ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/ray.html
Revision: 1.21
Committed: Fri Sep 25 23:01:12 2015 UTC (8 years, 7 months ago) by greg
Content type: text/html
Branch: MAIN
Changes since 1.20: +3 -3 lines
Log Message:
Starting now on 5.1 alpha

File Contents

# User Rev Content
1 greg 1.1 <html>
2 greg 1.21 <!-- RCSid $Id: ray.html,v 1.20 2015/09/18 18:29:00 greg Exp $ -->
3 greg 1.1 <head>
4     <title>
5 greg 1.21 The RADIANCE 5.1 Synthetic Imaging System
6 greg 1.1 </title>
7     </head>
8     <body>
9    
10     <p>
11    
12     <h1>
13 greg 1.21 The RADIANCE 5.1 Synthetic Imaging System
14 greg 1.1 </h1>
15    
16     <p>
17    
18 greg 1.4 Building Technologies Program<br>
19 greg 1.1 Lawrence Berkeley National Laboratory<br>
20     1 Cyclotron Rd., 90-3111<br>
21     Berkeley, CA 94720<br>
22     <a HREF="http://radsite.lbl.gov/radiance"</a>
23     http://radsite.lbl.gov/radiance<br>
24    
25     <p>
26     <hr>
27    
28     <h2>
29     <a NAME="Overview">Overview</a>
30     </h2>
31     <ol>
32     <li><a HREF="#Intro">Introduction</a><!P>
33     <li><a HREF="#Scene">Scene Description</a><!P>
34     <ol>
35     <li><a HREF="#Primitive"> Primitive Types</a>
36     <ol>
37     <li><a HREF="#Surfaces">Surfaces</a>
38     <li><a HREF="#Materials">Materials</a>
39     <li><a HREF="#Textures">Textures</a>
40     <li><a HREF="#Patterns">Patterns</a>
41     <li><a HREF="#Mixtures">Mixtures</a>
42     </ol><!P>
43     <li><a HREF="#Auxiliary">Auxiliary Files</a>
44     <ol>
45     <li><a HREF="#Function">Function Files</a>
46     <li><a HREF="#Data">Data Files</a>
47     <li><a HREF="#Font">Font Files</a>
48     </ol><!P>
49     <li><a HREF="#Generators">Generators</a>
50     </ol><!P>
51     <li><a HREF="#Image">Image Generation</a><!P>
52     <li><a HREF="#License">License</a><!P>
53     <li><a HREF="#Ack">Acknowledgements</a><!P>
54     <li><a HREF="#Ref">References</a><!P>
55     <li><a HREF="#Index">Types Index</a><!P>
56     </ol>
57    
58     <p>
59     <hr>
60    
61     <h2>
62     <a NAME="Intro">1. Introduction</a>
63     </h2>
64    
65     RADIANCE was developed as a research tool for predicting
66     the distribution of visible radiation in illuminated spaces.
67     It takes as input a three-dimensional geometric model
68     of the physical environment, and produces a map of
69     spectral radiance values in a color image.
70     The technique of ray-tracing follows light backwards
71     from the image plane to the source(s).
72     Because it can produce realistic images from a
73     simple description, RADIANCE has a wide range of applications
74     in graphic arts, lighting design,
75     computer-aided engineering and architecture.
76    
77     <p>
78     <img SRC="diagram1.gif">
79     <p>
80     Figure 1
81     <p>
82     The diagram in Figure 1 shows the flow between programs (boxes) and data
83     (ovals).
84     The central program is <i>rpict</i>, which produces a picture from a scene
85     description.
86     <i>Rview</i> is a variation of rpict that computes and displays images
87     interactively, and rtrace computes single ray values.
88     Other programs (not shown) connect many of these elements together,
89     such as the executive programs
90     <i>rad</i>
91     and
92     <i>ranimate</i>,
93     the interactive rendering program
94     <i>rholo</i>,
95     and the animation program
96     <i>ranimove</i>.
97     The program
98     <i>obj2mesh</i>
99     acts as both a converter and scene compiler, converting a Wavefront .OBJ
100     file into a compiled mesh octree for efficient rendering.
101    
102     <p>
103     A scene description file lists the surfaces and materials
104     that make up a specific environment.
105     The current surface types are spheres, polygons, cones, and cylinders.
106     There is also a composite surface type, called mesh, and a pseudosurface
107     type, called instance, which facilitates very complex geometries.
108     Surfaces can be made from materials such as plastic, metal, and glass.
109     Light sources can be distant disks as well as local spheres, disks
110     and polygons.
111    
112     <p>
113     From a three-dimensional scene description and a specified view,
114     <i>rpict</i> produces a two-dimensional image.
115     A picture file is a compressed binary representation of the
116     pixels in the image.
117     This picture can be scaled in size and brightness,
118     anti-aliased, and sent to a graphics output device.
119    
120     <p>
121     A header in each picture file lists the program(s)
122     and parameters that produced it.
123     This is useful for identifying a picture without having to display it.
124     The information can be read by the program <i>getinfo</i>.
125    
126     <p>
127     <hr>
128    
129     <h2>
130     <a name="Scene">2. Scene Description</a>
131     </h2>
132    
133     A scene description file represents a three-dimensional physical environment in Cartesian (rectilinear) world coordinates.
134     It is stored as ASCII text, with the following basic format:
135    
136     <pre>
137     # comment
138    
139     modifier type identifier
140     n S1 S2 &quot;S 3&quot; .. Sn
141     0
142     m R1 R2 R3 .. Rm
143    
144     modifier alias identifier reference
145    
146     ! command
147    
148     ...
149     </pre>
150    
151     A comment line begins with a pound sign, `#'.
152    
153     <p>
154     The <a NAME="scene_desc">scene description primitives</a>
155     all have the same general format, and can be either surfaces or modifiers.
156     A primitive has a modifier, a type, and an identifier.
157     <p>
158     A <a NAME="modifier"><b>modifier</b></a> is either the
159     identifier of a previously defined primitive, or &quot;void&quot;.
160     <br>
161     [ The most recent definition of a modifier is the
162     one used, and later definitions do not cause relinking
163     of loaded primitives.
164     Thus, the same identifier may be used repeatedly,
165     and each new definition will apply to the primitives following it. ]
166     <p>
167     An <a NAME="identifier"><b>identifier</b></a> can be any string
168     (i.e., any sequence of non-white characters).
169     <p>
170     The arguments associated with a primitive can be strings or real numbers.
171     <ul>
172     <li> The first integer following the identifier is the number of <b>string arguments</b>,
173     and it is followed by the arguments themselves (separated by white space or enclosed in quotes).
174     <li> The next integer is the number of integer arguments, and is followed by the <b>integer arguments</b>.
175     (There are currently no primitives that use them, however.)
176     <li> The next integer is the real argument count, and it is followed by the <b>real arguments</b>.
177     </ul>
178    
179     <p>
180     An <a NAME="alias"><b>alias</b></a> gets its type and arguments from
181     a previously defined primitive.
182     This is useful when the same material is
183     used with a different modifier, or as a convenient naming mechanism.
184     The reserved modifier name &quot;inherit&quot; may be used to specificy that
185     an alias will inherit its modifier from the original.
186     Surfaces cannot be aliased.
187    
188     <p>
189     A line beginning with an exclamation point, `!',
190     is interpreted as a command.
191     It is executed by the shell, and its output is read as input to the program.
192     The command must not try to read from its standard input, or confusion
193     will result.
194     A command may be continued over multiple lines using a
195     backslash, `\', to escape the newline.
196    
197     <p>
198     White space is generally ignored, except as a separator.
199     The exception is the newline character after a command or comment.
200     Commands, comments and primitives may appear in any
201     combination, so long as they are not intermingled.
202    
203     <p>
204     <hr>
205    
206     <h3>
207     <a NAME="Primitive">2.1. Primitive Types</a>
208     </h3>
209    
210     Primitives can be <a HREF="#Surfaces">surfaces</a>,
211     <a HREF="#Materials">materials</a>,
212     <a HREF="#Textures">textures</a> or
213     <a HREF="#Patterns">patterns</a>.
214     Modifiers can be <a HREF="#Materials">materials</a>,
215     <a HREF="#Mixtures">mixtures</a>,
216     <a HREF="#Textures">textures</a> or <a HREF="#Patterns">patterns</a>.
217     Simple surfaces must have one material in their modifier list.
218    
219     <p>
220     <hr>
221    
222     <h4>
223     <a NAME="Surfaces">2.1.1. Surfaces</a>
224     </h4>
225     <dl>
226    
227     A scene description will consist mostly of surfaces.
228     The basic types are given below.
229    
230     <p>
231    
232     <dt>
233     <a NAME="Source">
234     <b>Source </b>
235     </a>
236     <dd>
237     A source is not really a surface, but a solid angle.
238     It is used for specifying light sources that are very distant.
239     The direction to the center of the source and the number of degrees subtended by its disk are given as follows:
240    
241     <pre>
242     mod source id
243     0
244     0
245     4 xdir ydir zdir angle
246     </pre>
247    
248     <p>
249    
250     <dt>
251     <a NAME="Sphere">
252     <b>Sphere</b>
253     </a>
254     <dd>
255     A sphere is given by its center and radius:
256    
257     <pre>
258     mod sphere id
259     0
260     0
261     4 xcent ycent zcent radius
262     </pre>
263    
264     <p>
265    
266     <dt>
267     <a NAME="Bubble">
268     <b>Bubble</b>
269     </a>
270    
271     <dd>
272     A bubble is simply a sphere whose surface normal points inward.
273    
274     <p>
275    
276     <dt>
277     <a NAME="Polygon">
278     <b>Polygon</b>
279     </a>
280     <dd>
281     A polygon is given by a list of three-dimensional vertices,
282     which are ordered counter-clockwise as viewed from the
283     front side (into the surface normal).
284     The last vertex is automatically connected to the first.
285     Holes are represented in polygons as interior vertices
286     connected to the outer perimeter by coincident edges (seams).
287    
288     <pre>
289     mod polygon id
290     0
291     0
292     3n
293     x1 y1 z1
294     x2 y2 z2
295     ...
296     xn yn zn
297     </pre>
298    
299     <p>
300    
301     <dt>
302     <a NAME="Cone">
303     <b>Cone</b>
304     </a>
305     <dd>
306     A cone is a megaphone-shaped object.
307     It is truncated by two planes perpendicular to its axis,
308     and one of its ends may come to a point.
309     It is given as two axis endpoints, and the starting and ending radii:
310    
311     <pre>
312     mod cone id
313     0
314     0
315     8
316     x0 y0 z0
317     x1 y1 z1
318     r0 r1
319     </pre>
320    
321     <p>
322    
323     <dt>
324     <a NAME="Cup">
325     <b>Cup</b>
326     </a>
327     <dd>
328     A cup is an inverted <a HREF="#Cone">cone</a> (i.e., has an
329     inward surface normal).
330    
331     <p>
332    
333     <dt>
334     <a NAME="Cylinder">
335     <b>Cylinder</b>
336     </a>
337     <dd>
338     A cylinder is like a <a HREF="#Cone">cone</a>, but its
339     starting and ending radii are equal.
340    
341     <pre>
342     mod cylinder id
343     0
344     0
345     7
346     x0 y0 z0
347     x1 y1 z1
348     rad
349     </pre>
350    
351     <p>
352    
353     <dt>
354     <a NAME="Tube">
355     <b>Tube</b>
356     </a>
357     <dd>
358     A tube is an inverted <a HREF="#Cylinder">cylinder</a>.
359    
360     <p>
361    
362     <dt>
363     <a NAME="Ring">
364     <b>Ring</b>
365     </a>
366     <dd>
367     A ring is a circular disk given by its center,
368     surface normal, and inner and outer radii:
369    
370     <pre>
371     mod ring id
372     0
373     0
374     8
375     xcent ycent zcent
376     xdir ydir zdir
377     r0 r1
378     </pre>
379    
380     <p>
381    
382     <dt>
383     <a NAME="Instance">
384     <b>Instance</b>
385     </a>
386     <dd>
387     An instance is a compound surface, given
388     by the contents of an octree file (created by oconv).
389    
390     <pre>
391     mod instance id
392     1+ octree transform
393     0
394     0
395     </pre>
396    
397     If the modifier is &quot;void&quot;, then surfaces will
398     use the modifiers given in the original description.
399     Otherwise, the modifier specified is used in their place.
400     The transform moves the octree to the desired location in the scene.
401     Multiple instances using the same octree take
402     little extra memory, hence very complex
403     descriptions can be rendered using this primitive.
404    
405     <p>
406     There are a number of important limitations to be aware of
407     when using instances.
408     First, the scene description used to generate the octree must
409     stand on its own, without referring to modifiers in the
410     parent description.
411     This is necessary for oconv to create the octree.
412     Second, light sources in the octree will not be
413     incorporated correctly in the calculation,
414     and they are not recommended.
415     Finally, there is no advantage (other than
416     convenience) to using a single instance of an octree,
417     or an octree containing only a few surfaces.
418     An <a HREF="../man_html/xform.1.html">xform</a> command
419     on the subordinate description is prefered in such cases.
420     </dl>
421    
422     <p>
423    
424     <dt>
425     <a NAME="Mesh">
426     <b>Mesh</b>
427     </a>
428     <dd>
429     A mesh is a compound surface, made up of many triangles and
430     an octree data structure to accelerate ray intersection.
431     It is typically converted from a Wavefront .OBJ file using the
432     <i>obj2mesh</i> program.
433    
434     <pre>
435     mod mesh id
436     1+ meshfile transform
437     0
438     0
439     </pre>
440    
441     If the modifier is &quot;void&quot;, then surfaces will
442     use the modifiers given in the original mesh description.
443     Otherwise, the modifier specified is used in their place.
444     The transform moves the mesh to the desired location in the scene.
445     Multiple instances using the same meshfile take little extra memory,
446     and the compiled mesh itself takes much less space than individual
447     polygons would.
448     In the case of an unsmoothed mesh, using the mesh primitive reduces
449     memory requirements by a factor of 30 relative to individual triangles.
450     If a mesh has smoothed surfaces, we save a factor of 50 or more,
451     permitting very detailed geometries that would otherwise exhaust the
452     available memory.
453     In addition, the mesh primitive can have associated (u,v) coordinates
454     for pattern and texture mapping.
455     These are made available to function files via the Lu and Lv variables.
456    
457     </dl>
458    
459     <p>
460     <hr>
461    
462     <h4>
463     <a NAME="Materials">2.1.2. Materials</a>
464     </h4>
465    
466     A material defines the way light interacts with a surface. The basic types are given below.
467    
468     <p>
469    
470     <dl>
471    
472     <dt>
473     <a NAME="Light">
474     <b>Light</b>
475     </a>
476     <dd>
477     Light is the basic material for self-luminous surfaces (i.e.,
478     light sources).
479     In addition to the <a HREF="#Source">source</a> surface type,
480     <a HREF="#Sphere">spheres</a>,
481     discs (<a HREF="#Ring">rings</a> with zero inner radius),
482     <a HREF="#Cylinder">cylinders</a> (provided they are long enough), and <a HREF="#Polygon">polygons</a> can act as light sources.
483     Polygons work best when they are rectangular.
484     Cones cannot be used at this time.
485     A pattern may be used to specify a light output distribution.
486     Light is defined simply as a RGB radiance value (watts/steradian/m2):
487    
488     <pre>
489     mod light id
490     0
491     0
492     3 red green blue
493     </pre>
494    
495     <p>
496    
497     <dt>
498     <a NAME="Illum">
499     <b>Illum</b>
500     </a>
501    
502     <dd>
503     Illum is used for secondary light sources with broad distributions.
504     A secondary light source is treated like any other light source, except when viewed directly.
505     It then acts like it is made of a different material (indicated by
506     the string argument), or becomes invisible (if no string argument is given,
507     or the argument is &quot;void&quot;).
508     Secondary sources are useful when modeling windows or brightly illuminated surfaces.
509    
510     <pre>
511     mod illum id
512     1 material
513     0
514     3 red green blue
515     </pre>
516    
517     <p>
518    
519     <dt>
520     <a NAME="Glow">
521     <b>Glow</b>
522     </a>
523    
524     <dd>
525     Glow is used for surfaces that are self-luminous, but limited in their effect.
526     In addition to the radiance value, a maximum radius for shadow testing is given:
527    
528     <pre>
529     mod glow id
530     0
531     0
532     4 red green blue maxrad
533     </pre>
534    
535     If maxrad is zero, then the surface will never be tested for shadow, although it may participate in an interreflection calculation.
536     If maxrad is negative, then the surface will never contribute to scene illumination.
537     Glow sources will never illuminate objects on the other side of an illum surface.
538     This provides a convenient way to illuminate local light fixture geometry without overlighting nearby objects.
539    
540     <p>
541    
542     <dt>
543     <a NAME="Spotlight">
544     <b>Spotlight</b>
545     </a>
546    
547     <dd>
548     Spotlight is used for self-luminous surfaces having directed output.
549     As well as radiance, the full cone angle (in degrees) and orientation (output direction) vector are given.
550     The length of the orientation vector is the distance of the effective
551     focus behind the source center (i.e., the focal length).
552    
553     <pre>
554     mod spotlight id
555     0
556     0
557     7 red green blue angle xdir ydir zdir
558     </pre>
559    
560     <p>
561    
562     <dt>
563     <a NAME="Mirror">
564     <b>Mirror</b>
565     </a>
566    
567     <dd>
568 greg 1.6 Mirror is used for planar surfaces that produce virtual source reflections.
569 greg 1.1 This material should be used sparingly, as it may cause the light source calculation to blow up if it is applied to many small surfaces.
570     This material is only supported for flat surfaces such as <a HREF="#Polygon">polygons</a> and <a HREF="#Ring">rings</a>.
571     The arguments are simply the RGB reflectance values, which should be between 0 and 1.
572     An optional string argument may be used like the illum type to specify a different material to be used for shading non-source rays.
573     If this alternate material is given as &quot;void&quot;, then the mirror surface will be invisible.
574     This is only appropriate if the surface hides other (more detailed) geometry with the same overall reflectance.
575    
576     <pre>
577     mod mirror id
578     1 material
579     0
580     3 red green blue
581     </pre>
582    
583     <p>
584    
585     <dt>
586     <a NAME="Prism1">
587     <b>Prism1</b>
588     </a>
589    
590     <dd>
591 greg 1.6 The prism1 material is for general light redirection from prismatic glazings, generating virtual light sources.
592 greg 1.1 It can only be used to modify a planar surface
593     (i.e., a <a HREF="#Polygon">polygon</a> or <a HREF="#Ring">disk</a>)
594     and should not result in either light concentration or scattering.
595     The new direction of the ray can be on either side of the material,
596 greg 1.6 and the definitions must have the correct bidirectional properties to work properly with virtual light sources.
597 greg 1.1 The arguments give the coefficient for the redirected light and its direction.
598    
599     <pre>
600     mod prism1 id
601     5+ coef dx dy dz funcfile transform
602     0
603     n A1 A2 .. An
604     </pre>
605    
606     The new direction variables dx, dy and dz need not produce a normalized vector.
607     For convenience, the variables DxA, DyA and DzA are defined as the normalized direction to the target light source.
608     See <a HREF="#Function">section 2.2.1</a> on function files for further information.
609    
610     <p>
611    
612     <dt>
613     <a NAME="Prism2">
614     <b>Prism2</b>
615     </a>
616    
617     <dd>
618     The material prism2 is identical to <a HREF="#Prism1">prism1</a> except that it provides for two ray redirections rather than one.
619    
620     <pre>
621     mod prism2 id
622     9+ coef1 dx1 dy1 dz1 coef2 dx2 dy2 dz2 funcfile transform
623     0
624     n A1 A2 .. An
625     </pre>
626    
627     <p>
628    
629     <dt>
630     <a NAME="Mist">
631     <b>Mist</b>
632     </a>
633    
634     <dd>
635     Mist is a virtual material used to delineate a volume
636     of participating atmosphere.
637     A list of important light sources may be given, along with an
638     extinction coefficient, scattering albedo and scattering eccentricity
639     parameter.
640     The light sources named by the string argument list
641     will be tested for scattering within the volume.
642     Sources are identified by name, and virtual light sources may be indicated
643     by giving the relaying object followed by '&gt;' followed by the source, i.e:
644    
645     <pre>
646     3 source1 mirror1&gt;source10 mirror2&gt;mirror1&gt;source3
647     </pre>
648    
649     Normally, only one source is given per mist material, and there is an
650     upper limit of 32 to the total number of active scattering sources.
651     The extinction coefficient, if given, is added the the global
652     coefficient set on the command line.
653     Extinction is in units of 1/distance (distance based on the world coordinates),
654     and indicates the proportional loss of radiance over one unit distance.
655     The scattering albedo, if present, will override the global setting within
656     the volume.
657     An albedo of 0 0 0 means a perfectly absorbing medium, and an albedo of
658     1 1 1 means
659     a perfectly scattering medium (no absorption).
660     The scattering eccentricity parameter will likewise override the global
661     setting if it is present.
662     Scattering eccentricity indicates how much scattered light favors the
663 greg 1.8 forward direction, as fit by the Henyey-Greenstein function:
664 greg 1.1
665     <pre>
666     P(theta) = (1 - g*g) / (1 + g*g - 2*g*cos(theta))^1.5
667     </pre>
668    
669     A perfectly isotropic scattering medium has a g parameter of 0, and
670     a highly directional material has a g parameter close to 1.
671     Fits to the g parameter may be found along with typical extinction
672     coefficients and scattering albedos for various atmospheres and
673     cloud types in USGS meteorological tables.
674     (A pattern will be applied to the extinction values.)
675    
676     <pre>
677     mod mist id
678     N src1 src2 .. srcN
679     0
680     0|3|6|7 [ rext gext bext [ ralb galb balb [ g ] ] ]
681     </pre>
682    
683     There are two usual uses of the mist type.
684     One is to surround a beam from a spotlight or laser so that it is
685     visible during rendering.
686     For this application, it is important to use a <a HREF="#Cone">cone</a>
687     (or <a HREF="#Cylinder">cylinder</a>) that
688     is long enough and wide enough to contain the important visible portion.
689     Light source photometry and intervening objects will have the desired
690     effect, and crossing beams will result in additive scattering.
691     For this application, it is best to leave off the real arguments, and
692     use the global rendering parameters to control the atmosphere.
693     The second application is to model clouds or other localized media.
694     Complex boundary geometry may be used to give shape to a uniform medium,
695     so long as the boundary encloses a proper volume.
696     Alternatively, a pattern may be used to set the line integral value
697     through the cloud for a ray entering or exiting a point in a given
698     direction.
699     For this application, it is best if cloud volumes do not overlap each other,
700     and opaque objects contained within them may not be illuminated correctly
701     unless the line integrals consider enclosed geometry.
702    
703     <dt>
704     <a NAME="Plastic">
705     <b>Plastic</b>
706     </a>
707    
708     <dd>
709     Plastic is a material with uncolored highlights.
710     It is given by its RGB reflectance, its fraction of specularity, and its roughness value.
711     Roughness is specified as the rms slope of surface facets.
712     A value of 0 corresponds to a perfectly smooth surface, and a value of 1 would be a very rough surface.
713     Specularity fractions greater than 0.1 and roughness values greater than 0.2 are not very realistic.
714     (A pattern modifying plastic will affect the material color.)
715    
716     <pre>
717     mod plastic id
718     0
719     0
720     5 red green blue spec rough
721     </pre>
722    
723     <p>
724    
725     <dt>
726     <a NAME="Metal">
727     <b>Metal</b>
728     </a>
729    
730     <dd>
731     Metal is similar to <a HREF="#Plastic">plastic</a>, but specular highlights are modified by the material color.
732     Specularity of metals is usually .9 or greater.
733     As for plastic, roughness values above .2 are uncommon.
734    
735     <p>
736    
737     <dt>
738     <a NAME="Trans">
739     <b>Trans</b>
740     </a>
741    
742     <dd>
743     Trans is a translucent material, similar to <a HREF="#Plastic">plastic</a>.
744     The transmissivity is the fraction of penetrating light that travels all the way through the material.
745     The transmitted specular component is the fraction of transmitted light that is not diffusely scattered.
746     Transmitted and diffusely reflected light is modified by the material color.
747     Translucent objects are infinitely thin.
748    
749     <pre>
750     mod trans id
751     0
752     0
753     7 red green blue spec rough trans tspec
754     </pre>
755    
756     <p>
757    
758     <dt>
759     <a NAME="Plastic2">
760     <b>Plastic2</b>
761     </a>
762    
763     <dd>
764     Plastic2 is similar to <a HREF="#Plastic">plastic</a>, but with anisotropic roughness.
765     This means that highlights in the surface will appear elliptical rather than round.
766     The orientation of the anisotropy is determined by the unnormalized direction vector ux uy uz.
767     These three expressions (separated by white space) are evaluated in the context of the function file funcfile.
768     If no function file is required (i.e., no special variables or functions are required), a period (`.') may be given in its place.
769     (See the discussion of <a HREF="#Function">Function Files</a> in the Auxiliary Files section).
770     The urough value defines the roughness along the u vector given projected onto the surface.
771     The vrough value defines the roughness perpendicular to this vector.
772     Note that the highlight will be narrower in the direction of the smaller roughness value.
773     Roughness values of zero are not allowed for efficiency reasons since the behavior would be the same as regular plastic in that case.
774    
775     <pre>
776     mod plastic2 id
777     4+ ux uy uz funcfile transform
778     0
779     6 red green blue spec urough vrough
780     </pre>
781    
782     <p>
783    
784     <dt>
785     <a NAME="Metal2">
786     <b>Metal2</b>
787     </a>
788    
789     <dd>
790     Metal2 is the same as <a HREF="#Plastic2">plastic2</a>, except that the highlights are modified by the material color.
791    
792     <p>
793    
794     <dt>
795     <a NAME="Trans2">
796     <b>Trans2</b>
797     </a>
798    
799     <dd>
800     Trans2 is the anisotropic version of <a HREF="#Trans">trans</a>.
801     The string arguments are the same as for plastic2, and the real arguments are the same as for trans but with an additional roughness value.
802    
803     <pre>
804     mod trans2 id
805     4+ ux uy uz funcfile transform
806     0
807     8 red green blue spec urough vrough trans tspec
808     </pre>
809    
810     <p>
811    
812     <dt>
813     <a NAME="Dielectric">
814     <b>Dielectric</b>
815     </a>
816    
817     <dd>
818     A dielectric material is transparent, and it refracts light as well as reflecting it.
819     Its behavior is determined by the index of refraction and transmission coefficient in each wavelength band per unit length.
820     Common glass has a index of refraction (n) around 1.5, and a transmission coefficient of roughly 0.92 over an inch.
821     An additional number, the Hartmann constant, describes how the index of refraction changes as a function of wavelength.
822     It is usually zero. (A <a HREF="#Patterns">pattern</a> modifies only the refracted value.)
823    
824     <pre>
825     mod dielectric id
826     0
827     0
828     5 rtn gtn btn n hc
829     </pre>
830    
831     <p>
832    
833     <dt>
834     <a NAME="Interface">
835     <b>Interface</b>
836     </a>
837    
838     <dd>
839     An interface is a boundary between two dielectrics.
840     The first transmission coefficient and refractive index are for the inside; the second ones are for the outside.
841     Ordinary dielectrics are surrounded by a vacuum (1 1 1 1).
842    
843     <pre>
844     mod interface id
845     0
846     0
847     8 rtn1 gtn1 btn1 n1 rtn2 gtn2 btn2 n2
848     </pre>
849    
850     <p>
851    
852     <dt>
853     <a NAME="Glass">
854     <b>Glass</b>
855     </a>
856    
857     <dd>
858     Glass is similar to <a HREF="#Dielectric">dielectric</a>, but it is optimized for thin glass surfaces (n = 1.52).
859     One transmitted ray and one reflected ray is produced.
860     By using a single surface is in place of two, internal reflections are avoided.
861     The surface orientation is irrelevant, as it is for <a HREF="#Plastic">plastic</a>, <a HREF="#Metal">metal</a>, and <a HREF="#Trans">trans</a>.
862     The only specification required is the transmissivity at normal incidence.
863     (Transmissivity is the amount of light not absorbed in one traversal
864     of the material.
865     Transmittance -- the value usually measured -- is the total light
866     transmitted through the pane including multiple reflections.)
867     To compute transmissivity (tn) from transmittance (Tn) use:
868    
869     <pre>
870     tn = (sqrt(.8402528435+.0072522239*Tn*Tn)-.9166530661)/.0036261119/Tn
871     </pre>
872    
873     Standard 88% transmittance glass has a transmissivity of 0.96.
874     (A <a HREF="#Patterns">pattern</a> modifying glass will affect the transmissivity.)
875     If a fourth real argument is given, it is interpreted as the index of refraction to use instead of 1.52.
876    
877     <pre>
878     mod glass id
879     0
880     0
881     3 rtn gtn btn
882     </pre>
883    
884     <p>
885    
886     <dt>
887     <a NAME="Plasfunc">
888     <b>Plasfunc</b>
889     </a>
890    
891     <dd>
892     Plasfunc in used for the procedural definition of plastic-like materials
893     with arbitrary bidirectional reflectance distribution functions (BRDF's).
894     The arguments to this material include the color and specularity,
895     as well as the function defining the specular distribution and the auxiliary file where it may be found.
896    
897     <pre>
898     mod plasfunc id
899     2+ refl funcfile transform
900     0
901     4+ red green blue spec A5 ..
902     </pre>
903    
904     The function refl takes four arguments, the x, y and z
905     direction towards the incident light, and the solid angle
906     subtended by the source.
907     The solid angle is provided to facilitate averaging, and is usually
908     ignored.
909     The refl function should integrate to 1 over
910     the projected hemisphere to maintain energy balance.
911     At least four real arguments must be given, and these are made available along with any additional values to the reflectance function.
912     Currently, only the contribution from direct light sources is considered in the specular calculation.
913     As in most material types, the surface normal is always altered to face the incoming ray.
914    
915     <p>
916    
917     <dt>
918     <a NAME="Metfunc">
919     <b>Metfunc</b>
920     </a>
921    
922     <dd>
923     Metfunc is identical to <a HREF="#Plasfunc">plasfunc</a> and takes the same arguments,
924     but the specular component is multiplied also by the material color.
925    
926     <p>
927    
928     <dt>
929     <a NAME="Transfunc">
930     <b>Transfunc</b>
931     </a>
932    
933     <dd>
934     Transfunc is similar to <a HREF="#Plasfunc">plasfunc</a> but with an arbitrary bidirectional transmittance distribution
935     as well as a reflectance distribution.
936     Both reflectance and transmittance are specified with the same function.
937    
938     <pre>
939     mod transfunc id
940     2+ brtd funcfile transform
941     0
942     6+ red green blue rspec trans tspec A7 ..
943     </pre>
944    
945     Where trans is the total light transmitted and tspec is the non-Lambertian fraction of transmitted light.
946     The function brtd should integrate to 1 over each projected hemisphere.
947    
948     <p>
949    
950     <dt>
951     <a NAME="BRTDfunc">
952     <b>BRTDfunc</b>
953     </a>
954    
955     <dd>
956     The material BRTDfunc gives the maximum flexibility over surface reflectance and transmittance,
957     providing for spectrally-dependent specular rays and reflectance and transmittance distribution functions.
958    
959     <pre>
960     mod BRTDfunc id
961     10+ rrefl grefl brefl
962     rtrns gtrns btrns
963     rbrtd gbrtd bbrtd
964     funcfile transform
965     0
966     9+ rfdif gfdif bfdif
967     rbdif gbdif bbdif
968     rtdif gtdif btdif
969     A10 ..
970     </pre>
971    
972     The variables rrefl, grefl and brefl specify the color coefficients for the ideal specular (mirror) reflection of the surface.
973     The variables rtrns, gtrns and btrns specify the color coefficients for the ideal specular transmission.
974     The functions rbrtd, gbrtd and bbrtd take the direction to the incident light (and its solid angle) and
975     compute the color coefficients for the directional diffuse part of reflection and transmission.
976     As a special case, three identical values of '0' may be given in place of these function names to indicate no directional diffuse component.
977    
978     <p>
979     Unlike most other material types, the surface normal is not altered to face the incoming ray.
980     Thus, functions and variables must pay attention to the orientation of the surface and make adjustments appropriately.
981     However, the special variables for the perturbed dot product and surface normal, RdotP, NxP, NyP and NzP are reoriented
982     as if the ray hit the front surface for convenience.
983    
984     <p>
985     A diffuse reflection component may be given for the front side with rfdif, gfdif and bfdif for the front side of the surface
986     or rbdif, gbdif and bbdif for the back side.
987     The diffuse transmittance (must be the same for both sides by physical law) is given by rtdif, gtdif and btdif.
988     A pattern will modify these diffuse scattering values, and will be available through the special variables CrP, CgP and CbP.
989    
990     <p>
991     Care must be taken when using this material type to produce a physically valid reflection model.
992     The reflectance functions should be bidirectional, and under no circumstances should the sum of reflected diffuse,
993     transmitted diffuse, reflected specular, transmitted specular and the integrated directional diffuse component be greater than one.
994    
995     <p>
996    
997     <dt>
998     <a NAME="Plasdata">
999     <b>Plasdata</b>
1000     </a>
1001    
1002     <dd>
1003     Plasdata is used for arbitrary BRDF's that are most conveniently given as interpolated data.
1004     The arguments to this material are the <a HREF="#Data">data file</a> and coordinate index functions,
1005     as well as a function to optionally modify the data values.
1006    
1007     <pre>
1008     mod plasdata id
1009     3+n+
1010     func datafile
1011     funcfile x1 x2 .. xn transform
1012     0
1013     4+ red green blue spec A5 ..
1014     </pre>
1015    
1016     The coordinate indices (x1, x2, etc.) are themselves functions of the x, y and z direction to the incident light, plus the solid angle
1017     subtended by the light source (usually ignored).
1018     The data function (func) takes five variables, the
1019     interpolated value from the n-dimensional data file, followed by the
1020     x, y and z direction to the incident light and the solid angle of the source.
1021     The light source direction and size may of course be ignored by the function.
1022    
1023     <p>
1024    
1025     <dt>
1026     <a NAME="Metdata">
1027     <b>Metdata</b>
1028     </a>
1029    
1030     <dd>
1031     As metfunc is to plasfunc, metdata is to <a HREF="#Plasdata">plasdata</a>.
1032     Metdata takes the same arguments as plasdata, but the specular component is modified by the given material color.
1033    
1034     <p>
1035    
1036     <dt>
1037     <a NAME="Transdata">
1038     <b>Transdata</b>
1039     </a>
1040    
1041     <dd>
1042     Transdata is like <a HREF="#Plasdata">plasdata</a> but the specification includes transmittance as well as reflectance.
1043     The parameters are as follows.
1044    
1045     <pre>
1046     mod transdata id
1047     3+n+
1048     func datafile
1049     funcfile x1 x2 .. xn transform
1050     0
1051     6+ red green blue rspec trans tspec A7 ..
1052     </pre>
1053    
1054     <p>
1055    
1056     <dt>
1057 greg 1.10 <a NAME="BSDF">
1058     <b>BSDF</b>
1059     </a>
1060    
1061     <dd>
1062     The BSDF material type loads an XML (eXtensible Markup Language)
1063     file describing a bidirectional scattering distribution function.
1064     Real arguments to this material may define additional
1065     diffuse components that augment the BSDF data.
1066     String arguments are used to define thickness for proxied
1067 greg 1.11 surfaces and the &quot;up&quot; orientation for the material.
1068 greg 1.10
1069     <pre>
1070     mod BSDF id
1071     6+ thick BSDFfile ux uy uz funcfile transform
1072     0
1073     0|3|6|9
1074     rfdif gfdif bfdif
1075     rbdif gbdif bbdif
1076     rtdif gtdif btdif
1077     </pre>
1078    
1079     <p>
1080 greg 1.11 The first string argument is a &quot;thickness&quot; parameter that may be used
1081 greg 1.10 to hide detail geometry being proxied by an aggregate BSDF material.
1082     If a view or shadow ray hits a BSDF proxy with non-zero thickness,
1083     it will pass directly through as if the surface were not there.
1084     Similar to the illum type, this permits direct viewing and
1085     shadow testing of complex geometry.
1086     The BSDF is used when a scattered (indirect) ray hits the surface,
1087     and any transmitted sample rays will be offset by the thickness amount
1088     to avoid the hidden geometry and gather samples from the other side.
1089     In this manner, BSDF surfaces can improve the results for indirect
1090     scattering from complex systems without sacrificing appearance or
1091     shadow accuracy.
1092     If the BSDF has transmission and back-side reflection data,
1093     a parallel BSDF surface may be
1094     placed slightly less than the given thickness away from the front surface
1095     to enclose the complex geometry on both sides.
1096 greg 1.12 The sign of the thickness is important, as it indicates
1097 greg 1.14 whether the proxied geometry is behind the BSDF
1098 greg 1.12 surface (when thickness is positive) or in front (when
1099     thickness is negative).
1100     <p>
1101     The second string argument is the name of the BSDF file,
1102     which is found in the usual auxiliary locations. The
1103     following three string parameters name variables for an
1104     &quot;up&quot; vector, which together with the surface
1105     normal, define the local coordinate system that orients the
1106     BSDF. These variables, along with the thickness, are defined
1107     in a function file given as the next string argument. An
1108     optional transform is used to scale the thickness and
1109     reorient the up vector.
1110     <p>
1111     If no real arguments are given, the BSDF is used by itself
1112     to determine reflection and transmission. If there are at
1113     least 3 real arguments, the first triplet is an additional
1114     diffuse reflectance for the front side. At least 6 real
1115     arguments adds diffuse reflectance to the rear side of the
1116     surface. If there are 9 real arguments, the final triplet
1117     will be taken as an additional diffuse transmittance. All
1118     diffuse components as well as the non-diffuse transmission
1119     are modified by patterns applied to this material. The
1120     non-diffuse reflection from either side are unaffected.
1121     Textures perturb the effective surface normal in the usual
1122     way.
1123     <p>
1124     The surface normal of this type is not altered to face the
1125     incoming ray, so the front and back BSDF reflections may
1126     differ. (Transmission is identical front-to-back by physical
1127     law.) If back visibility is turned off during rendering and
1128     there is no transmission or back-side reflection, only then
1129     the surface will be invisible from behind. Unlike other
1130     data-driven material types, the BSDF type is fully supported
1131     and all parts of the distribution are properly sampled.
1132 greg 1.10 <p>
1133    
1134     <dt>
1135 greg 1.1 <a NAME="Antimatter">
1136     <b>Antimatter</b>
1137     </a>
1138    
1139     <dd>
1140     Antimatter is a material that can &quot;subtract&quot; volumes from other volumes.
1141     A ray passing into an antimatter object becomes blind to all the specified modifiers:
1142    
1143     <pre>
1144     mod antimatter id
1145     N mod1 mod2 .. modN
1146     0
1147     0
1148     </pre>
1149    
1150     The first modifier will also be used to shade the area leaving the antimatter volume and entering the regular volume.
1151     If mod1 is void, the antimatter volume is completely invisible.
1152     Antimatter does not work properly with the material type <a HREF="#Trans">&quot;trans&quot;</a>,
1153     and multiple antimatter surfaces should be disjoint.
1154     The viewpoint must be outside all volumes concerned for a correct rendering.
1155    
1156     </dl>
1157    
1158     <p>
1159     <hr>
1160    
1161     <h4>
1162     <a NAME="Textures">2.1.3. Textures</a>
1163     </h4>
1164    
1165     A texture is a perturbation of the surface normal, and is given by either a function or data.
1166    
1167     <p>
1168    
1169     <dl>
1170    
1171     <dt>
1172     <a NAME="Texfunc">
1173     <b>Texfunc</b>
1174     </a>
1175    
1176     <dd>
1177     A texfunc uses an auxiliary function file to specify a procedural texture:
1178    
1179     <pre>
1180     mod texfunc id
1181     4+ xpert ypert zpert funcfile transform
1182     0
1183     n A1 A2 .. An
1184     </pre>
1185    
1186     <p>
1187    
1188     <dt>
1189     <a NAME="Texdata">
1190     <b>Texdata</b>
1191     </a>
1192    
1193     <dd>
1194     A texdata texture uses three data files to get the surface normal perturbations.
1195     The variables xfunc, yfunc and zfunc take three arguments each from the interpolated values in xdfname, ydfname and zdfname.
1196    
1197     <pre>
1198     mod texdata id
1199     8+ xfunc yfunc zfunc xdfname ydfname zdfname vfname x0 x1 .. xf
1200     0
1201     n A1 A2 .. An
1202     </pre>
1203    
1204     </dl>
1205    
1206     <p>
1207     <hr>
1208    
1209     <h4>
1210     <a NAME="Patterns">2.1.4. Patterns</a>
1211     </h4>
1212    
1213     Patterns are used to modify the reflectance of materials. The basic types are given below.
1214    
1215     <p>
1216    
1217     <dl>
1218    
1219     <dt>
1220     <a NAME="Colorfunc">
1221     <b>Colorfunc</b>
1222     </a>
1223    
1224     <dd>
1225     A colorfunc is a procedurally defined color pattern. It is specified as follows:
1226    
1227     <pre>
1228     mod colorfunc id
1229     4+ red green blue funcfile transform
1230     0
1231     n A1 A2 .. An
1232     </pre>
1233    
1234     <p>
1235    
1236     <dt>
1237     <a NAME="Brightfunc">
1238     <b>Brightfunc</b>
1239     </a>
1240    
1241     <dd>
1242     A brightfunc is the same as a colorfunc, except it is monochromatic.
1243    
1244     <pre>
1245     mod brightfunc id
1246     2+ refl funcfile transform
1247     0
1248     n A1 A2 .. An
1249     </pre>
1250    
1251     <p>
1252    
1253     <dt>
1254     <a NAME="Colordata">
1255     <b>Colordata</b>
1256     </a>
1257    
1258     <dd>
1259     Colordata uses an interpolated data map to modify a material's color.
1260     The map is n-dimensional, and is stored in three auxiliary files, one for each color.
1261     The coordinates used to look up and interpolate the data are defined in another auxiliary file.
1262     The interpolated data values are modified by functions of one or three variables.
1263     If the functions are of one variable, then they are passed the corresponding color component (red or green or blue).
1264     If the functions are of three variables, then they are passed the original red, green, and blue values as parameters.
1265    
1266     <pre>
1267     mod colordata id
1268     7+n+
1269     rfunc gfunc bfunc rdatafile gdatafile bdatafile
1270     funcfile x1 x2 .. xn transform
1271     0
1272     m A1 A2 .. Am
1273     </pre>
1274    
1275     <p>
1276    
1277     <dt>
1278     <a NAME="Brightdata">
1279     <b>Brightdata</b>
1280     </a>
1281    
1282     <dd>
1283     Brightdata is like colordata, except monochromatic.
1284    
1285     <pre>
1286     mod brightdata id
1287     3+n+
1288     func datafile
1289     funcfile x1 x2 .. xn transform
1290     0
1291     m A1 A2 .. Am
1292     </pre>
1293    
1294     <p>
1295    
1296     <dt>
1297     <a NAME="Colorpict">
1298     <b>Colorpict</b>
1299     </a>
1300    
1301     <dd>
1302     Colorpict is a special case of colordata, where the pattern is a two-dimensional image stored in the RADIANCE picture format.
1303     The dimensions of the image data are determined by the picture such that the smaller dimension is always 1,
1304     and the other is the ratio between the larger and the smaller.
1305     For example, a 500x338 picture would have coordinates (u,v) in the rectangle between (0,0) and (1.48,1).
1306    
1307     <pre>
1308     mod colorpict id
1309     7+
1310     rfunc gfunc bfunc pictfile
1311     funcfile u v transform
1312     0
1313     m A1 A2 .. Am
1314     </pre>
1315    
1316     <p>
1317    
1318     <dt>
1319     <a NAME="Colortext">
1320     <b>Colortext</b>
1321     </a>
1322    
1323     <dd>
1324     Colortext is dichromatic writing in a polygonal font.
1325     The font is defined in an auxiliary file, such as helvet.fnt.
1326     The text itself is also specified in a separate file, or can be part of the material arguments.
1327     The character size, orientation, aspect ratio and slant is determined by right and down motion vectors.
1328     The upper left origin for the text block as well as the foreground and background colors must also be given.
1329    
1330     <pre>
1331     mod colortext id
1332     2 fontfile textfile
1333     0
1334     15+
1335     Ox Oy Oz
1336     Rx Ry Rz
1337     Dx Dy Dz
1338     rfore gfore bfore
1339     rback gback bback
1340     [spacing]
1341     </pre>
1342    
1343     or:
1344    
1345     <pre>
1346     mod colortext id
1347     2+N fontfile . This is a line with N words ...
1348     0
1349     15+
1350     Ox Oy Oz
1351     Rx Ry Rz
1352     Dx Dy Dz
1353     rfore gfore bfore
1354     rback gback bback
1355     [spacing]
1356     </pre>
1357    
1358     <p>
1359    
1360     <dt>
1361     <a NAME="Brighttext">
1362     <b>Brighttext</b>
1363     </a>
1364    
1365     <dd>
1366     Brighttext is like colortext, but the writing is monochromatic.
1367    
1368     <pre>
1369     mod brighttext id
1370     2 fontfile textfile
1371     0
1372     11+
1373     Ox Oy Oz
1374     Rx Ry Rz
1375     Dx Dy Dz
1376     foreground background
1377     [spacing]
1378     </pre>
1379    
1380     or:
1381    
1382     <pre>
1383     mod brighttext id
1384     2+N fontfile . This is a line with N words ...
1385     0
1386     11+
1387     Ox Oy Oz
1388     Rx Ry Rz
1389     Dx Dy Dz
1390     foreground background
1391     [spacing]
1392     </pre>
1393    
1394     <p>
1395    
1396     By default, a uniform spacing algorithm is used that guarantees every character will appear in a precisely determined position.
1397     Unfortunately, such a scheme results in rather unattractive and difficult to read text with most fonts.
1398     The optional spacing value defines the distance between characters for proportional spacing.
1399     A positive value selects a spacing algorithm that preserves right margins and indentation,
1400     but does not provide the ultimate in proportionally spaced text.
1401     A negative value insures that characters are properly spaced, but the placement of words then varies unpredictably.
1402     The choice depends on the relative importance of spacing versus formatting.
1403     When presenting a section of formatted text, a positive spacing value is usually preferred.
1404     A single line of text will often be accompanied by a negative spacing value.
1405     A section of text meant to depict a picture, perhaps using a special purpose font such as hexbit4x1.fnt, calls for uniform spacing.
1406     Reasonable magnitudes for proportional spacing are between 0.1 (for tightly spaced characters) and 0.3 (for wide spacing).
1407    
1408     </dl>
1409    
1410     <p>
1411     <hr>
1412    
1413     <h4>
1414     <a NAME="Mixtures">2.1.5. Mixtures</a>
1415     </h4>
1416    
1417     A mixture is a blend of one or more materials or textures and patterns.
1418     The basic types are given below.
1419    
1420     <p>
1421    
1422     <dl>
1423    
1424     <dt>
1425     <a NAME="Mixfunc">
1426     <b>Mixfunc</b>
1427     </a>
1428    
1429     <dd>
1430     A mixfunc mixes two modifiers procedurally. It is specified as follows:
1431    
1432     <pre>
1433     mod mixfunc id
1434     4+ foreground background vname funcfile transform
1435     0
1436     n A1 A2 .. An
1437     </pre>
1438    
1439     Foreground and background are modifier names that must be
1440     defined earlier in the scene description.
1441     If one of these is a material, then
1442     the modifier of the mixfunc must be &quot;void&quot;.
1443     (Either the foreground or background modifier may be &quot;void&quot;,
1444     which serves as a form of opacity control when used with a material.)
1445     Vname is the coefficient defined in funcfile that determines the influence of foreground.
1446     The background coefficient is always (1-vname).
1447    
1448     <p>
1449    
1450     <dt>
1451     <a NAME="Mixdata">
1452     <b>Mixdata</b>
1453     </a>
1454    
1455     <dd>
1456     Mixdata combines two modifiers using an auxiliary data file:
1457    
1458     <pre>
1459     mod mixdata id
1460     5+n+
1461     foreground background func datafile
1462     funcfile x1 x2 .. xn transform
1463     0
1464     m A1 A2 .. Am
1465     </pre>
1466    
1467     <dt>
1468     <a NAME="Mixpict">
1469     <b>Mixpict</b>
1470     </a>
1471    
1472     <dd>
1473     Mixpict combines two modifiers based on a picture:
1474    
1475     <pre>
1476     mod mixpict id
1477     7+
1478     foreground background func pictfile
1479     funcfile u v transform
1480     0
1481     m A1 A2 .. Am
1482     </pre>
1483    
1484     <p>
1485    
1486     The mixing coefficient function &quot;func&quot; takes three
1487     arguments, the red, green and blue values
1488     corresponding to the pixel at (u,v).
1489    
1490     </dl>
1491     <p>
1492    
1493     <dt>
1494     <a NAME="Mixtext">
1495     <b>Mixtext</b>
1496     </a>
1497    
1498     <dd>
1499     Mixtext uses one modifier for the text foreground, and one for the background:
1500    
1501     <pre>
1502     mod mixtext id
1503     4 foreground background fontfile textfile
1504     0
1505     9+
1506     Ox Oy Oz
1507     Rx Ry Rz
1508     Dx Dy Dz
1509     [spacing]
1510     </pre>
1511    
1512     or:
1513    
1514     <pre>
1515     mod mixtext id
1516     4+N
1517     foreground background fontfile .
1518     This is a line with N words ...
1519     0
1520     9+
1521     Ox Oy Oz
1522     Rx Ry Rz
1523     Dx Dy Dz
1524     [spacing]
1525     </pre>
1526    
1527     </dl>
1528    
1529     <p>
1530     <hr>
1531    
1532     <h3>
1533     <a NAME="Auxiliary">2.2. Auxiliary Files</a>
1534     </h3>
1535    
1536     Auxiliary files used in <a HREF="#Textures">textures</a> and <a HREF="#Patterns">patterns</a>
1537     are accessed by the programs during image generation.
1538     These files may be located in the working directory, or in a library directory.
1539     The environment variable RAYPATH can be assigned an alternate set of search directories.
1540     Following is a brief description of some common file types.
1541    
1542     <p>
1543    
1544     <h4>
1545     <a NAME="Function">12.2.1. Function Files</a>
1546     </h4>
1547    
1548     A function file contains the definitions of variables, functions and constants used by a primitive.
1549     The transformation that accompanies the file name contains the necessary rotations, translations and scalings
1550     to bring the coordinates of the function file into agreement with the world coordinates.
1551     The transformation specification is the same as for the <a HREF="#Generators">xform</a> command.
1552     An example function file is given below:
1553    
1554     <pre>
1555     {
1556     This is a comment, enclosed in curly braces.
1557     {Comments can be nested.}
1558     }
1559     { standard expressions use +,-,*,/,^,(,) }
1560     vname = Ny * func(A1) ;
1561     { constants are defined with a colon }
1562     const : sqrt(PI/2) ;
1563     { user-defined functions add to library }
1564     func(x) = 5 + A1*sin(x/3) ;
1565     { functions may be passed and recursive }
1566     rfunc(f,x) = if(x,f(x),f(-x)*rfunc(f,x+1)) ;
1567     { constant functions may also be defined }
1568     cfunc(x) : 10*x / sqrt(x) ;
1569     </pre>
1570    
1571     Many variables and functions are already defined by the program, and they are listed in the file rayinit.cal.
1572     The following variables are particularly important:
1573    
1574     <pre>
1575     Dx, Dy, Dz - incident ray direction
1576     Nx, Ny, Nz - surface normal at intersection point
1577     Px, Py, Pz - intersection point
1578     T - distance from start
1579     Ts - single ray (shadow) distance
1580     Rdot - cosine between ray and normal
1581     arg(0) - number of real arguments
1582     arg(i) - i'th real argument
1583     </pre>
1584    
1585     For mesh objects, the local surface coordinates are available:
1586    
1587     <pre>
1588     Lu, Lv - local (u,v) coordinates
1589     </pre>
1590    
1591     For BRDF types, the following variables are defined as well:
1592    
1593     <pre>
1594     NxP, NyP, NzP - perturbed surface normal
1595     RdotP - perturbed dot product
1596     CrP, CgP, CbP - perturbed material color
1597     </pre>
1598    
1599     A unique context is set up for each file so
1600     that the same variable may appear in different
1601     function files without conflict.
1602     The variables listed above and any others defined in
1603     rayinit.cal are available globally.
1604     If no file is needed by a given primitive because all
1605     the required variables are global,
1606     a period (`.') can be given in place of the file name.
1607     It is also possible to give an expression instead
1608 greg 1.9 of a straight variable name in a scene file.
1609     Functions (requiring parameters) must be given
1610 greg 1.1 as names and not as expressions.
1611    
1612     <p>
1613     Constant expressions are used as an optimization in function files.
1614     They are replaced wherever they occur in an expression by their value.
1615     Constant expressions are evaluated only once, so they must not contain any variables or values that can change,
1616     such as the ray variables Px and Ny or the primitive argument function arg().
1617     All the math library functions such as sqrt() and cos() have the constant attribute,
1618     so they will be replaced by immediate values whenever they are given constant arguments.
1619     Thus, the subexpression cos(PI*sqrt(2)) is immediately replaced by its value, -.266255342,
1620     and does not cause any additional overhead in the calculation.
1621    
1622     <p>
1623     It is generally a good idea to define constants and variables before they are referred to in a function file.
1624     Although evaluation does not take place until later, the interpreter does variable scoping and
1625     constant subexpression evaluation based on what it has compiled already.
1626     For example, a variable that is defined globally in rayinit.cal
1627     then referenced in the local context of a function file
1628     cannot subsequently be redefined in the same file
1629     because the compiler has already determined the scope of the referenced variable as global.
1630     To avoid such conflicts, one can state the scope of a variable explicitly by
1631     preceding the variable name with a context mark (a back-quote) for a local variable,
1632     or following the name with a context mark for a global variable.
1633    
1634     <p>
1635    
1636     <h4>
1637     <a NAME="Data">2.2.2. Data Files</a>
1638     </h4>
1639    
1640     Data files contain n-dimensional arrays of real numbers used for interpolation.
1641     Typically, definitions in a function file determine how to index and use interpolated data values.
1642     The basic data file format is as follows:
1643    
1644     <pre>
1645     N
1646     beg1 end1 m1
1647     0 0 m2 x2.1 x2.2 x2.3 x2.4 .. x2.m2
1648     ...
1649     begN endN mN
1650     DATA, later dimensions changing faster.
1651     </pre>
1652    
1653     N is the number of dimensions.
1654     For each dimension, the beginning and ending coordinate values and the dimension size is given.
1655     Alternatively, individual coordinate values can be given when the points are not evenly spaced.
1656     These values must either be increasing or decreasing monotonically.
1657     The data is m1*m2*...*mN real numbers in ASCII form.
1658     Comments may appear anywhere in the file, beginning with a pound
1659     sign ('#') and continuing to the end of line.
1660    
1661     <p>
1662    
1663     <h4>
1664     <a NAME="Font">2.2.3. Font Files</a>
1665     </h4>
1666    
1667     A font file lists the polygons which make up a character set.
1668     Comments may appear anywhere in the file, beginning with a pound
1669     sign ('#') and continuing to the end of line.
1670     All numbers are decimal integers:
1671    
1672     <pre>
1673     code n
1674     x0 y0
1675     x1 y1
1676     ...
1677     xn yn
1678     ...
1679     </pre>
1680    
1681     The ASCII codes can appear in any order. N is the number of vertices, and the last is automatically connected to the first.
1682     Separate polygonal sections are joined by coincident sides.
1683     The character coordinate system is a square with lower left corner at (0,0), lower right at (255,0) and upper right at (255,255).
1684    
1685     <p>
1686    
1687     <hr>
1688    
1689     <h3>
1690     <a NAME="Generators">2.3. Generators</a>
1691     </h3>
1692    
1693     A generator is any program that produces a scene description as its output.
1694     They usually appear as commands in a scene description file.
1695     An example of a simple generator is genbox.
1696    
1697     <ul>
1698    
1699     <li>
1700     <a NAME="Genbox" HREF="../man_html/genbox.1.html">
1701     <b>Genbox</b>
1702     </a>
1703     takes the arguments of width, height and depth to produce a parallelepiped description.
1704     <li>
1705     <a NAME="Genprism" HREF="../man_html/genprism.1.html">
1706     <b>Genprism</b>
1707     </a>
1708     takes a list of 2-dimensional coordinates and extrudes them along a vector to
1709     produce a 3-dimensional prism.
1710     <li>
1711     <a NAME="Genrev" HREF="../man_html/genrev.1.html">
1712     <b>Genrev</b>
1713     </a>
1714     is a more sophisticated generator that produces an object of rotation from parametric functions for radius and axis position.
1715     <li>
1716     <a NAME="Gensurf" HREF="../man_html/gensurf.1.html">
1717     <b>Gensurf</b>
1718     </a>
1719     tessellates a surface defined by the parametric functions x(s,t), y(s,t), and z(s,t).
1720     <li>
1721     <a NAME="Genworm" HREF="../man_html/genworm.1.html">
1722     <b>Genworm</b>
1723     </a>
1724     links cylinders and spheres along a curve.
1725     <li>
1726     <a NAME="Gensky" HREF="../man_html/gensky.1.html">
1727     <b>Gensky</b>
1728     </a>
1729     produces a sun and sky distribution corresponding to a given time and date.
1730     <li>
1731     <a NAME="Xform" HREF="../man_html/xform.1.html">
1732     <b>Xform</b>
1733     </a>
1734     is a program that transforms a scene description from one coordinate space to another.
1735     Xform does rotation, translation, scaling, and mirroring.
1736    
1737     </ul>
1738    
1739     <p>
1740     <hr>
1741    
1742     <h2>
1743     <a NAME="Image">3. Image Generation</a>
1744     </h2>
1745    
1746     Once the scene has been described in three-dimensions, it is possible to generate a two-dimensional image from a given perspective.
1747    
1748     <p>
1749     The image generating programs use an <a NAME="octree"><b>octree</b></a> to efficiently trace rays through the scene.
1750     An octree subdivides space into nested octants which contain sets of surfaces.
1751     In RADIANCE, an octree is created from a scene description by <a NAME="oconv1" HREF="../man_html/oconv.1.html"><b>oconv</b></a>.
1752     The details of this process are not important, but the octree will serve as input to the ray-tracing programs and
1753     directs the use of a scene description.
1754     <ul>
1755     <li>
1756 greg 1.3 <a NAME="rvu" HREF="../man_html/rvu.1.html"><b>Rview</b></a> is ray-tracing program for viewing a scene interactively.
1757     When the user specifies a new perspective, rvu quickly displays a rough image on the terminal,
1758 greg 1.1 then progressively increases the resolution as the user looks on.
1759     He can select a particular section of the image to improve, or move to a different view and start over.
1760     This mode of interaction is useful for debugging scenes as well as determining the best view for a final image.
1761    
1762     <li>
1763     <a NAME="rpict" HREF="../man_html/rpict.1.html"><b>Rpict</b></a> produces a high-resolution picture of a scene from a particular perspective.
1764     This program features adaptive sampling, crash recovery and progress reporting, all of which are important for time-consuming images.
1765     </ul>
1766     <p>
1767     A number of <a NAME="filters"><b>filters</b></a> are available for manipulating picture files:
1768     <ul>
1769     <li> <a HREF="../man_html/pfilt.1.html"><b>Pfilt</b></a>
1770     sets the exposure and performs antialiasing.
1771     <li> <a HREF="../man_html/pcompos.1.html"><b>Pcompos</b></a>
1772     composites (cuts and pastes) pictures.
1773     <li> <a HREF="../man_html/pcomb.1.html"><b>Pcomb</b></a>
1774     performs arbitrary math on one or more pictures.
1775     <li> <a HREF="../man_html/pcond.1.html"><b>Pcond</b></a>
1776     conditions a picture for a specific display device.
1777     <li> <a HREF="../man_html/protate.1.html"><b>Protate</b></a>
1778     rotates a picture 90 degrees clockwise.
1779     <li> <a HREF="../man_html/pflip.1.html"><b>Pflip</b></a>
1780     flips a picture horizontally, vertically, or both
1781     (180 degree rotation).
1782     <li> <a HREF="../man_html/pvalue.1.html"><b>Pvalue</b></a>
1783     converts a picture to and from simpler formats.
1784     </ul>
1785    
1786     <p>
1787     Pictures may be displayed directly under X11 using the program
1788     <a HREF="../man_html/ximage.1.html">ximage</a>,
1789     or converted a standard image format using one of the following
1790     <b>translators</b>:
1791     <ul>
1792 greg 1.19 <li> <a HREF="../man_html/ra_bmp.1.html"><b>Ra_bmp</b>
1793     converts to and from BMP image format.
1794 greg 1.1 <li> <a HREF="../man_html/ra_ppm.1.html"><b>Ra_ppm</b></a>
1795     converts to and from Poskanzer Portable Pixmap formats.
1796     <li> <a HREF="../man_html/ra_ps.1.html"><b>Ra_ps</b></a>
1797     converts to PostScript color and greyscale formats.
1798     <li> <a HREF="../man_html/ra_rgbe.1.html"><b>Ra_rgbe</b></a>
1799     converts to and from Radiance uncompressed picture format.
1800     <li> <a HREF="../man_html/ra_t16.1.html"><b>Ra_t16</b></a>
1801     converts to and from Targa 16 and 24-bit image formats.
1802     <li> <a HREF="../man_html/ra_t8.1.html"><b>Ra_t8</b></a>
1803     converts to and from Targa 8-bit image format.
1804     <li> <a HREF="../man_html/ra_tiff.1.html"><b>Ra_tiff</b></a>
1805     converts to and from TIFF.
1806     <li> <a HREF="../man_html/ra_xyze.1.html"><b>Ra_xyze</b></a>
1807     converts to and from Radiance CIE picture format.
1808     </ul>
1809    
1810     <p>
1811    
1812     <hr>
1813    
1814     <h2>
1815     <a NAME="License">4. License</a>
1816     </h2>
1817    
1818     <pre>
1819     The Radiance Software License, Version 1.0
1820    
1821 greg 1.19 Copyright (c) 1990 - 2014 The Regents of the University of California,
1822 greg 1.1 through Lawrence Berkeley National Laboratory. All rights reserved.
1823    
1824     Redistribution and use in source and binary forms, with or without
1825     modification, are permitted provided that the following conditions
1826     are met:
1827    
1828     1. Redistributions of source code must retain the above copyright
1829     notice, this list of conditions and the following disclaimer.
1830    
1831     2. Redistributions in binary form must reproduce the above copyright
1832     notice, this list of conditions and the following disclaimer in
1833     the documentation and/or other materials provided with the
1834     distribution.
1835    
1836     3. The end-user documentation included with the redistribution,
1837     if any, must include the following acknowledgment:
1838     &quot;This product includes Radiance software
1839     (<a HREF="http://radsite.lbl.gov/">http://radsite.lbl.gov/</a>)
1840     developed by the Lawrence Berkeley National Laboratory
1841     (<a HREF="http://www.lbl.gov/">http://www.lbl.gov/</a>).&quot;
1842     Alternately, this acknowledgment may appear in the software itself,
1843     if and wherever such third-party acknowledgments normally appear.
1844    
1845     4. The names &quot;Radiance,&quot; &quot;Lawrence Berkeley National Laboratory&quot;
1846     and &quot;The Regents of the University of California&quot; must
1847     not be used to endorse or promote products derived from this
1848     software without prior written permission. For written
1849     permission, please contact [email protected].
1850    
1851     5. Products derived from this software may not be called &quot;Radiance&quot;,
1852     nor may &quot;Radiance&quot; appear in their name, without prior written
1853     permission of Lawrence Berkeley National Laboratory.
1854    
1855 greg 1.15 THIS SOFTWARE IS PROVIDED ``AS IS&quot; AND ANY EXPRESSED OR IMPLIED
1856 greg 1.1 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
1857     OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
1858     DISCLAIMED. IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR
1859     ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
1860     SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
1861     LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
1862     USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
1863     ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
1864     OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
1865     OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
1866     SUCH DAMAGE.
1867     </pre>
1868    
1869     <hr>
1870    
1871     <h2>
1872     <a NAME="Ack">5. Acknowledgements</a>
1873     </h2>
1874    
1875     This work was supported by the Assistant Secretary of Conservation and Renewable Energy,
1876     Office of Building Energy Research and Development,
1877     Buildings Equipment Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
1878    
1879     <p>
1880     Additional work was sponsored by the Swiss federal government
1881     under the Swiss LUMEN Project and was carried out in the
1882     Laboratoire d'Energie Solaire (LESO Group) at the
1883     Ecole Polytechnique Federale de Lausanne (EPFL University) in Lausanne, Switzerland.
1884    
1885     <p>
1886    
1887     <hr>
1888    
1889     <h2>
1890     <a NAME="Ref">6.</a> References
1891     </h2>
1892     <p>
1893     <ul>
1894 greg 1.19 <li>McNeil, A., C.J. Jonsson, D. Appelfeld, G. Ward, E.S. Lee,
1895     &quot;<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">
1896     A validation of a ray-tracing tool used to generate
1897     bi-directional scattering distribution functions for
1898     complex fenestration systems</a>,&quot;
1899     <em>Solar Energy</em>, 98, 404-14,
1900     November 2013.
1901 greg 1.15 <li>Ward, G., R. Mistrick, E.S. Lee, A. McNeil, J. Jonsson,
1902 greg 1.17 &quot;<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">Simulating
1903     the Daylight Performance of Complex Fenestration Systems
1904     Using Bidirectional Scattering Distribution Functions within
1905     Radiance</a>,&quot;
1906 greg 1.18 <em>Leukos</em>, 7(4)
1907 greg 1.15 April 2011.
1908 greg 1.7 <li>Cater, Kirsten, Alan Chalmers, Greg Ward,
1909 greg 1.9 &quot;<a href="http://www.anyhere.com/gward/papers/egsr2003.pdf">Detail to Attention:
1910 greg 1.7 Exploiting Visual Tasks for Selective Rendering</a>,&quot;
1911     <em>Eurographics Symposium
1912     on Rendering 2003</em>, June 2003.
1913 greg 1.1 <li>Ward, Greg, Elena Eydelberg-Vileshin,
1914 greg 1.15 &quot;<a HREF="http://www.anyhere.com/gward/papers/egwr02/index.html">Picture Perfect RGB
1915     Rendering Using Spectral Prefiltering and Sharp Color Primaries</a>,&quot;
1916 greg 1.1 Thirteenth Eurographics Workshop on Rendering (2002),
1917     P. Debevec and S. Gibson (Editors), June 2002.
1918     <li>Ward, Gregory,
1919 greg 1.15 &quot;<a HREF="http://www.anyhere.com/gward/papers/cic01.pdf">High Dynamic Range Imaging</a>,&quot;
1920 greg 1.1 Proceedings of the Ninth Color Imaging Conference, November 2001.
1921     <li>Ward, Gregory and Maryann Simmons,
1922 greg 1.15 &quot;<a HREF="http://www.anyhere.com/gward/papers/tog99.pdf">
1923 greg 1.1 The Holodeck Ray Cache: An Interactive Rendering System for Global Illumination in Nondiffuse
1924 greg 1.15 Environments</a>,&quot; ACM Transactions on Graphics, 18(4):361-98, October 1999.
1925     <li>Larson, G.W., &quot;<a HREF="http://www.anyhere.com/gward/papers/ewp98.pdf">The Holodeck: A Parallel
1926     Ray-caching Rendering System</a>,&quot; Proceedings of the Second
1927 greg 1.1 Eurographics Workshop on Parallel Graphics and Visualisation,
1928     September 1998.
1929     <li>Larson, G.W. and R.A. Shakespeare,
1930 greg 1.2 <a HREF="http://radsite.lbl.gov/radiance/book/index.html"><em>Rendering with Radiance:
1931 greg 1.1 the Art and Science of Lighting Visualization</em></a>,
1932     Morgan Kaufmann Publishers, 1998.
1933     <li>Larson, G.W., H. Rushmeier, C. Piatko,
1934 greg 1.15 &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/lbnl39882/tonemap.pdf">A Visibility
1935 greg 1.1 Matching Tone Reproduction Operator for
1936 greg 1.15 High Dynamic Range Scenes</a>,&quot; LBNL Technical Report 39882,
1937 greg 1.1 January 1997.
1938 greg 1.15 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw95.1/paper.html">Making
1939     Global Illumination User-Friendly</a>,&quot; Sixth
1940 greg 1.1 Eurographics Workshop on Rendering, Springer-Verlag,
1941     Dublin, Ireland, June 1995.</li>
1942     <li>Rushmeier, H., G. Ward, C. Piatko, P. Sanders, B. Rust,
1943 greg 1.15 &quot;<a HREF="http://radsite.lbl.gov/mgf/compare.html">
1944 greg 1.1 Comparing Real and Synthetic Images: Some Ideas about
1945 greg 1.15 Metrics</a>,&quot; Sixth Eurographics Workshop on Rendering,
1946 greg 1.1 Springer-Verlag, Dublin, Ireland, June 1995.</li>
1947 greg 1.15 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.1/paper.html">The RADIANCE
1948     Lighting Simulation and Rendering System</a>,&quot; <em>Computer
1949 greg 1.1 Graphics</em>, July 1994.</li>
1950 greg 1.15 <li>Rushmeier, H., G. Ward, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.2/energy.html">Energy
1951     Preserving Non-Linear Filters</a>,&quot; <em>Computer
1952 greg 1.1 Graphics</em>, July 1994.</li>
1953 greg 1.15 <li>Ward, G., &quot;A Contrast-Based Scalefactor for Luminance
1954     Display,&quot; <em>Graphics Gems IV</em>, Edited by Paul Heckbert,
1955 greg 1.1 Academic Press 1994.</li>
1956 greg 1.15 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg92/paper.html">Measuring and
1957     Modeling Anisotropic Reflection</a>,&quot; <em>Computer
1958 greg 1.1 Graphics</em>, Vol. 26, No. 2, July 1992. </li>
1959 greg 1.15 <li>Ward, G., P. Heckbert, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw92/paper.html">Irradiance
1960     Gradients</a>,&quot; Third Annual Eurographics Workshop on
1961 greg 1.1 Rendering, Springer-Verlag, May 1992. </li>
1962 greg 1.15 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw91/erw91.html">Adaptive Shadow
1963     Testing for Ray Tracing</a>&quot; Photorealistic Rendering in
1964 greg 1.1 Computer Graphics, proceedings of 1991 Eurographics
1965     Rendering Workshop, edited by P. Brunet and F.W. Jansen,
1966     Springer-Verlag. </li>
1967 greg 1.15 <li>Ward, G., &quot;Visualization,&quot; <em>Lighting Design and
1968 greg 1.1 Application</em>, Vol. 20, No. 6, June 1990. </li>
1969 greg 1.15 <li>Ward, G., F. Rubinstein, R. Clear, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg88/paper.html">A Ray Tracing Solution for
1970     Diffuse Interreflection</a>,&quot; <em>Computer Graphics</em>,
1971 greg 1.1 Vol. 22, No. 4, August 1988. </li>
1972 greg 1.15 <li>Ward, G., F. Rubinstein, &quot;A New Technique for Computer
1973     Simulation of Illuminated Spaces,&quot; <em>Journal of the
1974 greg 1.1 Illuminating Engineering Society</em>, Vol. 17, No. 1,
1975     Winter 1988. </li>
1976     </ul>
1977     <p>
1978     See the <a HREF="index.html">RADIANCE Reference Materials</a> page
1979     for additional information.
1980     <hr>
1981    
1982     <a NAME="Index"><h2>7. Types Index</h2></a>
1983    
1984     <pre>
1985     <h4>
1986     SURFACES MATERIALS TEXTURES PATTERNS MIXTURES</h4>
1987     <a HREF="#Source">Source</a> <a HREF="#Light">Light</a> <a HREF="#Texfunc">Texfunc</a> <a HREF="#Colorfunc">Colorfunc</a> <a HREF="#Mixfunc">Mixfunc</a>
1988     <a HREF="#Sphere">Sphere</a> <a HREF="#Illum">Illum</a> <a HREF="#Texdata">Texdata</a> <a HREF="#Brightfunc">Brightfunc</a> <a HREF="#Mixdata">Mixdata</a>
1989     <a HREF="#Bubble">Bubble</a> <a HREF="#Glow">Glow</a> <a HREF="#Colordata">Colordata</a> <a HREF="#Mixtext">Mixtext</a>
1990     <a HREF="#Polygon">Polygon</a> <a HREF="#Spotlight">Spotlight</a> <a HREF="#Brightdata">Brightdata</a>
1991     <a HREF="#Cone">Cone</a> <a HREF="#Mirror">Mirror</a> <a HREF="#Colorpict">Colorpict</a>
1992     <a HREF="#Cup">Cup</a> <a HREF="#Prism1">Prism1</a> <a HREF="#Colortext">Colortext</a>
1993     <a HREF="#Cylinder">Cylinder</a> <a HREF="#Prism2">Prism2</a> <a HREF="#Brighttext">Brighttext</a>
1994     <a HREF="#Tube">Tube</a> <a HREF="#Plastic">Plastic</a>
1995     <a HREF="#Ring">Ring</a> <a HREF="#Metal">Metal</a>
1996     <a HREF="#Instance">Instance</a> <a HREF="#Trans">Trans</a>
1997     <a HREF="#Mesh">Mesh</a> <a HREF="#Plastic2">Plastic2</a>
1998     <a HREF="#Metal2">Metal2</a>
1999     <a HREF="#Trans2">Trans2</a>
2000     <a HREF="#Mist">Mist</a>
2001     <a HREF="#Dielectric">Dielectric</a>
2002     <a HREF="#Interface">Interface</a>
2003     <a HREF="#Glass">Glass</a>
2004     <a HREF="#Plasfunc">Plasfunc</a>
2005     <a HREF="#Metfunc">Metfunc</a>
2006     <a HREF="#Transfunc">Transfunc</a>
2007     <a HREF="#BRTDfunc">BRTDfunc</a>
2008     <a HREF="#Plasdata">Plasdata</a>
2009     <a HREF="#Metdata">Metdata</a>
2010     <a HREF="#Transdata">Transdata</a>
2011 greg 1.10 <a HREF="#BSDF">BSDF</a>
2012 greg 1.1 <a HREF="#Antimatter">Antimatter</a>
2013    
2014     </pre>
2015    
2016     <p>
2017    
2018    
2019     <hr>
2020     <center>Last Update: October 22, 1997</center>
2021     </body>
2022     </html>
2023