole  Polytechnique  Federale de Lausanne (EPFL University) in Lausanne, Switzerland. | 
| 1815 | 
  | 
  | 
 | 
| 1816 | 
  | 
  | 
<p> | 
| 1817 | 
  | 
  | 
 | 
| 1818 | 
  | 
  | 
<hr> | 
| 1819 | 
  | 
  | 
 | 
| 1820 | 
  | 
  | 
<h2> | 
| 1821 | 
  | 
  | 
<a NAME="Ref">6.</a> References | 
| 1822 | 
  | 
  | 
</h2> | 
| 1823 | 
  | 
  | 
<p> | 
| 1824 | 
  | 
  | 
<ul> | 
| 1825 | 
  | 
  | 
    <li>Ward, Greg, Elena Eydelberg-Vileshin, | 
| 1826 | 
greg | 
1.2 | 
        ``<a HREF="http://viz.cs.berkeley.edu/~gwlarson/papers/egwr02/index.html">Picture Perfect RGB | 
| 1827 | 
greg | 
1.1 | 
        Rendering Using Spectral Prefiltering and Sharp Color Primaries</a>,'' | 
| 1828 | 
  | 
  | 
        Thirteenth Eurographics Workshop on Rendering (2002), | 
| 1829 | 
  | 
  | 
        P. Debevec and S. Gibson (Editors), June 2002. | 
| 1830 | 
  | 
  | 
    <li>Ward, Gregory, | 
| 1831 | 
greg | 
1.2 | 
        ``<a HREF="http://viz.cs.berkeley.edu/~gwlarson/papers/cic01.pdf">High Dynamic Range Imaging</a>,'' | 
| 1832 | 
greg | 
1.1 | 
        Proceedings of the Ninth Color Imaging Conference, November 2001. | 
| 1833 | 
  | 
  | 
    <li>Ward, Gregory and Maryann Simmons, | 
| 1834 | 
greg | 
1.2 | 
        ``<a HREF="http://viz.cs.berkeley.edu/~gwlarson/papers/tog99.pdf"> | 
| 1835 | 
greg | 
1.1 | 
        The Holodeck Ray Cache: An Interactive Rendering System for Global Illumination in Nondiffuse | 
| 1836 | 
  | 
  | 
        Environments</a>,'' ACM Transactions on Graphics, 18(4):361-98, October 1999. | 
| 1837 | 
greg | 
1.2 | 
    <li>Larson, G.W., ``<a HREF="http://viz.cs.berkeley.edu/~gwlarson/papers/ewp98.pdf">The Holodeck: A Parallel | 
| 1838 | 
greg | 
1.1 | 
        Ray-caching Rendering System</a>,'' Proceedings of the Second | 
| 1839 | 
  | 
  | 
        Eurographics Workshop on Parallel Graphics and Visualisation, | 
| 1840 | 
  | 
  | 
        September 1998. | 
| 1841 | 
  | 
  | 
    <li>Larson, G.W. and R.A. Shakespeare, | 
| 1842 | 
greg | 
1.2 | 
        <a HREF="http://radsite.lbl.gov/radiance/book/index.html"><em>Rendering with Radiance: | 
| 1843 | 
greg | 
1.1 | 
        the Art and Science of Lighting Visualization</em></a>, | 
| 1844 | 
  | 
  | 
        Morgan Kaufmann Publishers, 1998. | 
| 1845 | 
  | 
  | 
    <li>Larson, G.W., H. Rushmeier, C. Piatko, | 
| 1846 | 
greg | 
1.2 | 
        ``<a HREF="http://radsite.lbl.gov/radiance/papers/lbnl39882/tonemap.pdf">A Visibility | 
| 1847 | 
greg | 
1.1 | 
        Matching Tone Reproduction Operator for | 
| 1848 | 
  | 
  | 
        High Dynamic Range Scenes</a>,'' LBNL Technical Report 39882, | 
| 1849 | 
  | 
  | 
        January 1997. | 
| 1850 | 
greg | 
1.2 | 
    <li>Ward, G., ``<a HREF="http://radsite.lbl.gov/radiance/papers/erw95.1/paper.html">Making | 
| 1851 | 
greg | 
1.1 | 
        Global Illumination User-Friendly</a>,'' Sixth | 
| 1852 | 
  | 
  | 
        Eurographics Workshop on Rendering, Springer-Verlag, | 
| 1853 | 
  | 
  | 
        Dublin, Ireland, June 1995.</li> | 
| 1854 | 
  | 
  | 
    <li>Rushmeier, H., G. Ward, C. Piatko, P. Sanders, B. Rust, | 
| 1855 | 
  | 
  | 
        ``<a HREF="http://radsite.lbl.gov/mgf/compare.html"> | 
| 1856 | 
  | 
  | 
        Comparing Real and Synthetic Images: Some Ideas about | 
| 1857 | 
  | 
  | 
        Metrics</a>,'' Sixth Eurographics Workshop on Rendering, | 
| 1858 | 
  | 
  | 
        Springer-Verlag, Dublin, Ireland, June 1995.</li> | 
| 1859 | 
greg | 
1.2 | 
    <li>Ward, G., ``<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.1/paper.html">The RADIANCE | 
| 1860 | 
greg | 
1.1 | 
        Lighting Simulation and Rendering System</a>,'' <em>Computer | 
| 1861 | 
  | 
  | 
        Graphics</em>, July 1994.</li> | 
| 1862 | 
greg | 
1.2 | 
    <li>Rushmeier, H., G. Ward, ``<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.2/energy.html">Energy | 
| 1863 | 
greg | 
1.1 | 
        Preserving Non-Linear Filters</a>,'' <em>Computer | 
| 1864 | 
  | 
  | 
        Graphics</em>, July 1994.</li> | 
| 1865 | 
  | 
  | 
    <li>Ward, G., ``A Contrast-Based Scalefactor for Luminance | 
| 1866 | 
  | 
  | 
        Display,'' <em>Graphics Gems IV</em>, Edited by Paul Heckbert, | 
| 1867 | 
  | 
  | 
        Academic Press 1994.</li> | 
| 1868 | 
greg | 
1.2 | 
    <li>Ward, G., ``<a HREF="http://radsite.lbl.gov/radiance/papers/sg92/paper.html">Measuring and | 
| 1869 | 
greg | 
1.1 | 
        Modeling Anisotropic Reflection</a>,'' <em>Computer | 
| 1870 | 
  | 
  | 
        Graphics</em>, Vol. 26, No. 2, July 1992. </li> | 
| 1871 | 
greg | 
1.2 | 
    <li>Ward, G., P. Heckbert, ``<a HREF="http://radsite.lbl.gov/radiance/papers/erw92/paper.html">Irradiance | 
| 1872 | 
greg | 
1.1 | 
        Gradients</a>,'' Third Annual Eurographics Workshop on | 
| 1873 | 
  | 
  | 
        Rendering, Springer-Verlag, May 1992. </li> | 
| 1874 | 
greg | 
1.2 | 
    <li>Ward, G., ``<a HREF="http://radsite.lbl.gov/radiance/papers/erw91/erw91.html">Adaptive Shadow | 
| 1875 | 
greg | 
1.1 | 
        Testing for Ray Tracing</a>'' Photorealistic Rendering in | 
| 1876 | 
  | 
  | 
        Computer Graphics, proceedings of 1991 Eurographics | 
| 1877 | 
  | 
  | 
        Rendering Workshop, edited by P. Brunet and F.W. Jansen, | 
| 1878 | 
  | 
  | 
        Springer-Verlag. </li> | 
| 1879 | 
  | 
  | 
    <li>Ward, G., ``Visualization,'' <em>Lighting Design and | 
| 1880 | 
  | 
  | 
        Application</em>, Vol. 20, No. 6, June 1990. </li> | 
| 1881 | 
greg | 
1.2 | 
    <li>Ward, G., F. Rubinstein, R. Clear, ``<a HREF="http://radsite.lbl.gov/radiance/papers/sg88/paper.html">A Ray Tracing Solution for | 
| 1882 | 
greg | 
1.1 | 
        Diffuse Interreflection</a>,'' <em>Computer Graphics</em>, | 
| 1883 | 
  | 
  | 
        Vol. 22, No. 4, August 1988. </li> | 
| 1884 | 
  | 
  | 
    <li>Ward, G., F. Rubinstein, ``A New Technique for Computer | 
| 1885 | 
  | 
  | 
        Simulation of Illuminated Spaces,'' <em>Journal of the | 
| 1886 | 
  | 
  | 
        Illuminating Engineering Society</em>, Vol. 17, No. 1, | 
| 1887 | 
  | 
  | 
        Winter 1988. </li> | 
| 1888 | 
  | 
  | 
</ul> | 
| 1889 | 
  | 
  | 
<p> | 
| 1890 | 
  | 
  | 
See the <a HREF="index.html">RADIANCE Reference Materials</a> page | 
| 1891 | 
  | 
  | 
for additional information. | 
| 1892 | 
  | 
  | 
<hr> | 
| 1893 | 
  | 
  | 
 | 
| 1894 | 
  | 
  | 
<a NAME="Index"><h2>7. Types Index</h2></a> | 
| 1895 | 
  | 
  | 
 | 
| 1896 | 
  | 
  | 
<pre> | 
| 1897 | 
  | 
  | 
<h4> | 
| 1898 | 
  | 
  | 
SURFACES        MATERIALS       TEXTURES        PATTERNS        MIXTURES</h4> | 
| 1899 | 
  | 
  | 
<a HREF="#Source">Source</a>            <a HREF="#Light">Light</a>              <a HREF="#Texfunc">Texfunc</a>          <a HREF="#Colorfunc">Colorfunc</a>      <a HREF="#Mixfunc">Mixfunc</a> | 
| 1900 | 
  | 
  | 
<a HREF="#Sphere">Sphere</a>            <a HREF="#Illum">Illum</a>              <a HREF="#Texdata">Texdata</a>          <a HREF="#Brightfunc">Brightfunc</a>    <a HREF="#Mixdata">Mixdata</a> | 
| 1901 | 
  | 
  | 
<a HREF="#Bubble">Bubble</a>            <a HREF="#Glow">Glow</a>                                <a HREF="#Colordata">Colordata</a>      <a HREF="#Mixtext">Mixtext</a> | 
| 1902 | 
  | 
  | 
<a HREF="#Polygon">Polygon</a>          <a HREF="#Spotlight">Spotlight</a>                      <a HREF="#Brightdata">Brightdata</a> | 
| 1903 | 
  | 
  | 
<a HREF="#Cone">Cone</a>                <a HREF="#Mirror">Mirror</a>                            <a HREF="#Colorpict">Colorpict</a> | 
| 1904 | 
  | 
  | 
<a HREF="#Cup">Cup</a>          <a HREF="#Prism1">Prism1</a>                            <a HREF="#Colortext">Colortext</a> | 
| 1905 | 
  | 
  | 
<a HREF="#Cylinder">Cylinder</a>        <a HREF="#Prism2">Prism2</a>                            <a HREF="#Brighttext">Brighttext</a> | 
| 1906 | 
  | 
  | 
<a HREF="#Tube">Tube</a>                <a HREF="#Plastic">Plastic</a> | 
| 1907 | 
  | 
  | 
<a HREF="#Ring">Ring</a>                <a HREF="#Metal">Metal</a> | 
| 1908 | 
  | 
  | 
<a HREF="#Instance">Instance</a>        <a HREF="#Trans">Trans</a> | 
| 1909 | 
  | 
  | 
<a HREF="#Mesh">Mesh</a>                <a HREF="#Plastic2">Plastic2</a> | 
| 1910 | 
  | 
  | 
                <a HREF="#Metal2">Metal2</a> | 
| 1911 | 
  | 
  | 
                <a HREF="#Trans2">Trans2</a> | 
| 1912 | 
  | 
  | 
                <a HREF="#Mist">Mist</a> | 
| 1913 | 
  | 
  | 
                <a HREF="#Dielectric">Dielectric</a> | 
| 1914 | 
  | 
  | 
                <a HREF="#Interface">Interface</a> | 
| 1915 | 
  | 
  | 
                <a HREF="#Glass">Glass</a> | 
| 1916 | 
  | 
  | 
                <a HREF="#Plasfunc">Plasfunc</a> | 
| 1917 | 
  | 
  | 
                <a HREF="#Metfunc">Metfunc</a> | 
| 1918 | 
  | 
  | 
                <a HREF="#Transfunc">Transfunc</a> | 
| 1919 | 
  | 
  | 
                <a HREF="#BRTDfunc">BRTDfunc</a> | 
| 1920 | 
  | 
  | 
                <a HREF="#Plasdata">Plasdata</a> | 
| 1921 | 
  | 
  | 
                <a HREF="#Metdata">Metdata</a> | 
| 1922 | 
  | 
  | 
                <a HREF="#Transdata">Transdata</a> | 
| 1923 | 
  | 
  | 
                <a HREF="#Antimatter">Antimatter</a> | 
| 1924 | 
  | 
  | 
                                 | 
| 1925 | 
  | 
  | 
</pre> | 
| 1926 | 
  | 
  | 
 | 
| 1927 | 
  | 
  | 
<p> | 
| 1928 | 
  | 
  | 
 | 
| 1929 | 
  | 
  | 
 | 
| 1930 | 
  | 
  | 
<hr> | 
| 1931 | 
  | 
  | 
<center>Last Update: October 22, 1997</center> | 
| 1932 | 
  | 
  | 
</body> | 
| 1933 | 
  | 
  | 
</html> | 
| 1934 | 
  | 
  | 
 |