ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/ray.html
Revision: 1.23
Committed: Sun Jul 10 23:41:37 2016 UTC (7 years, 10 months ago) by greg
Content type: text/html
Branch: MAIN
CVS Tags: rad5R1
Changes since 1.22: +24 -2 lines
Log Message:
Added missing definition of ashik2 material type

File Contents

# User Rev Content
1 greg 1.1 <html>
2 greg 1.23 <!-- RCSid $Id: ray.html,v 1.22 2015/12/01 16:58:16 greg Exp $ -->
3 greg 1.1 <head>
4     <title>
5 greg 1.21 The RADIANCE 5.1 Synthetic Imaging System
6 greg 1.1 </title>
7     </head>
8     <body>
9    
10     <p>
11    
12     <h1>
13 greg 1.21 The RADIANCE 5.1 Synthetic Imaging System
14 greg 1.1 </h1>
15    
16     <p>
17    
18 greg 1.4 Building Technologies Program<br>
19 greg 1.1 Lawrence Berkeley National Laboratory<br>
20     1 Cyclotron Rd., 90-3111<br>
21     Berkeley, CA 94720<br>
22     <a HREF="http://radsite.lbl.gov/radiance"</a>
23     http://radsite.lbl.gov/radiance<br>
24    
25     <p>
26     <hr>
27    
28     <h2>
29     <a NAME="Overview">Overview</a>
30     </h2>
31     <ol>
32     <li><a HREF="#Intro">Introduction</a><!P>
33     <li><a HREF="#Scene">Scene Description</a><!P>
34     <ol>
35     <li><a HREF="#Primitive"> Primitive Types</a>
36     <ol>
37     <li><a HREF="#Surfaces">Surfaces</a>
38     <li><a HREF="#Materials">Materials</a>
39     <li><a HREF="#Textures">Textures</a>
40     <li><a HREF="#Patterns">Patterns</a>
41     <li><a HREF="#Mixtures">Mixtures</a>
42     </ol><!P>
43     <li><a HREF="#Auxiliary">Auxiliary Files</a>
44     <ol>
45     <li><a HREF="#Function">Function Files</a>
46     <li><a HREF="#Data">Data Files</a>
47     <li><a HREF="#Font">Font Files</a>
48     </ol><!P>
49     <li><a HREF="#Generators">Generators</a>
50     </ol><!P>
51     <li><a HREF="#Image">Image Generation</a><!P>
52     <li><a HREF="#License">License</a><!P>
53     <li><a HREF="#Ack">Acknowledgements</a><!P>
54     <li><a HREF="#Ref">References</a><!P>
55     <li><a HREF="#Index">Types Index</a><!P>
56     </ol>
57    
58     <p>
59     <hr>
60    
61     <h2>
62     <a NAME="Intro">1. Introduction</a>
63     </h2>
64    
65     RADIANCE was developed as a research tool for predicting
66     the distribution of visible radiation in illuminated spaces.
67     It takes as input a three-dimensional geometric model
68     of the physical environment, and produces a map of
69     spectral radiance values in a color image.
70     The technique of ray-tracing follows light backwards
71     from the image plane to the source(s).
72     Because it can produce realistic images from a
73     simple description, RADIANCE has a wide range of applications
74     in graphic arts, lighting design,
75     computer-aided engineering and architecture.
76    
77     <p>
78     <img SRC="diagram1.gif">
79     <p>
80     Figure 1
81     <p>
82     The diagram in Figure 1 shows the flow between programs (boxes) and data
83     (ovals).
84     The central program is <i>rpict</i>, which produces a picture from a scene
85     description.
86     <i>Rview</i> is a variation of rpict that computes and displays images
87     interactively, and rtrace computes single ray values.
88     Other programs (not shown) connect many of these elements together,
89     such as the executive programs
90     <i>rad</i>
91     and
92     <i>ranimate</i>,
93     the interactive rendering program
94     <i>rholo</i>,
95     and the animation program
96     <i>ranimove</i>.
97     The program
98     <i>obj2mesh</i>
99     acts as both a converter and scene compiler, converting a Wavefront .OBJ
100     file into a compiled mesh octree for efficient rendering.
101    
102     <p>
103     A scene description file lists the surfaces and materials
104     that make up a specific environment.
105     The current surface types are spheres, polygons, cones, and cylinders.
106     There is also a composite surface type, called mesh, and a pseudosurface
107     type, called instance, which facilitates very complex geometries.
108     Surfaces can be made from materials such as plastic, metal, and glass.
109     Light sources can be distant disks as well as local spheres, disks
110     and polygons.
111    
112     <p>
113     From a three-dimensional scene description and a specified view,
114     <i>rpict</i> produces a two-dimensional image.
115     A picture file is a compressed binary representation of the
116     pixels in the image.
117     This picture can be scaled in size and brightness,
118     anti-aliased, and sent to a graphics output device.
119    
120     <p>
121     A header in each picture file lists the program(s)
122     and parameters that produced it.
123     This is useful for identifying a picture without having to display it.
124     The information can be read by the program <i>getinfo</i>.
125    
126     <p>
127     <hr>
128    
129     <h2>
130     <a name="Scene">2. Scene Description</a>
131     </h2>
132    
133     A scene description file represents a three-dimensional physical environment in Cartesian (rectilinear) world coordinates.
134     It is stored as ASCII text, with the following basic format:
135    
136     <pre>
137     # comment
138    
139     modifier type identifier
140     n S1 S2 &quot;S 3&quot; .. Sn
141     0
142     m R1 R2 R3 .. Rm
143    
144     modifier alias identifier reference
145    
146     ! command
147    
148     ...
149     </pre>
150    
151     A comment line begins with a pound sign, `#'.
152    
153     <p>
154     The <a NAME="scene_desc">scene description primitives</a>
155     all have the same general format, and can be either surfaces or modifiers.
156     A primitive has a modifier, a type, and an identifier.
157     <p>
158     A <a NAME="modifier"><b>modifier</b></a> is either the
159     identifier of a previously defined primitive, or &quot;void&quot;.
160     <br>
161     [ The most recent definition of a modifier is the
162     one used, and later definitions do not cause relinking
163     of loaded primitives.
164     Thus, the same identifier may be used repeatedly,
165     and each new definition will apply to the primitives following it. ]
166     <p>
167     An <a NAME="identifier"><b>identifier</b></a> can be any string
168     (i.e., any sequence of non-white characters).
169     <p>
170     The arguments associated with a primitive can be strings or real numbers.
171     <ul>
172     <li> The first integer following the identifier is the number of <b>string arguments</b>,
173     and it is followed by the arguments themselves (separated by white space or enclosed in quotes).
174     <li> The next integer is the number of integer arguments, and is followed by the <b>integer arguments</b>.
175     (There are currently no primitives that use them, however.)
176     <li> The next integer is the real argument count, and it is followed by the <b>real arguments</b>.
177     </ul>
178    
179     <p>
180     An <a NAME="alias"><b>alias</b></a> gets its type and arguments from
181     a previously defined primitive.
182     This is useful when the same material is
183     used with a different modifier, or as a convenient naming mechanism.
184     The reserved modifier name &quot;inherit&quot; may be used to specificy that
185     an alias will inherit its modifier from the original.
186     Surfaces cannot be aliased.
187    
188     <p>
189     A line beginning with an exclamation point, `!',
190     is interpreted as a command.
191     It is executed by the shell, and its output is read as input to the program.
192     The command must not try to read from its standard input, or confusion
193     will result.
194     A command may be continued over multiple lines using a
195     backslash, `\', to escape the newline.
196    
197     <p>
198     White space is generally ignored, except as a separator.
199     The exception is the newline character after a command or comment.
200     Commands, comments and primitives may appear in any
201     combination, so long as they are not intermingled.
202    
203     <p>
204     <hr>
205    
206     <h3>
207     <a NAME="Primitive">2.1. Primitive Types</a>
208     </h3>
209    
210     Primitives can be <a HREF="#Surfaces">surfaces</a>,
211     <a HREF="#Materials">materials</a>,
212     <a HREF="#Textures">textures</a> or
213     <a HREF="#Patterns">patterns</a>.
214     Modifiers can be <a HREF="#Materials">materials</a>,
215     <a HREF="#Mixtures">mixtures</a>,
216     <a HREF="#Textures">textures</a> or <a HREF="#Patterns">patterns</a>.
217     Simple surfaces must have one material in their modifier list.
218    
219     <p>
220     <hr>
221    
222     <h4>
223     <a NAME="Surfaces">2.1.1. Surfaces</a>
224     </h4>
225     <dl>
226    
227     A scene description will consist mostly of surfaces.
228     The basic types are given below.
229    
230     <p>
231    
232     <dt>
233     <a NAME="Source">
234     <b>Source </b>
235     </a>
236     <dd>
237     A source is not really a surface, but a solid angle.
238     It is used for specifying light sources that are very distant.
239     The direction to the center of the source and the number of degrees subtended by its disk are given as follows:
240    
241     <pre>
242     mod source id
243     0
244     0
245     4 xdir ydir zdir angle
246     </pre>
247    
248     <p>
249    
250     <dt>
251     <a NAME="Sphere">
252     <b>Sphere</b>
253     </a>
254     <dd>
255     A sphere is given by its center and radius:
256    
257     <pre>
258     mod sphere id
259     0
260     0
261     4 xcent ycent zcent radius
262     </pre>
263    
264     <p>
265    
266     <dt>
267     <a NAME="Bubble">
268     <b>Bubble</b>
269     </a>
270    
271     <dd>
272     A bubble is simply a sphere whose surface normal points inward.
273    
274     <p>
275    
276     <dt>
277     <a NAME="Polygon">
278     <b>Polygon</b>
279     </a>
280     <dd>
281     A polygon is given by a list of three-dimensional vertices,
282     which are ordered counter-clockwise as viewed from the
283     front side (into the surface normal).
284     The last vertex is automatically connected to the first.
285     Holes are represented in polygons as interior vertices
286     connected to the outer perimeter by coincident edges (seams).
287    
288     <pre>
289     mod polygon id
290     0
291     0
292     3n
293     x1 y1 z1
294     x2 y2 z2
295     ...
296     xn yn zn
297     </pre>
298    
299     <p>
300    
301     <dt>
302     <a NAME="Cone">
303     <b>Cone</b>
304     </a>
305     <dd>
306     A cone is a megaphone-shaped object.
307     It is truncated by two planes perpendicular to its axis,
308     and one of its ends may come to a point.
309     It is given as two axis endpoints, and the starting and ending radii:
310    
311     <pre>
312     mod cone id
313     0
314     0
315     8
316     x0 y0 z0
317     x1 y1 z1
318     r0 r1
319     </pre>
320    
321     <p>
322    
323     <dt>
324     <a NAME="Cup">
325     <b>Cup</b>
326     </a>
327     <dd>
328     A cup is an inverted <a HREF="#Cone">cone</a> (i.e., has an
329     inward surface normal).
330    
331     <p>
332    
333     <dt>
334     <a NAME="Cylinder">
335     <b>Cylinder</b>
336     </a>
337     <dd>
338     A cylinder is like a <a HREF="#Cone">cone</a>, but its
339     starting and ending radii are equal.
340    
341     <pre>
342     mod cylinder id
343     0
344     0
345     7
346     x0 y0 z0
347     x1 y1 z1
348     rad
349     </pre>
350    
351     <p>
352    
353     <dt>
354     <a NAME="Tube">
355     <b>Tube</b>
356     </a>
357     <dd>
358     A tube is an inverted <a HREF="#Cylinder">cylinder</a>.
359    
360     <p>
361    
362     <dt>
363     <a NAME="Ring">
364     <b>Ring</b>
365     </a>
366     <dd>
367     A ring is a circular disk given by its center,
368     surface normal, and inner and outer radii:
369    
370     <pre>
371     mod ring id
372     0
373     0
374     8
375     xcent ycent zcent
376     xdir ydir zdir
377     r0 r1
378     </pre>
379    
380     <p>
381    
382     <dt>
383     <a NAME="Instance">
384     <b>Instance</b>
385     </a>
386     <dd>
387     An instance is a compound surface, given
388     by the contents of an octree file (created by oconv).
389    
390     <pre>
391     mod instance id
392     1+ octree transform
393     0
394     0
395     </pre>
396    
397     If the modifier is &quot;void&quot;, then surfaces will
398     use the modifiers given in the original description.
399     Otherwise, the modifier specified is used in their place.
400     The transform moves the octree to the desired location in the scene.
401     Multiple instances using the same octree take
402     little extra memory, hence very complex
403     descriptions can be rendered using this primitive.
404    
405     <p>
406     There are a number of important limitations to be aware of
407     when using instances.
408     First, the scene description used to generate the octree must
409     stand on its own, without referring to modifiers in the
410     parent description.
411     This is necessary for oconv to create the octree.
412     Second, light sources in the octree will not be
413     incorporated correctly in the calculation,
414     and they are not recommended.
415     Finally, there is no advantage (other than
416     convenience) to using a single instance of an octree,
417     or an octree containing only a few surfaces.
418     An <a HREF="../man_html/xform.1.html">xform</a> command
419     on the subordinate description is prefered in such cases.
420     </dl>
421    
422     <p>
423    
424     <dt>
425     <a NAME="Mesh">
426     <b>Mesh</b>
427     </a>
428     <dd>
429     A mesh is a compound surface, made up of many triangles and
430     an octree data structure to accelerate ray intersection.
431     It is typically converted from a Wavefront .OBJ file using the
432     <i>obj2mesh</i> program.
433    
434     <pre>
435     mod mesh id
436     1+ meshfile transform
437     0
438     0
439     </pre>
440    
441     If the modifier is &quot;void&quot;, then surfaces will
442     use the modifiers given in the original mesh description.
443     Otherwise, the modifier specified is used in their place.
444     The transform moves the mesh to the desired location in the scene.
445     Multiple instances using the same meshfile take little extra memory,
446     and the compiled mesh itself takes much less space than individual
447     polygons would.
448     In the case of an unsmoothed mesh, using the mesh primitive reduces
449     memory requirements by a factor of 30 relative to individual triangles.
450     If a mesh has smoothed surfaces, we save a factor of 50 or more,
451     permitting very detailed geometries that would otherwise exhaust the
452     available memory.
453     In addition, the mesh primitive can have associated (u,v) coordinates
454     for pattern and texture mapping.
455     These are made available to function files via the Lu and Lv variables.
456    
457     </dl>
458    
459     <p>
460     <hr>
461    
462     <h4>
463     <a NAME="Materials">2.1.2. Materials</a>
464     </h4>
465    
466     A material defines the way light interacts with a surface. The basic types are given below.
467    
468     <p>
469    
470     <dl>
471    
472     <dt>
473     <a NAME="Light">
474     <b>Light</b>
475     </a>
476     <dd>
477     Light is the basic material for self-luminous surfaces (i.e.,
478     light sources).
479     In addition to the <a HREF="#Source">source</a> surface type,
480     <a HREF="#Sphere">spheres</a>,
481     discs (<a HREF="#Ring">rings</a> with zero inner radius),
482     <a HREF="#Cylinder">cylinders</a> (provided they are long enough), and <a HREF="#Polygon">polygons</a> can act as light sources.
483     Polygons work best when they are rectangular.
484     Cones cannot be used at this time.
485     A pattern may be used to specify a light output distribution.
486     Light is defined simply as a RGB radiance value (watts/steradian/m2):
487    
488     <pre>
489     mod light id
490     0
491     0
492     3 red green blue
493     </pre>
494    
495     <p>
496    
497     <dt>
498     <a NAME="Illum">
499     <b>Illum</b>
500     </a>
501    
502     <dd>
503     Illum is used for secondary light sources with broad distributions.
504     A secondary light source is treated like any other light source, except when viewed directly.
505     It then acts like it is made of a different material (indicated by
506     the string argument), or becomes invisible (if no string argument is given,
507     or the argument is &quot;void&quot;).
508     Secondary sources are useful when modeling windows or brightly illuminated surfaces.
509    
510     <pre>
511     mod illum id
512     1 material
513     0
514     3 red green blue
515     </pre>
516    
517     <p>
518    
519     <dt>
520     <a NAME="Glow">
521     <b>Glow</b>
522     </a>
523    
524     <dd>
525     Glow is used for surfaces that are self-luminous, but limited in their effect.
526     In addition to the radiance value, a maximum radius for shadow testing is given:
527    
528     <pre>
529     mod glow id
530     0
531     0
532     4 red green blue maxrad
533     </pre>
534    
535     If maxrad is zero, then the surface will never be tested for shadow, although it may participate in an interreflection calculation.
536     If maxrad is negative, then the surface will never contribute to scene illumination.
537     Glow sources will never illuminate objects on the other side of an illum surface.
538     This provides a convenient way to illuminate local light fixture geometry without overlighting nearby objects.
539    
540     <p>
541    
542     <dt>
543     <a NAME="Spotlight">
544     <b>Spotlight</b>
545     </a>
546    
547     <dd>
548     Spotlight is used for self-luminous surfaces having directed output.
549     As well as radiance, the full cone angle (in degrees) and orientation (output direction) vector are given.
550     The length of the orientation vector is the distance of the effective
551     focus behind the source center (i.e., the focal length).
552    
553     <pre>
554     mod spotlight id
555     0
556     0
557     7 red green blue angle xdir ydir zdir
558     </pre>
559    
560     <p>
561    
562     <dt>
563     <a NAME="Mirror">
564     <b>Mirror</b>
565     </a>
566    
567     <dd>
568 greg 1.6 Mirror is used for planar surfaces that produce virtual source reflections.
569 greg 1.1 This material should be used sparingly, as it may cause the light source calculation to blow up if it is applied to many small surfaces.
570     This material is only supported for flat surfaces such as <a HREF="#Polygon">polygons</a> and <a HREF="#Ring">rings</a>.
571     The arguments are simply the RGB reflectance values, which should be between 0 and 1.
572     An optional string argument may be used like the illum type to specify a different material to be used for shading non-source rays.
573     If this alternate material is given as &quot;void&quot;, then the mirror surface will be invisible.
574     This is only appropriate if the surface hides other (more detailed) geometry with the same overall reflectance.
575    
576     <pre>
577     mod mirror id
578     1 material
579     0
580     3 red green blue
581     </pre>
582    
583     <p>
584    
585     <dt>
586     <a NAME="Prism1">
587     <b>Prism1</b>
588     </a>
589    
590     <dd>
591 greg 1.6 The prism1 material is for general light redirection from prismatic glazings, generating virtual light sources.
592 greg 1.1 It can only be used to modify a planar surface
593     (i.e., a <a HREF="#Polygon">polygon</a> or <a HREF="#Ring">disk</a>)
594     and should not result in either light concentration or scattering.
595     The new direction of the ray can be on either side of the material,
596 greg 1.6 and the definitions must have the correct bidirectional properties to work properly with virtual light sources.
597 greg 1.1 The arguments give the coefficient for the redirected light and its direction.
598    
599     <pre>
600     mod prism1 id
601     5+ coef dx dy dz funcfile transform
602     0
603     n A1 A2 .. An
604     </pre>
605    
606     The new direction variables dx, dy and dz need not produce a normalized vector.
607     For convenience, the variables DxA, DyA and DzA are defined as the normalized direction to the target light source.
608     See <a HREF="#Function">section 2.2.1</a> on function files for further information.
609    
610     <p>
611    
612     <dt>
613     <a NAME="Prism2">
614     <b>Prism2</b>
615     </a>
616    
617     <dd>
618     The material prism2 is identical to <a HREF="#Prism1">prism1</a> except that it provides for two ray redirections rather than one.
619    
620     <pre>
621     mod prism2 id
622     9+ coef1 dx1 dy1 dz1 coef2 dx2 dy2 dz2 funcfile transform
623     0
624     n A1 A2 .. An
625     </pre>
626    
627     <p>
628    
629     <dt>
630     <a NAME="Mist">
631     <b>Mist</b>
632     </a>
633    
634     <dd>
635     Mist is a virtual material used to delineate a volume
636     of participating atmosphere.
637     A list of important light sources may be given, along with an
638     extinction coefficient, scattering albedo and scattering eccentricity
639     parameter.
640     The light sources named by the string argument list
641     will be tested for scattering within the volume.
642     Sources are identified by name, and virtual light sources may be indicated
643     by giving the relaying object followed by '&gt;' followed by the source, i.e:
644    
645     <pre>
646     3 source1 mirror1&gt;source10 mirror2&gt;mirror1&gt;source3
647     </pre>
648    
649     Normally, only one source is given per mist material, and there is an
650     upper limit of 32 to the total number of active scattering sources.
651     The extinction coefficient, if given, is added the the global
652     coefficient set on the command line.
653     Extinction is in units of 1/distance (distance based on the world coordinates),
654     and indicates the proportional loss of radiance over one unit distance.
655     The scattering albedo, if present, will override the global setting within
656     the volume.
657     An albedo of 0 0 0 means a perfectly absorbing medium, and an albedo of
658     1 1 1 means
659     a perfectly scattering medium (no absorption).
660     The scattering eccentricity parameter will likewise override the global
661     setting if it is present.
662     Scattering eccentricity indicates how much scattered light favors the
663 greg 1.8 forward direction, as fit by the Henyey-Greenstein function:
664 greg 1.1
665     <pre>
666     P(theta) = (1 - g*g) / (1 + g*g - 2*g*cos(theta))^1.5
667     </pre>
668    
669     A perfectly isotropic scattering medium has a g parameter of 0, and
670     a highly directional material has a g parameter close to 1.
671     Fits to the g parameter may be found along with typical extinction
672     coefficients and scattering albedos for various atmospheres and
673     cloud types in USGS meteorological tables.
674     (A pattern will be applied to the extinction values.)
675    
676     <pre>
677     mod mist id
678     N src1 src2 .. srcN
679     0
680     0|3|6|7 [ rext gext bext [ ralb galb balb [ g ] ] ]
681     </pre>
682    
683     There are two usual uses of the mist type.
684     One is to surround a beam from a spotlight or laser so that it is
685     visible during rendering.
686     For this application, it is important to use a <a HREF="#Cone">cone</a>
687     (or <a HREF="#Cylinder">cylinder</a>) that
688     is long enough and wide enough to contain the important visible portion.
689     Light source photometry and intervening objects will have the desired
690     effect, and crossing beams will result in additive scattering.
691     For this application, it is best to leave off the real arguments, and
692     use the global rendering parameters to control the atmosphere.
693     The second application is to model clouds or other localized media.
694     Complex boundary geometry may be used to give shape to a uniform medium,
695     so long as the boundary encloses a proper volume.
696     Alternatively, a pattern may be used to set the line integral value
697     through the cloud for a ray entering or exiting a point in a given
698     direction.
699     For this application, it is best if cloud volumes do not overlap each other,
700     and opaque objects contained within them may not be illuminated correctly
701     unless the line integrals consider enclosed geometry.
702    
703     <dt>
704     <a NAME="Plastic">
705     <b>Plastic</b>
706     </a>
707    
708     <dd>
709     Plastic is a material with uncolored highlights.
710     It is given by its RGB reflectance, its fraction of specularity, and its roughness value.
711     Roughness is specified as the rms slope of surface facets.
712     A value of 0 corresponds to a perfectly smooth surface, and a value of 1 would be a very rough surface.
713     Specularity fractions greater than 0.1 and roughness values greater than 0.2 are not very realistic.
714     (A pattern modifying plastic will affect the material color.)
715    
716     <pre>
717     mod plastic id
718     0
719     0
720     5 red green blue spec rough
721     </pre>
722    
723     <p>
724    
725     <dt>
726     <a NAME="Metal">
727     <b>Metal</b>
728     </a>
729    
730     <dd>
731     Metal is similar to <a HREF="#Plastic">plastic</a>, but specular highlights are modified by the material color.
732     Specularity of metals is usually .9 or greater.
733     As for plastic, roughness values above .2 are uncommon.
734    
735     <p>
736    
737     <dt>
738     <a NAME="Trans">
739     <b>Trans</b>
740     </a>
741    
742     <dd>
743     Trans is a translucent material, similar to <a HREF="#Plastic">plastic</a>.
744     The transmissivity is the fraction of penetrating light that travels all the way through the material.
745     The transmitted specular component is the fraction of transmitted light that is not diffusely scattered.
746     Transmitted and diffusely reflected light is modified by the material color.
747     Translucent objects are infinitely thin.
748    
749     <pre>
750     mod trans id
751     0
752     0
753     7 red green blue spec rough trans tspec
754     </pre>
755    
756     <p>
757    
758     <dt>
759     <a NAME="Plastic2">
760     <b>Plastic2</b>
761     </a>
762    
763     <dd>
764     Plastic2 is similar to <a HREF="#Plastic">plastic</a>, but with anisotropic roughness.
765     This means that highlights in the surface will appear elliptical rather than round.
766     The orientation of the anisotropy is determined by the unnormalized direction vector ux uy uz.
767     These three expressions (separated by white space) are evaluated in the context of the function file funcfile.
768     If no function file is required (i.e., no special variables or functions are required), a period (`.') may be given in its place.
769     (See the discussion of <a HREF="#Function">Function Files</a> in the Auxiliary Files section).
770     The urough value defines the roughness along the u vector given projected onto the surface.
771     The vrough value defines the roughness perpendicular to this vector.
772     Note that the highlight will be narrower in the direction of the smaller roughness value.
773     Roughness values of zero are not allowed for efficiency reasons since the behavior would be the same as regular plastic in that case.
774    
775     <pre>
776     mod plastic2 id
777     4+ ux uy uz funcfile transform
778     0
779     6 red green blue spec urough vrough
780     </pre>
781    
782     <p>
783    
784     <dt>
785     <a NAME="Metal2">
786     <b>Metal2</b>
787     </a>
788    
789     <dd>
790     Metal2 is the same as <a HREF="#Plastic2">plastic2</a>, except that the highlights are modified by the material color.
791    
792     <p>
793    
794     <dt>
795     <a NAME="Trans2">
796     <b>Trans2</b>
797     </a>
798    
799     <dd>
800     Trans2 is the anisotropic version of <a HREF="#Trans">trans</a>.
801 greg 1.23 The string arguments are the same as for <a HREF="#Plastic2">plastic2</a>,
802     and the real arguments are the same as for trans but with an additional roughness value.
803 greg 1.1
804     <pre>
805     mod trans2 id
806     4+ ux uy uz funcfile transform
807     0
808     8 red green blue spec urough vrough trans tspec
809     </pre>
810    
811     <p>
812    
813     <dt>
814 greg 1.23 <a NAME="Ashik2">
815     <b>Ashik2</b>
816     </a>
817    
818     <dd>
819     Ashik2 is the anisotropic reflectance model by Ashikhmin & Shirley.
820     The string arguments are the same as for <a HREF="#Plastic2">plastic2</a>, but the real
821     arguments have additional flexibility to specify the specular color.
822     Also, rather than roughness, specular power is used, which has no
823     physical meaning other than larger numbers are equivalent to a smoother
824     surface.
825     <pre>
826     mod ashik2 id
827     4+ ux uy uz funcfile transform
828     0
829     8 dred dgrn dblu sred sgrn sblu u-power v-power
830     </pre>
831    
832     <p>
833    
834     <dt>
835 greg 1.1 <a NAME="Dielectric">
836     <b>Dielectric</b>
837     </a>
838    
839     <dd>
840     A dielectric material is transparent, and it refracts light as well as reflecting it.
841     Its behavior is determined by the index of refraction and transmission coefficient in each wavelength band per unit length.
842     Common glass has a index of refraction (n) around 1.5, and a transmission coefficient of roughly 0.92 over an inch.
843     An additional number, the Hartmann constant, describes how the index of refraction changes as a function of wavelength.
844     It is usually zero. (A <a HREF="#Patterns">pattern</a> modifies only the refracted value.)
845    
846     <pre>
847     mod dielectric id
848     0
849     0
850     5 rtn gtn btn n hc
851     </pre>
852    
853     <p>
854    
855     <dt>
856     <a NAME="Interface">
857     <b>Interface</b>
858     </a>
859    
860     <dd>
861     An interface is a boundary between two dielectrics.
862     The first transmission coefficient and refractive index are for the inside; the second ones are for the outside.
863     Ordinary dielectrics are surrounded by a vacuum (1 1 1 1).
864    
865     <pre>
866     mod interface id
867     0
868     0
869     8 rtn1 gtn1 btn1 n1 rtn2 gtn2 btn2 n2
870     </pre>
871    
872     <p>
873    
874     <dt>
875     <a NAME="Glass">
876     <b>Glass</b>
877     </a>
878    
879     <dd>
880     Glass is similar to <a HREF="#Dielectric">dielectric</a>, but it is optimized for thin glass surfaces (n = 1.52).
881     One transmitted ray and one reflected ray is produced.
882     By using a single surface is in place of two, internal reflections are avoided.
883     The surface orientation is irrelevant, as it is for <a HREF="#Plastic">plastic</a>, <a HREF="#Metal">metal</a>, and <a HREF="#Trans">trans</a>.
884     The only specification required is the transmissivity at normal incidence.
885     (Transmissivity is the amount of light not absorbed in one traversal
886     of the material.
887     Transmittance -- the value usually measured -- is the total light
888     transmitted through the pane including multiple reflections.)
889     To compute transmissivity (tn) from transmittance (Tn) use:
890    
891     <pre>
892     tn = (sqrt(.8402528435+.0072522239*Tn*Tn)-.9166530661)/.0036261119/Tn
893     </pre>
894    
895     Standard 88% transmittance glass has a transmissivity of 0.96.
896     (A <a HREF="#Patterns">pattern</a> modifying glass will affect the transmissivity.)
897     If a fourth real argument is given, it is interpreted as the index of refraction to use instead of 1.52.
898    
899     <pre>
900     mod glass id
901     0
902     0
903     3 rtn gtn btn
904     </pre>
905    
906     <p>
907    
908     <dt>
909     <a NAME="Plasfunc">
910     <b>Plasfunc</b>
911     </a>
912    
913     <dd>
914     Plasfunc in used for the procedural definition of plastic-like materials
915     with arbitrary bidirectional reflectance distribution functions (BRDF's).
916     The arguments to this material include the color and specularity,
917     as well as the function defining the specular distribution and the auxiliary file where it may be found.
918    
919     <pre>
920     mod plasfunc id
921     2+ refl funcfile transform
922     0
923     4+ red green blue spec A5 ..
924     </pre>
925    
926     The function refl takes four arguments, the x, y and z
927     direction towards the incident light, and the solid angle
928     subtended by the source.
929     The solid angle is provided to facilitate averaging, and is usually
930     ignored.
931     The refl function should integrate to 1 over
932     the projected hemisphere to maintain energy balance.
933     At least four real arguments must be given, and these are made available along with any additional values to the reflectance function.
934     Currently, only the contribution from direct light sources is considered in the specular calculation.
935     As in most material types, the surface normal is always altered to face the incoming ray.
936    
937     <p>
938    
939     <dt>
940     <a NAME="Metfunc">
941     <b>Metfunc</b>
942     </a>
943    
944     <dd>
945     Metfunc is identical to <a HREF="#Plasfunc">plasfunc</a> and takes the same arguments,
946     but the specular component is multiplied also by the material color.
947    
948     <p>
949    
950     <dt>
951     <a NAME="Transfunc">
952     <b>Transfunc</b>
953     </a>
954    
955     <dd>
956     Transfunc is similar to <a HREF="#Plasfunc">plasfunc</a> but with an arbitrary bidirectional transmittance distribution
957     as well as a reflectance distribution.
958     Both reflectance and transmittance are specified with the same function.
959    
960     <pre>
961     mod transfunc id
962     2+ brtd funcfile transform
963     0
964     6+ red green blue rspec trans tspec A7 ..
965     </pre>
966    
967     Where trans is the total light transmitted and tspec is the non-Lambertian fraction of transmitted light.
968     The function brtd should integrate to 1 over each projected hemisphere.
969    
970     <p>
971    
972     <dt>
973     <a NAME="BRTDfunc">
974     <b>BRTDfunc</b>
975     </a>
976    
977     <dd>
978     The material BRTDfunc gives the maximum flexibility over surface reflectance and transmittance,
979     providing for spectrally-dependent specular rays and reflectance and transmittance distribution functions.
980    
981     <pre>
982     mod BRTDfunc id
983     10+ rrefl grefl brefl
984     rtrns gtrns btrns
985     rbrtd gbrtd bbrtd
986     funcfile transform
987     0
988     9+ rfdif gfdif bfdif
989     rbdif gbdif bbdif
990     rtdif gtdif btdif
991     A10 ..
992     </pre>
993    
994     The variables rrefl, grefl and brefl specify the color coefficients for the ideal specular (mirror) reflection of the surface.
995     The variables rtrns, gtrns and btrns specify the color coefficients for the ideal specular transmission.
996     The functions rbrtd, gbrtd and bbrtd take the direction to the incident light (and its solid angle) and
997     compute the color coefficients for the directional diffuse part of reflection and transmission.
998     As a special case, three identical values of '0' may be given in place of these function names to indicate no directional diffuse component.
999    
1000     <p>
1001     Unlike most other material types, the surface normal is not altered to face the incoming ray.
1002     Thus, functions and variables must pay attention to the orientation of the surface and make adjustments appropriately.
1003     However, the special variables for the perturbed dot product and surface normal, RdotP, NxP, NyP and NzP are reoriented
1004     as if the ray hit the front surface for convenience.
1005    
1006     <p>
1007     A diffuse reflection component may be given for the front side with rfdif, gfdif and bfdif for the front side of the surface
1008     or rbdif, gbdif and bbdif for the back side.
1009     The diffuse transmittance (must be the same for both sides by physical law) is given by rtdif, gtdif and btdif.
1010     A pattern will modify these diffuse scattering values, and will be available through the special variables CrP, CgP and CbP.
1011    
1012     <p>
1013     Care must be taken when using this material type to produce a physically valid reflection model.
1014     The reflectance functions should be bidirectional, and under no circumstances should the sum of reflected diffuse,
1015     transmitted diffuse, reflected specular, transmitted specular and the integrated directional diffuse component be greater than one.
1016    
1017     <p>
1018    
1019     <dt>
1020     <a NAME="Plasdata">
1021     <b>Plasdata</b>
1022     </a>
1023    
1024     <dd>
1025     Plasdata is used for arbitrary BRDF's that are most conveniently given as interpolated data.
1026     The arguments to this material are the <a HREF="#Data">data file</a> and coordinate index functions,
1027     as well as a function to optionally modify the data values.
1028    
1029     <pre>
1030     mod plasdata id
1031     3+n+
1032     func datafile
1033     funcfile x1 x2 .. xn transform
1034     0
1035     4+ red green blue spec A5 ..
1036     </pre>
1037    
1038     The coordinate indices (x1, x2, etc.) are themselves functions of the x, y and z direction to the incident light, plus the solid angle
1039     subtended by the light source (usually ignored).
1040     The data function (func) takes five variables, the
1041     interpolated value from the n-dimensional data file, followed by the
1042     x, y and z direction to the incident light and the solid angle of the source.
1043     The light source direction and size may of course be ignored by the function.
1044    
1045     <p>
1046    
1047     <dt>
1048     <a NAME="Metdata">
1049     <b>Metdata</b>
1050     </a>
1051    
1052     <dd>
1053     As metfunc is to plasfunc, metdata is to <a HREF="#Plasdata">plasdata</a>.
1054     Metdata takes the same arguments as plasdata, but the specular component is modified by the given material color.
1055    
1056     <p>
1057    
1058     <dt>
1059     <a NAME="Transdata">
1060     <b>Transdata</b>
1061     </a>
1062    
1063     <dd>
1064     Transdata is like <a HREF="#Plasdata">plasdata</a> but the specification includes transmittance as well as reflectance.
1065     The parameters are as follows.
1066    
1067     <pre>
1068     mod transdata id
1069     3+n+
1070     func datafile
1071     funcfile x1 x2 .. xn transform
1072     0
1073     6+ red green blue rspec trans tspec A7 ..
1074     </pre>
1075    
1076     <p>
1077    
1078     <dt>
1079 greg 1.10 <a NAME="BSDF">
1080     <b>BSDF</b>
1081     </a>
1082    
1083     <dd>
1084     The BSDF material type loads an XML (eXtensible Markup Language)
1085     file describing a bidirectional scattering distribution function.
1086     Real arguments to this material may define additional
1087     diffuse components that augment the BSDF data.
1088     String arguments are used to define thickness for proxied
1089 greg 1.11 surfaces and the &quot;up&quot; orientation for the material.
1090 greg 1.10
1091     <pre>
1092     mod BSDF id
1093     6+ thick BSDFfile ux uy uz funcfile transform
1094     0
1095     0|3|6|9
1096     rfdif gfdif bfdif
1097     rbdif gbdif bbdif
1098     rtdif gtdif btdif
1099     </pre>
1100    
1101     <p>
1102 greg 1.11 The first string argument is a &quot;thickness&quot; parameter that may be used
1103 greg 1.10 to hide detail geometry being proxied by an aggregate BSDF material.
1104     If a view or shadow ray hits a BSDF proxy with non-zero thickness,
1105     it will pass directly through as if the surface were not there.
1106     Similar to the illum type, this permits direct viewing and
1107     shadow testing of complex geometry.
1108     The BSDF is used when a scattered (indirect) ray hits the surface,
1109     and any transmitted sample rays will be offset by the thickness amount
1110     to avoid the hidden geometry and gather samples from the other side.
1111     In this manner, BSDF surfaces can improve the results for indirect
1112     scattering from complex systems without sacrificing appearance or
1113     shadow accuracy.
1114     If the BSDF has transmission and back-side reflection data,
1115     a parallel BSDF surface may be
1116     placed slightly less than the given thickness away from the front surface
1117     to enclose the complex geometry on both sides.
1118 greg 1.12 The sign of the thickness is important, as it indicates
1119 greg 1.14 whether the proxied geometry is behind the BSDF
1120 greg 1.12 surface (when thickness is positive) or in front (when
1121     thickness is negative).
1122     <p>
1123     The second string argument is the name of the BSDF file,
1124     which is found in the usual auxiliary locations. The
1125     following three string parameters name variables for an
1126     &quot;up&quot; vector, which together with the surface
1127     normal, define the local coordinate system that orients the
1128     BSDF. These variables, along with the thickness, are defined
1129     in a function file given as the next string argument. An
1130     optional transform is used to scale the thickness and
1131     reorient the up vector.
1132     <p>
1133     If no real arguments are given, the BSDF is used by itself
1134     to determine reflection and transmission. If there are at
1135     least 3 real arguments, the first triplet is an additional
1136     diffuse reflectance for the front side. At least 6 real
1137     arguments adds diffuse reflectance to the rear side of the
1138     surface. If there are 9 real arguments, the final triplet
1139     will be taken as an additional diffuse transmittance. All
1140     diffuse components as well as the non-diffuse transmission
1141     are modified by patterns applied to this material. The
1142     non-diffuse reflection from either side are unaffected.
1143     Textures perturb the effective surface normal in the usual
1144     way.
1145     <p>
1146     The surface normal of this type is not altered to face the
1147     incoming ray, so the front and back BSDF reflections may
1148     differ. (Transmission is identical front-to-back by physical
1149     law.) If back visibility is turned off during rendering and
1150     there is no transmission or back-side reflection, only then
1151     the surface will be invisible from behind. Unlike other
1152     data-driven material types, the BSDF type is fully supported
1153     and all parts of the distribution are properly sampled.
1154 greg 1.10 <p>
1155    
1156     <dt>
1157 greg 1.1 <a NAME="Antimatter">
1158     <b>Antimatter</b>
1159     </a>
1160    
1161     <dd>
1162     Antimatter is a material that can &quot;subtract&quot; volumes from other volumes.
1163     A ray passing into an antimatter object becomes blind to all the specified modifiers:
1164    
1165     <pre>
1166     mod antimatter id
1167     N mod1 mod2 .. modN
1168     0
1169     0
1170     </pre>
1171    
1172     The first modifier will also be used to shade the area leaving the antimatter volume and entering the regular volume.
1173     If mod1 is void, the antimatter volume is completely invisible.
1174     Antimatter does not work properly with the material type <a HREF="#Trans">&quot;trans&quot;</a>,
1175     and multiple antimatter surfaces should be disjoint.
1176     The viewpoint must be outside all volumes concerned for a correct rendering.
1177    
1178     </dl>
1179    
1180     <p>
1181     <hr>
1182    
1183     <h4>
1184     <a NAME="Textures">2.1.3. Textures</a>
1185     </h4>
1186    
1187     A texture is a perturbation of the surface normal, and is given by either a function or data.
1188    
1189     <p>
1190    
1191     <dl>
1192    
1193     <dt>
1194     <a NAME="Texfunc">
1195     <b>Texfunc</b>
1196     </a>
1197    
1198     <dd>
1199     A texfunc uses an auxiliary function file to specify a procedural texture:
1200    
1201     <pre>
1202     mod texfunc id
1203     4+ xpert ypert zpert funcfile transform
1204     0
1205     n A1 A2 .. An
1206     </pre>
1207    
1208     <p>
1209    
1210     <dt>
1211     <a NAME="Texdata">
1212     <b>Texdata</b>
1213     </a>
1214    
1215     <dd>
1216     A texdata texture uses three data files to get the surface normal perturbations.
1217     The variables xfunc, yfunc and zfunc take three arguments each from the interpolated values in xdfname, ydfname and zdfname.
1218    
1219     <pre>
1220     mod texdata id
1221     8+ xfunc yfunc zfunc xdfname ydfname zdfname vfname x0 x1 .. xf
1222     0
1223     n A1 A2 .. An
1224     </pre>
1225    
1226     </dl>
1227    
1228     <p>
1229     <hr>
1230    
1231     <h4>
1232     <a NAME="Patterns">2.1.4. Patterns</a>
1233     </h4>
1234    
1235     Patterns are used to modify the reflectance of materials. The basic types are given below.
1236    
1237     <p>
1238    
1239     <dl>
1240    
1241     <dt>
1242     <a NAME="Colorfunc">
1243     <b>Colorfunc</b>
1244     </a>
1245    
1246     <dd>
1247     A colorfunc is a procedurally defined color pattern. It is specified as follows:
1248    
1249     <pre>
1250     mod colorfunc id
1251     4+ red green blue funcfile transform
1252     0
1253     n A1 A2 .. An
1254     </pre>
1255    
1256     <p>
1257    
1258     <dt>
1259     <a NAME="Brightfunc">
1260     <b>Brightfunc</b>
1261     </a>
1262    
1263     <dd>
1264     A brightfunc is the same as a colorfunc, except it is monochromatic.
1265    
1266     <pre>
1267     mod brightfunc id
1268     2+ refl funcfile transform
1269     0
1270     n A1 A2 .. An
1271     </pre>
1272    
1273     <p>
1274    
1275     <dt>
1276     <a NAME="Colordata">
1277     <b>Colordata</b>
1278     </a>
1279    
1280     <dd>
1281     Colordata uses an interpolated data map to modify a material's color.
1282     The map is n-dimensional, and is stored in three auxiliary files, one for each color.
1283     The coordinates used to look up and interpolate the data are defined in another auxiliary file.
1284     The interpolated data values are modified by functions of one or three variables.
1285     If the functions are of one variable, then they are passed the corresponding color component (red or green or blue).
1286     If the functions are of three variables, then they are passed the original red, green, and blue values as parameters.
1287    
1288     <pre>
1289     mod colordata id
1290     7+n+
1291     rfunc gfunc bfunc rdatafile gdatafile bdatafile
1292     funcfile x1 x2 .. xn transform
1293     0
1294     m A1 A2 .. Am
1295     </pre>
1296    
1297     <p>
1298    
1299     <dt>
1300     <a NAME="Brightdata">
1301     <b>Brightdata</b>
1302     </a>
1303    
1304     <dd>
1305     Brightdata is like colordata, except monochromatic.
1306    
1307     <pre>
1308     mod brightdata id
1309     3+n+
1310     func datafile
1311     funcfile x1 x2 .. xn transform
1312     0
1313     m A1 A2 .. Am
1314     </pre>
1315    
1316     <p>
1317    
1318     <dt>
1319     <a NAME="Colorpict">
1320     <b>Colorpict</b>
1321     </a>
1322    
1323     <dd>
1324     Colorpict is a special case of colordata, where the pattern is a two-dimensional image stored in the RADIANCE picture format.
1325     The dimensions of the image data are determined by the picture such that the smaller dimension is always 1,
1326     and the other is the ratio between the larger and the smaller.
1327     For example, a 500x338 picture would have coordinates (u,v) in the rectangle between (0,0) and (1.48,1).
1328    
1329     <pre>
1330     mod colorpict id
1331     7+
1332     rfunc gfunc bfunc pictfile
1333     funcfile u v transform
1334     0
1335     m A1 A2 .. Am
1336     </pre>
1337    
1338     <p>
1339    
1340     <dt>
1341     <a NAME="Colortext">
1342     <b>Colortext</b>
1343     </a>
1344    
1345     <dd>
1346     Colortext is dichromatic writing in a polygonal font.
1347     The font is defined in an auxiliary file, such as helvet.fnt.
1348     The text itself is also specified in a separate file, or can be part of the material arguments.
1349     The character size, orientation, aspect ratio and slant is determined by right and down motion vectors.
1350     The upper left origin for the text block as well as the foreground and background colors must also be given.
1351    
1352     <pre>
1353     mod colortext id
1354     2 fontfile textfile
1355     0
1356     15+
1357     Ox Oy Oz
1358     Rx Ry Rz
1359     Dx Dy Dz
1360     rfore gfore bfore
1361     rback gback bback
1362     [spacing]
1363     </pre>
1364    
1365     or:
1366    
1367     <pre>
1368     mod colortext id
1369     2+N fontfile . This is a line with N words ...
1370     0
1371     15+
1372     Ox Oy Oz
1373     Rx Ry Rz
1374     Dx Dy Dz
1375     rfore gfore bfore
1376     rback gback bback
1377     [spacing]
1378     </pre>
1379    
1380     <p>
1381    
1382     <dt>
1383     <a NAME="Brighttext">
1384     <b>Brighttext</b>
1385     </a>
1386    
1387     <dd>
1388     Brighttext is like colortext, but the writing is monochromatic.
1389    
1390     <pre>
1391     mod brighttext id
1392     2 fontfile textfile
1393     0
1394     11+
1395     Ox Oy Oz
1396     Rx Ry Rz
1397     Dx Dy Dz
1398     foreground background
1399     [spacing]
1400     </pre>
1401    
1402     or:
1403    
1404     <pre>
1405     mod brighttext id
1406     2+N fontfile . This is a line with N words ...
1407     0
1408     11+
1409     Ox Oy Oz
1410     Rx Ry Rz
1411     Dx Dy Dz
1412     foreground background
1413     [spacing]
1414     </pre>
1415    
1416     <p>
1417    
1418     By default, a uniform spacing algorithm is used that guarantees every character will appear in a precisely determined position.
1419     Unfortunately, such a scheme results in rather unattractive and difficult to read text with most fonts.
1420     The optional spacing value defines the distance between characters for proportional spacing.
1421     A positive value selects a spacing algorithm that preserves right margins and indentation,
1422     but does not provide the ultimate in proportionally spaced text.
1423     A negative value insures that characters are properly spaced, but the placement of words then varies unpredictably.
1424     The choice depends on the relative importance of spacing versus formatting.
1425     When presenting a section of formatted text, a positive spacing value is usually preferred.
1426     A single line of text will often be accompanied by a negative spacing value.
1427     A section of text meant to depict a picture, perhaps using a special purpose font such as hexbit4x1.fnt, calls for uniform spacing.
1428     Reasonable magnitudes for proportional spacing are between 0.1 (for tightly spaced characters) and 0.3 (for wide spacing).
1429    
1430     </dl>
1431    
1432     <p>
1433     <hr>
1434    
1435     <h4>
1436     <a NAME="Mixtures">2.1.5. Mixtures</a>
1437     </h4>
1438    
1439     A mixture is a blend of one or more materials or textures and patterns.
1440 greg 1.22 Blended materials should not be light source types or virtual source types.
1441 greg 1.1 The basic types are given below.
1442    
1443     <p>
1444    
1445     <dl>
1446    
1447     <dt>
1448     <a NAME="Mixfunc">
1449     <b>Mixfunc</b>
1450     </a>
1451    
1452     <dd>
1453     A mixfunc mixes two modifiers procedurally. It is specified as follows:
1454    
1455     <pre>
1456     mod mixfunc id
1457     4+ foreground background vname funcfile transform
1458     0
1459     n A1 A2 .. An
1460     </pre>
1461    
1462     Foreground and background are modifier names that must be
1463     defined earlier in the scene description.
1464     If one of these is a material, then
1465     the modifier of the mixfunc must be &quot;void&quot;.
1466     (Either the foreground or background modifier may be &quot;void&quot;,
1467     which serves as a form of opacity control when used with a material.)
1468     Vname is the coefficient defined in funcfile that determines the influence of foreground.
1469     The background coefficient is always (1-vname).
1470    
1471     <p>
1472    
1473     <dt>
1474     <a NAME="Mixdata">
1475     <b>Mixdata</b>
1476     </a>
1477    
1478     <dd>
1479     Mixdata combines two modifiers using an auxiliary data file:
1480    
1481     <pre>
1482     mod mixdata id
1483     5+n+
1484     foreground background func datafile
1485     funcfile x1 x2 .. xn transform
1486     0
1487     m A1 A2 .. Am
1488     </pre>
1489    
1490     <dt>
1491     <a NAME="Mixpict">
1492     <b>Mixpict</b>
1493     </a>
1494    
1495     <dd>
1496     Mixpict combines two modifiers based on a picture:
1497    
1498     <pre>
1499     mod mixpict id
1500     7+
1501     foreground background func pictfile
1502     funcfile u v transform
1503     0
1504     m A1 A2 .. Am
1505     </pre>
1506    
1507     <p>
1508    
1509     The mixing coefficient function &quot;func&quot; takes three
1510     arguments, the red, green and blue values
1511     corresponding to the pixel at (u,v).
1512    
1513     <p>
1514    
1515     <dt>
1516     <a NAME="Mixtext">
1517     <b>Mixtext</b>
1518     </a>
1519    
1520     <dd>
1521     Mixtext uses one modifier for the text foreground, and one for the background:
1522    
1523     <pre>
1524     mod mixtext id
1525     4 foreground background fontfile textfile
1526     0
1527     9+
1528     Ox Oy Oz
1529     Rx Ry Rz
1530     Dx Dy Dz
1531     [spacing]
1532     </pre>
1533    
1534     or:
1535    
1536     <pre>
1537     mod mixtext id
1538     4+N
1539     foreground background fontfile .
1540     This is a line with N words ...
1541     0
1542     9+
1543     Ox Oy Oz
1544     Rx Ry Rz
1545     Dx Dy Dz
1546     [spacing]
1547     </pre>
1548    
1549     </dl>
1550    
1551     <p>
1552     <hr>
1553    
1554     <h3>
1555     <a NAME="Auxiliary">2.2. Auxiliary Files</a>
1556     </h3>
1557    
1558     Auxiliary files used in <a HREF="#Textures">textures</a> and <a HREF="#Patterns">patterns</a>
1559     are accessed by the programs during image generation.
1560     These files may be located in the working directory, or in a library directory.
1561     The environment variable RAYPATH can be assigned an alternate set of search directories.
1562     Following is a brief description of some common file types.
1563    
1564     <p>
1565    
1566     <h4>
1567     <a NAME="Function">12.2.1. Function Files</a>
1568     </h4>
1569    
1570     A function file contains the definitions of variables, functions and constants used by a primitive.
1571     The transformation that accompanies the file name contains the necessary rotations, translations and scalings
1572     to bring the coordinates of the function file into agreement with the world coordinates.
1573     The transformation specification is the same as for the <a HREF="#Generators">xform</a> command.
1574     An example function file is given below:
1575    
1576     <pre>
1577     {
1578     This is a comment, enclosed in curly braces.
1579     {Comments can be nested.}
1580     }
1581     { standard expressions use +,-,*,/,^,(,) }
1582     vname = Ny * func(A1) ;
1583     { constants are defined with a colon }
1584     const : sqrt(PI/2) ;
1585     { user-defined functions add to library }
1586     func(x) = 5 + A1*sin(x/3) ;
1587     { functions may be passed and recursive }
1588     rfunc(f,x) = if(x,f(x),f(-x)*rfunc(f,x+1)) ;
1589     { constant functions may also be defined }
1590     cfunc(x) : 10*x / sqrt(x) ;
1591     </pre>
1592    
1593     Many variables and functions are already defined by the program, and they are listed in the file rayinit.cal.
1594     The following variables are particularly important:
1595    
1596     <pre>
1597     Dx, Dy, Dz - incident ray direction
1598     Nx, Ny, Nz - surface normal at intersection point
1599     Px, Py, Pz - intersection point
1600     T - distance from start
1601     Ts - single ray (shadow) distance
1602     Rdot - cosine between ray and normal
1603     arg(0) - number of real arguments
1604     arg(i) - i'th real argument
1605     </pre>
1606    
1607     For mesh objects, the local surface coordinates are available:
1608    
1609     <pre>
1610     Lu, Lv - local (u,v) coordinates
1611     </pre>
1612    
1613     For BRDF types, the following variables are defined as well:
1614    
1615     <pre>
1616     NxP, NyP, NzP - perturbed surface normal
1617     RdotP - perturbed dot product
1618     CrP, CgP, CbP - perturbed material color
1619     </pre>
1620    
1621     A unique context is set up for each file so
1622     that the same variable may appear in different
1623     function files without conflict.
1624     The variables listed above and any others defined in
1625     rayinit.cal are available globally.
1626     If no file is needed by a given primitive because all
1627     the required variables are global,
1628     a period (`.') can be given in place of the file name.
1629     It is also possible to give an expression instead
1630 greg 1.9 of a straight variable name in a scene file.
1631     Functions (requiring parameters) must be given
1632 greg 1.1 as names and not as expressions.
1633    
1634     <p>
1635     Constant expressions are used as an optimization in function files.
1636     They are replaced wherever they occur in an expression by their value.
1637     Constant expressions are evaluated only once, so they must not contain any variables or values that can change,
1638     such as the ray variables Px and Ny or the primitive argument function arg().
1639     All the math library functions such as sqrt() and cos() have the constant attribute,
1640     so they will be replaced by immediate values whenever they are given constant arguments.
1641     Thus, the subexpression cos(PI*sqrt(2)) is immediately replaced by its value, -.266255342,
1642     and does not cause any additional overhead in the calculation.
1643    
1644     <p>
1645     It is generally a good idea to define constants and variables before they are referred to in a function file.
1646     Although evaluation does not take place until later, the interpreter does variable scoping and
1647     constant subexpression evaluation based on what it has compiled already.
1648     For example, a variable that is defined globally in rayinit.cal
1649     then referenced in the local context of a function file
1650     cannot subsequently be redefined in the same file
1651     because the compiler has already determined the scope of the referenced variable as global.
1652     To avoid such conflicts, one can state the scope of a variable explicitly by
1653     preceding the variable name with a context mark (a back-quote) for a local variable,
1654     or following the name with a context mark for a global variable.
1655    
1656     <p>
1657    
1658     <h4>
1659     <a NAME="Data">2.2.2. Data Files</a>
1660     </h4>
1661    
1662     Data files contain n-dimensional arrays of real numbers used for interpolation.
1663     Typically, definitions in a function file determine how to index and use interpolated data values.
1664     The basic data file format is as follows:
1665    
1666     <pre>
1667     N
1668     beg1 end1 m1
1669     0 0 m2 x2.1 x2.2 x2.3 x2.4 .. x2.m2
1670     ...
1671     begN endN mN
1672     DATA, later dimensions changing faster.
1673     </pre>
1674    
1675     N is the number of dimensions.
1676     For each dimension, the beginning and ending coordinate values and the dimension size is given.
1677     Alternatively, individual coordinate values can be given when the points are not evenly spaced.
1678     These values must either be increasing or decreasing monotonically.
1679     The data is m1*m2*...*mN real numbers in ASCII form.
1680     Comments may appear anywhere in the file, beginning with a pound
1681     sign ('#') and continuing to the end of line.
1682    
1683     <p>
1684    
1685     <h4>
1686     <a NAME="Font">2.2.3. Font Files</a>
1687     </h4>
1688    
1689     A font file lists the polygons which make up a character set.
1690     Comments may appear anywhere in the file, beginning with a pound
1691     sign ('#') and continuing to the end of line.
1692     All numbers are decimal integers:
1693    
1694     <pre>
1695     code n
1696     x0 y0
1697     x1 y1
1698     ...
1699     xn yn
1700     ...
1701     </pre>
1702    
1703     The ASCII codes can appear in any order. N is the number of vertices, and the last is automatically connected to the first.
1704     Separate polygonal sections are joined by coincident sides.
1705     The character coordinate system is a square with lower left corner at (0,0), lower right at (255,0) and upper right at (255,255).
1706    
1707     <p>
1708    
1709     <hr>
1710    
1711     <h3>
1712     <a NAME="Generators">2.3. Generators</a>
1713     </h3>
1714    
1715     A generator is any program that produces a scene description as its output.
1716     They usually appear as commands in a scene description file.
1717     An example of a simple generator is genbox.
1718    
1719     <ul>
1720    
1721     <li>
1722     <a NAME="Genbox" HREF="../man_html/genbox.1.html">
1723     <b>Genbox</b>
1724     </a>
1725     takes the arguments of width, height and depth to produce a parallelepiped description.
1726     <li>
1727     <a NAME="Genprism" HREF="../man_html/genprism.1.html">
1728     <b>Genprism</b>
1729     </a>
1730     takes a list of 2-dimensional coordinates and extrudes them along a vector to
1731     produce a 3-dimensional prism.
1732     <li>
1733     <a NAME="Genrev" HREF="../man_html/genrev.1.html">
1734     <b>Genrev</b>
1735     </a>
1736     is a more sophisticated generator that produces an object of rotation from parametric functions for radius and axis position.
1737     <li>
1738     <a NAME="Gensurf" HREF="../man_html/gensurf.1.html">
1739     <b>Gensurf</b>
1740     </a>
1741     tessellates a surface defined by the parametric functions x(s,t), y(s,t), and z(s,t).
1742     <li>
1743     <a NAME="Genworm" HREF="../man_html/genworm.1.html">
1744     <b>Genworm</b>
1745     </a>
1746     links cylinders and spheres along a curve.
1747     <li>
1748     <a NAME="Gensky" HREF="../man_html/gensky.1.html">
1749     <b>Gensky</b>
1750     </a>
1751     produces a sun and sky distribution corresponding to a given time and date.
1752     <li>
1753     <a NAME="Xform" HREF="../man_html/xform.1.html">
1754     <b>Xform</b>
1755     </a>
1756     is a program that transforms a scene description from one coordinate space to another.
1757     Xform does rotation, translation, scaling, and mirroring.
1758    
1759     </ul>
1760    
1761     <p>
1762     <hr>
1763    
1764     <h2>
1765     <a NAME="Image">3. Image Generation</a>
1766     </h2>
1767    
1768     Once the scene has been described in three-dimensions, it is possible to generate a two-dimensional image from a given perspective.
1769    
1770     <p>
1771     The image generating programs use an <a NAME="octree"><b>octree</b></a> to efficiently trace rays through the scene.
1772     An octree subdivides space into nested octants which contain sets of surfaces.
1773     In RADIANCE, an octree is created from a scene description by <a NAME="oconv1" HREF="../man_html/oconv.1.html"><b>oconv</b></a>.
1774     The details of this process are not important, but the octree will serve as input to the ray-tracing programs and
1775     directs the use of a scene description.
1776     <ul>
1777     <li>
1778 greg 1.3 <a NAME="rvu" HREF="../man_html/rvu.1.html"><b>Rview</b></a> is ray-tracing program for viewing a scene interactively.
1779     When the user specifies a new perspective, rvu quickly displays a rough image on the terminal,
1780 greg 1.1 then progressively increases the resolution as the user looks on.
1781     He can select a particular section of the image to improve, or move to a different view and start over.
1782     This mode of interaction is useful for debugging scenes as well as determining the best view for a final image.
1783    
1784     <li>
1785     <a NAME="rpict" HREF="../man_html/rpict.1.html"><b>Rpict</b></a> produces a high-resolution picture of a scene from a particular perspective.
1786     This program features adaptive sampling, crash recovery and progress reporting, all of which are important for time-consuming images.
1787     </ul>
1788     <p>
1789     A number of <a NAME="filters"><b>filters</b></a> are available for manipulating picture files:
1790     <ul>
1791     <li> <a HREF="../man_html/pfilt.1.html"><b>Pfilt</b></a>
1792     sets the exposure and performs antialiasing.
1793     <li> <a HREF="../man_html/pcompos.1.html"><b>Pcompos</b></a>
1794     composites (cuts and pastes) pictures.
1795     <li> <a HREF="../man_html/pcomb.1.html"><b>Pcomb</b></a>
1796     performs arbitrary math on one or more pictures.
1797     <li> <a HREF="../man_html/pcond.1.html"><b>Pcond</b></a>
1798     conditions a picture for a specific display device.
1799     <li> <a HREF="../man_html/protate.1.html"><b>Protate</b></a>
1800     rotates a picture 90 degrees clockwise.
1801     <li> <a HREF="../man_html/pflip.1.html"><b>Pflip</b></a>
1802     flips a picture horizontally, vertically, or both
1803     (180 degree rotation).
1804     <li> <a HREF="../man_html/pvalue.1.html"><b>Pvalue</b></a>
1805     converts a picture to and from simpler formats.
1806     </ul>
1807    
1808     <p>
1809     Pictures may be displayed directly under X11 using the program
1810     <a HREF="../man_html/ximage.1.html">ximage</a>,
1811     or converted a standard image format using one of the following
1812     <b>translators</b>:
1813     <ul>
1814 greg 1.19 <li> <a HREF="../man_html/ra_bmp.1.html"><b>Ra_bmp</b>
1815     converts to and from BMP image format.
1816 greg 1.1 <li> <a HREF="../man_html/ra_ppm.1.html"><b>Ra_ppm</b></a>
1817     converts to and from Poskanzer Portable Pixmap formats.
1818     <li> <a HREF="../man_html/ra_ps.1.html"><b>Ra_ps</b></a>
1819     converts to PostScript color and greyscale formats.
1820     <li> <a HREF="../man_html/ra_rgbe.1.html"><b>Ra_rgbe</b></a>
1821     converts to and from Radiance uncompressed picture format.
1822     <li> <a HREF="../man_html/ra_t16.1.html"><b>Ra_t16</b></a>
1823     converts to and from Targa 16 and 24-bit image formats.
1824     <li> <a HREF="../man_html/ra_t8.1.html"><b>Ra_t8</b></a>
1825     converts to and from Targa 8-bit image format.
1826     <li> <a HREF="../man_html/ra_tiff.1.html"><b>Ra_tiff</b></a>
1827     converts to and from TIFF.
1828     <li> <a HREF="../man_html/ra_xyze.1.html"><b>Ra_xyze</b></a>
1829     converts to and from Radiance CIE picture format.
1830     </ul>
1831    
1832     <p>
1833    
1834     <hr>
1835    
1836     <h2>
1837     <a NAME="License">4. License</a>
1838     </h2>
1839    
1840     <pre>
1841     The Radiance Software License, Version 1.0
1842    
1843 greg 1.19 Copyright (c) 1990 - 2014 The Regents of the University of California,
1844 greg 1.1 through Lawrence Berkeley National Laboratory. All rights reserved.
1845    
1846     Redistribution and use in source and binary forms, with or without
1847     modification, are permitted provided that the following conditions
1848     are met:
1849    
1850     1. Redistributions of source code must retain the above copyright
1851     notice, this list of conditions and the following disclaimer.
1852    
1853     2. Redistributions in binary form must reproduce the above copyright
1854     notice, this list of conditions and the following disclaimer in
1855     the documentation and/or other materials provided with the
1856     distribution.
1857    
1858     3. The end-user documentation included with the redistribution,
1859     if any, must include the following acknowledgment:
1860     &quot;This product includes Radiance software
1861     (<a HREF="http://radsite.lbl.gov/">http://radsite.lbl.gov/</a>)
1862     developed by the Lawrence Berkeley National Laboratory
1863     (<a HREF="http://www.lbl.gov/">http://www.lbl.gov/</a>).&quot;
1864     Alternately, this acknowledgment may appear in the software itself,
1865     if and wherever such third-party acknowledgments normally appear.
1866    
1867     4. The names &quot;Radiance,&quot; &quot;Lawrence Berkeley National Laboratory&quot;
1868     and &quot;The Regents of the University of California&quot; must
1869     not be used to endorse or promote products derived from this
1870     software without prior written permission. For written
1871     permission, please contact [email protected].
1872    
1873     5. Products derived from this software may not be called &quot;Radiance&quot;,
1874     nor may &quot;Radiance&quot; appear in their name, without prior written
1875     permission of Lawrence Berkeley National Laboratory.
1876    
1877 greg 1.15 THIS SOFTWARE IS PROVIDED ``AS IS&quot; AND ANY EXPRESSED OR IMPLIED
1878 greg 1.1 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
1879     OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
1880     DISCLAIMED. IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR
1881     ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
1882     SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
1883     LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
1884     USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
1885     ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
1886     OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
1887     OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
1888     SUCH DAMAGE.
1889     </pre>
1890    
1891     <hr>
1892    
1893     <h2>
1894     <a NAME="Ack">5. Acknowledgements</a>
1895     </h2>
1896    
1897     This work was supported by the Assistant Secretary of Conservation and Renewable Energy,
1898     Office of Building Energy Research and Development,
1899     Buildings Equipment Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
1900    
1901     <p>
1902     Additional work was sponsored by the Swiss federal government
1903     under the Swiss LUMEN Project and was carried out in the
1904     Laboratoire d'Energie Solaire (LESO Group) at the
1905     Ecole Polytechnique Federale de Lausanne (EPFL University) in Lausanne, Switzerland.
1906    
1907     <p>
1908    
1909     <hr>
1910    
1911     <h2>
1912     <a NAME="Ref">6.</a> References
1913     </h2>
1914     <p>
1915     <ul>
1916 greg 1.19 <li>McNeil, A., C.J. Jonsson, D. Appelfeld, G. Ward, E.S. Lee,
1917     &quot;<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">
1918     A validation of a ray-tracing tool used to generate
1919     bi-directional scattering distribution functions for
1920     complex fenestration systems</a>,&quot;
1921     <em>Solar Energy</em>, 98, 404-14,
1922     November 2013.
1923 greg 1.15 <li>Ward, G., R. Mistrick, E.S. Lee, A. McNeil, J. Jonsson,
1924 greg 1.17 &quot;<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">Simulating
1925     the Daylight Performance of Complex Fenestration Systems
1926     Using Bidirectional Scattering Distribution Functions within
1927     Radiance</a>,&quot;
1928 greg 1.18 <em>Leukos</em>, 7(4)
1929 greg 1.15 April 2011.
1930 greg 1.7 <li>Cater, Kirsten, Alan Chalmers, Greg Ward,
1931 greg 1.9 &quot;<a href="http://www.anyhere.com/gward/papers/egsr2003.pdf">Detail to Attention:
1932 greg 1.7 Exploiting Visual Tasks for Selective Rendering</a>,&quot;
1933     <em>Eurographics Symposium
1934     on Rendering 2003</em>, June 2003.
1935 greg 1.1 <li>Ward, Greg, Elena Eydelberg-Vileshin,
1936 greg 1.15 &quot;<a HREF="http://www.anyhere.com/gward/papers/egwr02/index.html">Picture Perfect RGB
1937     Rendering Using Spectral Prefiltering and Sharp Color Primaries</a>,&quot;
1938 greg 1.1 Thirteenth Eurographics Workshop on Rendering (2002),
1939     P. Debevec and S. Gibson (Editors), June 2002.
1940     <li>Ward, Gregory,
1941 greg 1.15 &quot;<a HREF="http://www.anyhere.com/gward/papers/cic01.pdf">High Dynamic Range Imaging</a>,&quot;
1942 greg 1.1 Proceedings of the Ninth Color Imaging Conference, November 2001.
1943     <li>Ward, Gregory and Maryann Simmons,
1944 greg 1.15 &quot;<a HREF="http://www.anyhere.com/gward/papers/tog99.pdf">
1945 greg 1.1 The Holodeck Ray Cache: An Interactive Rendering System for Global Illumination in Nondiffuse
1946 greg 1.15 Environments</a>,&quot; ACM Transactions on Graphics, 18(4):361-98, October 1999.
1947     <li>Larson, G.W., &quot;<a HREF="http://www.anyhere.com/gward/papers/ewp98.pdf">The Holodeck: A Parallel
1948     Ray-caching Rendering System</a>,&quot; Proceedings of the Second
1949 greg 1.1 Eurographics Workshop on Parallel Graphics and Visualisation,
1950     September 1998.
1951     <li>Larson, G.W. and R.A. Shakespeare,
1952 greg 1.2 <a HREF="http://radsite.lbl.gov/radiance/book/index.html"><em>Rendering with Radiance:
1953 greg 1.1 the Art and Science of Lighting Visualization</em></a>,
1954     Morgan Kaufmann Publishers, 1998.
1955     <li>Larson, G.W., H. Rushmeier, C. Piatko,
1956 greg 1.15 &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/lbnl39882/tonemap.pdf">A Visibility
1957 greg 1.1 Matching Tone Reproduction Operator for
1958 greg 1.15 High Dynamic Range Scenes</a>,&quot; LBNL Technical Report 39882,
1959 greg 1.1 January 1997.
1960 greg 1.15 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw95.1/paper.html">Making
1961     Global Illumination User-Friendly</a>,&quot; Sixth
1962 greg 1.1 Eurographics Workshop on Rendering, Springer-Verlag,
1963     Dublin, Ireland, June 1995.</li>
1964     <li>Rushmeier, H., G. Ward, C. Piatko, P. Sanders, B. Rust,
1965 greg 1.15 &quot;<a HREF="http://radsite.lbl.gov/mgf/compare.html">
1966 greg 1.1 Comparing Real and Synthetic Images: Some Ideas about
1967 greg 1.15 Metrics</a>,&quot; Sixth Eurographics Workshop on Rendering,
1968 greg 1.1 Springer-Verlag, Dublin, Ireland, June 1995.</li>
1969 greg 1.15 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.1/paper.html">The RADIANCE
1970     Lighting Simulation and Rendering System</a>,&quot; <em>Computer
1971 greg 1.1 Graphics</em>, July 1994.</li>
1972 greg 1.15 <li>Rushmeier, H., G. Ward, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.2/energy.html">Energy
1973     Preserving Non-Linear Filters</a>,&quot; <em>Computer
1974 greg 1.1 Graphics</em>, July 1994.</li>
1975 greg 1.15 <li>Ward, G., &quot;A Contrast-Based Scalefactor for Luminance
1976     Display,&quot; <em>Graphics Gems IV</em>, Edited by Paul Heckbert,
1977 greg 1.1 Academic Press 1994.</li>
1978 greg 1.15 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg92/paper.html">Measuring and
1979     Modeling Anisotropic Reflection</a>,&quot; <em>Computer
1980 greg 1.1 Graphics</em>, Vol. 26, No. 2, July 1992. </li>
1981 greg 1.15 <li>Ward, G., P. Heckbert, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw92/paper.html">Irradiance
1982     Gradients</a>,&quot; Third Annual Eurographics Workshop on
1983 greg 1.1 Rendering, Springer-Verlag, May 1992. </li>
1984 greg 1.15 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw91/erw91.html">Adaptive Shadow
1985     Testing for Ray Tracing</a>&quot; Photorealistic Rendering in
1986 greg 1.1 Computer Graphics, proceedings of 1991 Eurographics
1987     Rendering Workshop, edited by P. Brunet and F.W. Jansen,
1988     Springer-Verlag. </li>
1989 greg 1.15 <li>Ward, G., &quot;Visualization,&quot; <em>Lighting Design and
1990 greg 1.1 Application</em>, Vol. 20, No. 6, June 1990. </li>
1991 greg 1.15 <li>Ward, G., F. Rubinstein, R. Clear, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg88/paper.html">A Ray Tracing Solution for
1992     Diffuse Interreflection</a>,&quot; <em>Computer Graphics</em>,
1993 greg 1.1 Vol. 22, No. 4, August 1988. </li>
1994 greg 1.15 <li>Ward, G., F. Rubinstein, &quot;A New Technique for Computer
1995     Simulation of Illuminated Spaces,&quot; <em>Journal of the
1996 greg 1.1 Illuminating Engineering Society</em>, Vol. 17, No. 1,
1997     Winter 1988. </li>
1998     </ul>
1999     <p>
2000     See the <a HREF="index.html">RADIANCE Reference Materials</a> page
2001     for additional information.
2002     <hr>
2003    
2004     <a NAME="Index"><h2>7. Types Index</h2></a>
2005    
2006     <pre>
2007     <h4>
2008     SURFACES MATERIALS TEXTURES PATTERNS MIXTURES</h4>
2009     <a HREF="#Source">Source</a> <a HREF="#Light">Light</a> <a HREF="#Texfunc">Texfunc</a> <a HREF="#Colorfunc">Colorfunc</a> <a HREF="#Mixfunc">Mixfunc</a>
2010     <a HREF="#Sphere">Sphere</a> <a HREF="#Illum">Illum</a> <a HREF="#Texdata">Texdata</a> <a HREF="#Brightfunc">Brightfunc</a> <a HREF="#Mixdata">Mixdata</a>
2011     <a HREF="#Bubble">Bubble</a> <a HREF="#Glow">Glow</a> <a HREF="#Colordata">Colordata</a> <a HREF="#Mixtext">Mixtext</a>
2012     <a HREF="#Polygon">Polygon</a> <a HREF="#Spotlight">Spotlight</a> <a HREF="#Brightdata">Brightdata</a>
2013     <a HREF="#Cone">Cone</a> <a HREF="#Mirror">Mirror</a> <a HREF="#Colorpict">Colorpict</a>
2014     <a HREF="#Cup">Cup</a> <a HREF="#Prism1">Prism1</a> <a HREF="#Colortext">Colortext</a>
2015     <a HREF="#Cylinder">Cylinder</a> <a HREF="#Prism2">Prism2</a> <a HREF="#Brighttext">Brighttext</a>
2016     <a HREF="#Tube">Tube</a> <a HREF="#Plastic">Plastic</a>
2017     <a HREF="#Ring">Ring</a> <a HREF="#Metal">Metal</a>
2018     <a HREF="#Instance">Instance</a> <a HREF="#Trans">Trans</a>
2019     <a HREF="#Mesh">Mesh</a> <a HREF="#Plastic2">Plastic2</a>
2020     <a HREF="#Metal2">Metal2</a>
2021     <a HREF="#Trans2">Trans2</a>
2022     <a HREF="#Mist">Mist</a>
2023     <a HREF="#Dielectric">Dielectric</a>
2024     <a HREF="#Interface">Interface</a>
2025     <a HREF="#Glass">Glass</a>
2026     <a HREF="#Plasfunc">Plasfunc</a>
2027     <a HREF="#Metfunc">Metfunc</a>
2028     <a HREF="#Transfunc">Transfunc</a>
2029     <a HREF="#BRTDfunc">BRTDfunc</a>
2030     <a HREF="#Plasdata">Plasdata</a>
2031     <a HREF="#Metdata">Metdata</a>
2032     <a HREF="#Transdata">Transdata</a>
2033 greg 1.10 <a HREF="#BSDF">BSDF</a>
2034 greg 1.1 <a HREF="#Antimatter">Antimatter</a>
2035    
2036     </pre>
2037    
2038     <p>
2039    
2040    
2041     <hr>
2042     <center>Last Update: October 22, 1997</center>
2043     </body>
2044     </html>
2045