ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/ray.1
Revision: 1.49
Committed: Fri May 30 16:35:52 2025 UTC (2 days, 14 hours ago) by greg
Branch: MAIN
CVS Tags: HEAD
Changes since 1.48: +5 -3 lines
Log Message:
docs: Improved wording on new mirror material behavior

File Contents

# User Rev Content
1 greg 1.49 .\" RCSid "$Id: ray.1,v 1.48 2025/05/29 16:42:28 greg Exp $"
2 greg 1.1 .\" Print using the -ms macro package
3 greg 1.47 .DA 12/09/2024
4 greg 1.1 .LP
5 greg 1.47 .tl """Copyright \(co 2024 Regents, University of California
6 greg 1.1 .sp 2
7     .TL
8     The
9     .so ../src/rt/VERSION
10     .br
11     Synthetic Imaging System
12     .AU
13 greg 1.9 Building Technologies Department
14 greg 1.1 .br
15     Lawrence Berkeley Laboratory
16     .br
17 greg 1.4 1 Cyclotron Rd., MS 90-3111
18 greg 1.1 .br
19     Berkeley, CA 94720
20     .NH 1
21     Introduction
22     .PP
23     RADIANCE was developed as a research tool
24     for predicting the distribution of visible radiation in
25     illuminated spaces.
26     It takes as input a three-dimensional geometric model of
27     the physical environment, and produces a map of
28     spectral radiance values in a color image.
29     The technique of ray-tracing follows light backwards
30     from the image plane to the source(s).
31     Because it can produce realistic images from a simple description,
32     RADIANCE has a wide range of applications in graphic arts,
33     lighting design, computer-aided engineering and architecture.
34     .KF
35     .sp 25
36     .ce
37     .B "Figure 1."
38     .sp
39     .KE
40     .PP
41     The diagram in Figure 1 shows the flow between programs (boxes) and
42     data (ovals).
43     The central program is
44     .I rpict,
45     which produces a picture from a scene description.
46     .I Rview
47     is a variation of
48     .I rpict
49     that computes and displays images interactively.
50 greg 1.4 Other programs (not shown) connect many of these elements together,
51     such as the executive programs
52     .I rad
53     and
54     .I ranimate,
55     the interactive rendering program
56     .I rholo,
57     and the animation program
58     .I ranimove.
59     The program
60     .I obj2mesh
61     acts as both a converter and scene compiler, converting a Wavefront .OBJ
62     file into a compiled mesh octree for efficient rendering.
63 greg 1.1 .PP
64     A scene description file lists the surfaces and materials
65 greg 1.4 that make up a specific environment.
66     The current surface types are spheres, polygons, cones, and cylinders.
67     There is also a composite surface type, called mesh, and a pseudosurface
68     type, called instance, which facilitates very complex geometries.
69     Surfaces can be made from materials such as plastic, metal, and glass.
70     Light sources can be distant disks as well as local spheres, disks
71     and polygons.
72 greg 1.1 .PP
73     From a three-dimensional scene description and a specified view,
74     .I rpict
75     produces a two-dimensional image.
76     A picture file is a compressed binary representation of the
77     pixels in the image.
78     This picture can be scaled in size and
79     brightness, anti-aliased, and sent to a graphics output device.
80     .PP
81     A header in each picture file lists the program(s) and
82     parameters that produced it.
83     This is useful for identifying a picture
84     without having to display it.
85     The information can be read by the program
86     .I getinfo.
87     .NH 1
88     Scene Description
89     .PP
90     A scene description file represents a
91     three-dimensional physical environment
92     in Cartesian (rectilinear) world coordinates.
93     It is stored as ASCII text, with the following basic format:
94     .DS
95     # comment
96    
97     modifier type identifier
98 greg 1.4 n S1 S2 "S 3" .. Sn
99 greg 1.1 0
100     m R1 R2 R3 .. Rm
101    
102     modifier alias identifier reference
103    
104     ! command
105    
106     ...
107     .DE
108     .PP
109     A comment line begins with a pound sign, `#'.
110     .PP
111     The scene description
112     .I primitives
113     all have the same general format, and can
114     be either surfaces or modifiers.
115     A primitive has a modifier, a type, and an identifier.
116     A modifier is either the identifier of a
117     .I "previously defined"
118     primitive, or "void"\(dg.
119     .FS
120     \(dgThe most recent definition of a modifier is the one used,
121     and later definitions do not cause relinking of loaded
122     primitives.
123     Thus, the same identifier may be used repeatedly, and each new
124     definition will apply to the primitives following it.
125     .FE
126 greg 1.4 An identifier can be any string (i.e., any sequence of non-white characters).
127 greg 1.1 The
128     .I arguments
129     associated with a primitive can be strings or real numbers.
130     The first integer following the identifier is the number
131     of string arguments, and it is followed by the arguments themselves
132 greg 1.4 (separated by white space or enclosed in quotes).
133 greg 1.1 The next integer is the number of integer arguments, and is followed
134     by the integer arguments.
135     (There are currently no primitives that use them, however.)
136     The next integer is the real argument count, and it is followed
137     by the real arguments.
138     .PP
139     An alias gets its type and arguments from a previously defined primitive.
140     This is useful when the same material is used with a different
141     modifier, or as a convenient naming mechanism.
142 greg 1.2 The reserved modifier name "inherit" may be used to specificy that
143     an alias will inherit its modifier from the original.
144 greg 1.1 Surfaces cannot be aliased.
145     .PP
146     A line beginning with an exclamation point, `!',
147     is interpreted as a command.
148     It is executed by the shell, and its output is read as input to
149     the program.
150     The command must not try to read from its standard input, or
151     confusion will result.
152     A command may be continued over multiple lines using a backslash, `\\',
153     to escape the newline.
154     .PP
155 greg 1.4 White space is generally ignored, except as a separator.
156 greg 1.1 The exception is the newline character after a command or comment.
157     Commands, comments and primitives may appear in any combination, so long
158     as they are not intermingled.
159     .NH 2
160     Primitive Types
161     .PP
162     Primitives can be surfaces, materials, textures or patterns.
163 greg 1.4 Modifiers can be materials, mixtures, textures or patterns.
164 greg 1.1 Simple surfaces must have one material in their modifier list.
165     .NH 3
166     Surfaces
167     .PP
168     A scene description will consist mostly of surfaces.
169     The basic types are given below.
170     .LP
171     .UL Source
172     .PP
173     A source is not really a surface, but a solid angle.
174     It is used for specifying light sources that are very distant.
175     The direction to the center of the source and the number of degrees
176     subtended by its disk are given as follows:
177     .DS
178     mod source id
179     0
180     0
181     4 xdir ydir zdir angle
182     .DE
183     .LP
184     .UL Sphere
185     .PP
186     A sphere is given by its center and radius:
187     .DS
188     mod sphere id
189     0
190     0
191     4 xcent ycent zcent radius
192     .DE
193     .LP
194     .UL Bubble
195     .PP
196     A bubble is simply a sphere whose surface normal points inward.
197     .LP
198     .UL Polygon
199     .PP
200     A polygon is given by a list of three-dimensional vertices,
201     which are ordered counter-clockwise as viewed from
202     the front side (into the surface normal).
203     The last vertex is automatically connected to the first.
204     Holes are represented in polygons as interior vertices connected to
205     the outer perimeter by coincident edges (seams).
206     .DS
207     mod polygon id
208     0
209     0
210     3n
211     x1 y1 z1
212     x2 y2 z2
213     ...
214     xn yn zn
215     .DE
216     .LP
217     .UL Cone
218     .PP
219     A cone is a megaphone-shaped object.
220     It is truncated by two planes perpendicular to its axis,
221     and one of its ends may come to a point.
222     It is given as two axis endpoints, and the starting
223     and ending radii:
224     .DS
225     mod cone id
226     0
227     0
228     8
229     x0 y0 z0
230     x1 y1 z1
231     r0 r1
232     .DE
233     .LP
234     .UL Cup
235     .PP
236 greg 1.4 A cup is an inverted cone (i.e., has an inward surface normal).
237 greg 1.1 .LP
238     .UL Cylinder
239     .PP
240     A cylinder is like a cone, but its starting and ending radii are
241     equal.
242     .DS
243     mod cylinder id
244     0
245     0
246     7
247     x0 y0 z0
248     x1 y1 z1
249     rad
250     .DE
251     .LP
252     .UL Tube
253     .PP
254     A tube is an inverted cylinder.
255     .LP
256     .UL Ring
257     .PP
258     A ring is a circular disk given by its center, surface
259     normal, and inner and outer radii:
260     .DS
261     mod ring id
262     0
263     0
264     8
265     xcent ycent zcent
266     xdir ydir zdir
267     r0 r1
268     .DE
269     .LP
270     .UL Mesh
271     .PP
272     A mesh is a compound surface, made up of many triangles and
273     an octree data structure to accelerate ray intersection.
274     It is typically converted from a Wavefront .OBJ file using the
275 greg 1.4 .I obj2mesh
276     program.
277 greg 1.1 .DS
278     mod mesh id
279     1+ meshfile transform
280     0
281     0
282     .DE
283 greg 1.3 If the modifier is "void", then surfaces will use the modifiers given
284     in the original mesh description.
285     Otherwise, the modifier specified is used in their place.
286 greg 1.1 The transform moves the mesh to the desired location in the scene.
287     Multiple instances using the same meshfile take little extra memory,
288     and the compiled mesh itself takes much less space than individual
289     polygons would.
290     In the case of an unsmoothed mesh, using the mesh primitive reduces
291     memory requirements by a factor of 30 relative to individual triangles.
292     If a mesh has smoothed surfaces, we save a factor of 50 or more,
293     permitting very detailed geometries that would otherwise exhaust the
294     available memory.
295     In addition, the mesh primitive can have associated (u,v) coordinates
296     for pattern and texture mapping.
297 greg 1.4 These are made available to function files via the Lu and Lv variables.
298 greg 1.1 .LP
299     .UL Instance
300     .PP
301     An instance is a compound surface, given by the contents of an
302     octree file (created by oconv).
303     .DS
304     mod instance id
305     1+ octree transform
306     0
307     0
308     .DE
309     If the modifier is "void", then surfaces will use the modifiers given
310     in the original description.
311     Otherwise, the modifier specified is used in their place.
312     The transform moves the octree to the desired location in the scene.
313     Multiple instances using the same octree take little extra memory,
314     hence very complex descriptions can be rendered using this primitive.
315     .PP
316     There are a number of important limitations to be aware of when using
317     instances.
318     First, the scene description used to generate the octree must stand on
319     its own, without referring to modifiers in the parent description.
320     This is necessary for oconv to create the octree.
321     Second, light sources in the octree will not be incorporated correctly
322     in the calculation, and they are not recommended.
323     Finally, there is no advantage (other than convenience) to
324     using a single instance of an octree, or an octree containing only a
325     few surfaces.
326     An xform command on the subordinate description is prefered in such cases.
327     .NH 3
328     Materials
329     .PP
330     A material defines the way light interacts with a surface.
331     The basic types are given below.
332     .LP
333     .UL Light
334     .PP
335 greg 1.4 Light is the basic material for self-luminous surfaces (i.e., light
336 greg 1.1 sources).
337     In addition to the source surface type, spheres, discs (rings with zero
338     inner radius), cylinders (provided they are long enough), and
339     polygons can act as light sources.
340     Polygons work best when they are rectangular.
341     Cones cannot be used at this time.
342     A pattern may be used to specify a light output distribution.
343     Light is defined simply as a RGB radiance value (watts/steradian/m2):
344     .DS
345     mod light id
346     0
347     0
348     3 red green blue
349     .DE
350     .LP
351     .UL Illum
352     .PP
353     Illum is used for secondary light sources with broad distributions.
354     A secondary light source is treated like any other
355     light source, except when viewed directly.
356     It then acts like it is made of a different material (indicated by
357     the string argument), or becomes invisible (if no string argument is given,
358     or the argument is "void").
359     Secondary sources are useful when modeling windows or
360     brightly illuminated surfaces.
361     .DS
362     mod illum id
363     1 material
364     0
365     3 red green blue
366     .DE
367     .LP
368     .UL Glow
369     .PP
370     Glow is used for surfaces that are self-luminous, but limited
371     in their effect.
372     In addition to the radiance value, a maximum radius for
373     shadow testing is given:
374     .DS
375     mod glow id
376     0
377     0
378     4 red green blue maxrad
379     .DE
380     If maxrad is zero, then the surface will never be tested
381     for shadow, although it may participate in an interreflection calculation.
382     If maxrad is negative, then the surface will never contribute to scene
383     illumination.
384     Glow sources will never illuminate objects on the other side of an
385     illum surface.
386     This provides a convenient way to illuminate local light fixture
387     geometry without overlighting nearby objects.
388     .LP
389     .UL Spotlight
390     .PP
391     Spotlight is used for self-luminous surfaces having directed output.
392     As well as radiance, the full cone angle (in degrees)
393     and orientation (output direction) vector are given.
394     The length of the orientation vector is the distance
395 greg 1.4 of the effective focus behind the source center (i.e., the focal length).
396 greg 1.1 .DS
397     mod spotlight id
398     0
399     0
400     7 red green blue angle xdir ydir zdir
401     .DE
402     .LP
403     .UL Mirror
404     .PP
405 greg 1.9 Mirror is used for planar surfaces that produce virtual
406 greg 1.1 source reflections.
407     This material should be used sparingly, as it may cause the light
408     source calculation to blow up if it is applied to many small surfaces.
409     This material is only supported for flat surfaces such as polygons
410     and rings.
411     The arguments are simply the RGB reflectance values, which should be
412     between 0 and 1.
413     An optional string argument may be used like the illum type to specify a
414     different material to be used for shading non-source rays.
415     If this alternate material is given as "void", then the mirror surface
416     will be invisible.
417     This is only appropriate if the surface hides other (more detailed)
418     geometry with the same overall reflectance.
419     .DS
420     mod mirror id
421     1 material
422     0
423     3 red green blue
424     .DE
425 greg 1.48 While alternate materials that are reflective will appear as normal,
426     indirect rays will use the mirror's reflectance rather than the
427     alternate type.
428     Transmitting materials are an exception, where both transmission and
429     reflection will use the alternate type for all rays not specifically
430     targeting virtual light sources.
431 greg 1.49 In this case, it is important that any reflections be purely specular
432     (mirror-like) and equal to the mirror's reflectivity
433     to maintain a valid result.
434     A pure diffuse reflection may be added if desired.
435 greg 1.48 .PP
436     The mirror material type reflects light sources only from the front side
437     of a surface, regardless of any alternate material.
438     If virtual source generation is desired on both sides, two coincident
439     surfaces with opposite normal orientations may be employed to achieve
440     this effect.
441     The reflectance and alternate material type may be
442     different for the overlapped surfaces,
443     and the two sides will behave accordingly.
444 greg 1.1 .LP
445     .UL Prism1
446     .PP
447     The prism1 material is for general light redirection from prismatic
448 greg 1.9 glazings, generating virtual light sources.
449 greg 1.4 It can only be used to modify a planar surface (i.e., a polygon or disk)
450 greg 1.1 and should not result in either light concentration or scattering.
451     The new direction of the ray can be on either side of the material,
452     and the definitions must have the correct bidirectional properties
453 greg 1.9 to work properly with virtual light sources.
454 greg 1.1 The arguments give the coefficient for the redirected light
455     and its direction.
456     .DS
457     mod prism1 id
458     5+ coef dx dy dz funcfile transform
459     0
460     n A1 A2 .. An
461     .DE
462     The new direction variables
463     .I "dx, dy"
464     and
465     .I dz
466     need not produce a normalized vector.
467     For convenience, the variables
468     .I "DxA, DyA"
469     and
470     .I DzA
471     are defined as the normalized direction to the target light source.
472     See section 2.2.1 on function files for further information.
473     .LP
474     .UL Prism2
475     .PP
476     The material prism2 is identical to prism1 except that
477     it provides for two ray redirections rather than one.
478     .DS
479     mod prism2 id
480     9+ coef1 dx1 dy1 dz1 coef2 dx2 dy2 dz2 funcfile transform
481     0
482     n A1 A2 .. An
483     .DE
484     .LP
485     .UL Mist
486     .PP
487     Mist is a virtual material used to delineate a volume
488     of participating atmosphere.
489     A list of important light sources may be given, along with an
490     extinction coefficient, scattering albedo and scattering eccentricity
491     parameter.
492     The light sources named by the string argument list
493     will be tested for scattering within the volume.
494     Sources are identified by name, and virtual light sources may be indicated
495     by giving the relaying object followed by '>' followed by the source, i.e:
496     .DS
497     3 source1 mirror1>source10 mirror2>mirror1>source3
498     .DE
499     Normally, only one source is given per mist material, and there is an
500     upper limit of 32 to the total number of active scattering sources.
501     The extinction coefficient, if given, is added to the global
502     coefficient set on the command line.
503     Extinction is in units of 1/distance (distance based on the world coordinates),
504     and indicates the proportional loss of radiance over one unit distance.
505     The scattering albedo, if present, will override the global setting within
506     the volume.
507     An albedo of 0\00\00 means a perfectly absorbing medium, and an albedo of
508     1\01\01\0 means
509     a perfectly scattering medium (no absorption).
510     The scattering eccentricity parameter will likewise override the global
511     setting if it is present.
512     Scattering eccentricity indicates how much scattered light favors the
513 greg 1.15 forward direction, as fit by the Henyey-Greenstein function:
514 greg 1.1 .DS
515     P(theta) = (1 - g*g) / (1 + g*g - 2*g*cos(theta))^1.5
516     .DE
517     A perfectly isotropic scattering medium has a g parameter of 0, and
518     a highly directional material has a g parameter close to 1.
519     Fits to the g parameter may be found along with typical extinction
520     coefficients and scattering albedos for various atmospheres and
521     cloud types in USGS meteorological tables.
522     (A pattern will be applied to the extinction values.)\0
523     .DS
524     mod mist id
525     N src1 src2 .. srcN
526     0
527     0|3|6|7 [ rext gext bext [ ralb galb balb [ g ] ] ]
528     .DE
529     There are two usual uses of the mist type.
530     One is to surround a beam from a spotlight or laser so that it is
531     visible during rendering.
532     For this application, it is important to use a cone (or cylinder) that
533     is long enough and wide enough to contain the important visible portion.
534     Light source photometry and intervening objects will have the desired
535     effect, and crossing beams will result in additive scattering.
536     For this application, it is best to leave off the real arguments, and
537     use the global rendering parameters to control the atmosphere.
538     The second application is to model clouds or other localized media.
539     Complex boundary geometry may be used to give shape to a uniform medium,
540     so long as the boundary encloses a proper volume.
541     Alternatively, a pattern may be used to set the line integral value
542     through the cloud for a ray entering or exiting a point in a given
543     direction.
544     For this application, it is best if cloud volumes do not overlap each other,
545     and opaque objects contained within them may not be illuminated correctly
546     unless the line integrals consider enclosed geometry.
547     .LP
548     .UL Plastic
549     .PP
550     Plastic is a material with uncolored highlights.
551     It is given by its RGB reflectance, its fraction of specularity,
552     and its roughness value.
553     Roughness is specified as the rms slope of surface facets.
554     A value of 0 corresponds to a perfectly smooth surface, and
555     a value of 1 would be a very rough surface.
556     Specularity fractions greater than 0.1 and
557     roughness values greater than 0.2 are not very
558     realistic.
559     (A pattern modifying plastic will affect the material color.)
560     .DS
561     mod plastic id
562     0
563     0
564     5 red green blue spec rough
565     .DE
566     .LP
567     .UL Metal
568     .PP
569     Metal is similar to plastic, but specular highlights
570     are modified by the material color.
571     Specularity of metals is usually .9 or greater.
572     As for plastic, roughness values above .2 are uncommon.
573     .LP
574     .UL Trans
575     .PP
576     Trans is a translucent material, similar to plastic.
577     The transmissivity is the fraction of penetrating light that
578     travels all the way through the material.
579     The transmitted specular component is the fraction of transmitted
580     light that is not diffusely scattered.
581     Transmitted and diffusely reflected light is modified by the material color.
582     Translucent objects are infinitely thin.
583     .DS
584     mod trans id
585     0
586     0
587     7 red green blue spec rough trans tspec
588     .DE
589     .LP
590     .UL Plastic2
591     .PP
592     Plastic2 is similar to plastic, but with anisotropic
593     roughness.
594     This means that highlights in the surface will appear elliptical rather
595     than round.
596     The orientation of the anisotropy is determined by the unnormalized
597     direction vector
598     .I "ux uy uz".
599     These three expressions (separated by white space) are evaluated in
600     the context of the function file
601     .I funcfile.
602 greg 1.4 If no function file is required (i.e., no special variables or
603 greg 1.1 functions are required), a period (`.') may be given in its
604     place.
605     (See the discussion of Function Files in the Auxiliary Files section).
606     The
607     .I urough
608     value defines the roughness along the
609     .B u
610     vector given projected onto the surface.
611     The
612     .I vrough
613     value defines the roughness perpendicular to this vector.
614     Note that the highlight will be narrower in the direction of the
615     smaller roughness value.
616     Roughness values of zero are not allowed for efficiency reasons
617     since the behavior would be the same as regular plastic in that
618     case.
619     .DS
620     mod plastic2 id
621     4+ ux uy uz funcfile transform
622     0
623     6 red green blue spec urough vrough
624     .DE
625     .LP
626     .UL Metal2
627     .PP
628     Metal2 is the same as plastic2, except that the highlights are
629     modified by the material color.
630     .LP
631     .UL Trans2
632     .PP
633     Trans2 is the anisotropic version of trans.
634     The string arguments are the same as for plastic2, and the real
635     arguments are the same as for trans but with an additional roughness
636     value.
637     .DS
638     mod trans2 id
639     4+ ux uy uz funcfile transform
640     0
641     8 red green blue spec urough vrough trans tspec
642     .DE
643     .LP
644 greg 1.30 .UL Ashik2
645     .PP
646     Ashik2 is the anisotropic reflectance model by Ashikhmin & Shirley.
647     The string arguments are the same as for plastic2, but the real
648     arguments have additional flexibility to specify the specular color.
649     Also, rather than roughness, specular power is used, which has no
650     physical meaning other than larger numbers are equivalent to a smoother
651     surface.
652 greg 1.39 Unlike other material types, total reflectance is the sum of
653     diffuse and specular colors, and should be adjusted accordingly.
654 greg 1.30 .DS
655     mod ashik2 id
656     4+ ux uy uz funcfile transform
657     0
658     8 dred dgrn dblu sred sgrn sblu u-power v-power
659     .DE
660     .LP
661 greg 1.47 .UL WGMDfunc
662     .PP
663     WGMDfunc is a more programmable version of trans2,
664     with separate modifier paths and variables to control each component.
665     (WGMD stands for Ward-Geisler-Moroder-Duer, which is the basis for
666     this empirical model, similar to the previous ones beside Ashik2.)\0
667     The specification of this material is given below.
668     .DS
669     mod WGMDfunc id
670     13+ rs_mod rs rs_urough rs_vrough
671     ts_mod ts ts_urough ts_vrough
672     td_mod
673     ux uy uz funcfile transform
674     0
675     9+ rfdif gfdif bfdif
676     rbdif gbdif bbdif
677     rtdif gtdif btdif
678     A10 ..
679     .DE
680     The sum of specular reflectance (
681     .I rs
682     ), specular transmittance (
683     .I ts
684     ), diffuse reflectance (
685     .I "rfdif gfdif bfdif"
686     for front and
687     .I "rbdif gbdif bbdif"
688     for back)
689     and diffuse transmittance (
690     .I "rtdif gtdif btdif"
691     ) should be less than 1 for each
692     channel.
693     .PP
694     Unique to this material, separate modifier channels are
695     provided for each component.
696     The main modifier is used on the diffuse reflectance, both
697     front and back.
698     The
699     .I rs_mod
700     modifier is used for specular reflectance.
701     If "void" is given for
702     .I rs_mod,
703     then the specular reflection color will be white.
704     The special "inherit" keyword may also be given, in which case
705     specular reflectance will share the main modifier.
706     This behavior is replicated for the specular transmittance modifier
707     .I ts_mod,
708     which has its own independent roughness expressions.
709     Finally, the diffuse transmittance modifier is given as
710     .I td_mod,
711     which may also be "void" or "inherit".
712     Note that any spectra or color for specular components must be
713     carried by the named modifier(s).
714     .PP
715     The main advantage to this material over BRTDfunc and
716     other programmable types described below is that the specular sampling is
717     well-defined, so that all components are fully computed.
718     .LP
719 greg 1.1 .UL Dielectric
720     .PP
721     A dielectric material is transparent, and it refracts light
722     as well as reflecting it.
723     Its behavior is determined by the index of refraction and
724     transmission coefficient in each wavelength band per unit length.
725     Common glass has a index of refraction (n) around 1.5,
726     and a transmission coefficient of roughly 0.92 over an inch.
727     An additional number, the Hartmann constant, describes how
728     the index of refraction changes as a function of wavelength.
729     It is usually zero.
730     (A pattern modifies only the refracted value.)
731     .DS
732     mod dielectric id
733     0
734     0
735     5 rtn gtn btn n hc
736     .DE
737     .LP
738     .UL Interface
739     .PP
740     An interface is a boundary between two dielectrics.
741     The first transmission coefficient and refractive index are for the inside;
742     the second ones are for the outside.
743     Ordinary dielectrics are surrounded by a vacuum (1 1 1 1).
744     .DS
745     mod interface id
746     0
747     0
748     8 rtn1 gtn1 btn1 n1 rtn2 gtn2 btn2 n2
749     .DE
750     .LP
751     .UL Glass
752     .PP
753     Glass is similar to dielectric, but it is optimized for thin glass
754     surfaces (n = 1.52).
755     One transmitted ray and one reflected ray is produced.
756     By using a single surface is in place of two, internal reflections
757     are avoided.
758     The surface orientation is irrelevant, as it is for plastic,
759     metal, and trans.
760     The only specification required is the transmissivity at normal
761     incidence.
762     (Transmissivity is the amount of light not absorbed in one traversal
763     of the material.
764     Transmittance -- the value usually measured -- is the total light
765     transmitted through the pane including multiple reflections.)\0
766     To compute transmissivity (tn) from transmittance (Tn) use:
767     .DS
768     tn = (sqrt(.8402528435+.0072522239*Tn*Tn)-.9166530661)/.0036261119/Tn
769     .DE
770     Standard 88% transmittance glass has a transmissivity of 0.96.
771     (A pattern modifying glass will affect the transmissivity.)
772     If a fourth real argument is given, it is interpreted as the index of
773     refraction to use instead of 1.52.
774     .DS
775     mod glass id
776     0
777     0
778     3 rtn gtn btn
779     .DE
780     .LP
781     .UL Plasfunc
782     .PP
783     Plasfunc in used for the procedural definition of plastic-like
784     materials with arbitrary bidirectional reflectance distribution
785     functions (BRDF's).
786     The arguments to this material include the color and specularity,
787     as well as the function defining the specular distribution and the
788     auxiliary file where it may be found.
789     .DS
790     mod plasfunc id
791     2+ refl funcfile transform
792     0
793     4+ red green blue spec A5 ..
794     .DE
795     The function
796     .I refl
797     takes four arguments, the x, y and z
798     direction towards the incident light, and the solid angle
799     subtended by the source.
800     The solid angle is provided to facilitate averaging, and is usually
801     ignored.
802     The
803     .I refl
804     function should integrate to 1 over
805     the projected hemisphere to maintain energy balance.
806     At least four real arguments must be given, and these are made
807     available along with any additional values to the reflectance
808     function.
809     Currently, only the contribution from direct light sources is
810     considered in the specular calculation.
811     As in most material types, the surface normal is always
812     altered to face the incoming ray.
813     .LP
814     .UL Metfunc
815     .PP
816     Metfunc is identical to plasfunc and takes the same arguments, but
817     the specular component is multiplied also by the material color.
818     .LP
819     .UL Transfunc
820     .PP
821     Transfunc is similar to plasfunc but with an arbitrary bidirectional
822     transmittance distribution as well as a reflectance distribution.
823     Both reflectance and transmittance are specified with the same function.
824     .DS
825     mod transfunc id
826     2+ brtd funcfile transform
827     0
828     6+ red green blue rspec trans tspec A7 ..
829     .DE
830     Where
831     .I trans
832     is the total light transmitted and
833     .I tspec
834     is the non-Lambertian fraction of transmitted light.
835     The function
836     .I brtd
837     should integrate to 1 over each projected hemisphere.
838     .LP
839     .UL BRTDfunc
840     .PP
841     The material BRTDfunc gives the maximum flexibility over surface
842     reflectance and transmittance, providing for spectrally-dependent
843     specular rays and reflectance and transmittance distribution functions.
844     .DS
845     mod BRTDfunc id
846     10+ rrefl grefl brefl
847     rtrns gtrns btrns
848     rbrtd gbrtd bbrtd
849     funcfile transform
850     0
851     9+ rfdif gfdif bfdif
852     rbdif gbdif bbdif
853     rtdif gtdif btdif
854     A10 ..
855     .DE
856     The variables
857     .I "rrefl, grefl"
858     and
859     .I brefl
860     specify the color coefficients for
861     the ideal specular (mirror) reflection of the surface.
862     The variables
863     .I "rtrns, gtrns"
864     and
865     .I btrns
866     specify the color coefficients for the ideal specular transmission.
867     The functions
868     .I "rbrtd, gbrtd"
869     and
870     .I bbrtd
871     take the direction to the incident light (and its solid angle)
872     and compute the color coefficients for the directional diffuse part of
873     reflection and transmission.
874     As a special case, three identical values of '0' may be given in place of
875     these function names to indicate no directional diffuse component.
876     .PP
877     Unlike most other material types, the surface normal is not altered to
878     face the incoming ray.
879     Thus, functions and variables must pay attention to the orientation of
880     the surface and make adjustments appropriately.
881     However, the special variables for the perturbed dot product and surface
882     normal,
883     .I "RdotP, NxP, NyP"
884     and
885     .I NzP
886     are reoriented as if the ray hit the front surface for convenience.
887     .PP
888     A diffuse reflection component may be given for the front side with
889     .I "rfdif, gfdif"
890     and
891     .I bfdif
892     for the front side of the surface or
893     .I "rbdif, gbdif"
894     and
895     .I bbdif
896     for the back side.
897     The diffuse transmittance (must be the same for both sides by physical law)
898     is given by
899     .I "rtdif, gtdif"
900     and
901     .I btdif.
902     A pattern will modify these diffuse scattering values,
903     and will be available through the special variables
904     .I "CrP, CgP"
905     and
906     .I CbP.
907     .PP
908     Care must be taken when using this material type to produce a physically
909     valid reflection model.
910     The reflectance functions should be bidirectional, and under no circumstances
911     should the sum of reflected diffuse, transmitted diffuse, reflected specular,
912     transmitted specular and the integrated directional diffuse component be
913     greater than one.
914     .LP
915     .UL Plasdata
916     .PP
917     Plasdata is used for arbitrary BRDF's that are most conveniently
918     given as interpolated data.
919     The arguments to this material are the data file and coordinate index
920     functions, as well as a function to optionally modify the data
921     values.
922     .DS
923     mod plasdata id
924     3+n+
925     func datafile
926     funcfile x1 x2 .. xn transform
927     0
928     4+ red green blue spec A5 ..
929     .DE
930     The coordinate indices
931     .I "(x1, x2,"
932     etc.) are themselves functions of
933     the x, y and z direction to the incident light, plus the solid angle
934     subtended by the light source (usually ignored).
935     The data function
936     .I (func)
937     takes five variables, the
938     interpolated value from the n-dimensional data file, followed by the
939     x, y and z direction to the incident light and the solid angle of the source.
940     The light source direction and size may of course be ignored by the function.
941     .LP
942     .UL Metdata
943     .PP
944     As metfunc is to plasfunc, metdata is to plasdata.
945     Metdata takes the same arguments as plasdata, but the specular
946     component is modified by the given material color.
947     .LP
948     .UL Transdata
949     .PP
950     Transdata is like plasdata but the specification includes transmittance
951     as well as reflectance.
952     The parameters are as follows.
953     .DS
954     mod transdata id
955     3+n+
956     func datafile
957     funcfile x1 x2 .. xn transform
958     0
959     6+ red green blue rspec trans tspec A7 ..
960     .DE
961     .LP
962 greg 1.18 .UL BSDF
963     .PP
964     The BSDF material type loads an XML (eXtensible Markup Language)
965     file describing a bidirectional scattering distribution function.
966     Real arguments to this material may define additional
967     diffuse components that augment the BSDF data.
968 greg 1.19 String arguments are used to define thickness for proxied
969     surfaces and the "up" orientation for the material.
970 greg 1.18 .DS
971     mod BSDF id
972     6+ thick BSDFfile ux uy uz funcfile transform
973     0
974     0|3|6|9
975     rfdif gfdif bfdif
976     rbdif gbdif bbdif
977     rtdif gtdif btdif
978     .DE
979 greg 1.19 The first string argument is a "thickness" parameter that may be used
980     to hide detail geometry being proxied by an aggregate BSDF material.
981     If a view or shadow ray hits a BSDF proxy with non-zero thickness,
982     it will pass directly through as if the surface were not there.
983 greg 1.18 Similar to the illum type, this permits direct viewing and
984     shadow testing of complex geometry.
985 greg 1.19 The BSDF is used when a scattered (indirect) ray hits the surface,
986     and any transmitted sample rays will be offset by the thickness amount
987     to avoid the hidden geometry and gather samples from the other side.
988     In this manner, BSDF surfaces can improve the results for indirect
989     scattering from complex systems without sacrificing appearance or
990     shadow accuracy.
991     If the BSDF has transmission and back-side reflection data,
992     a parallel BSDF surface may be
993     placed slightly less than the given thickness away from the front surface
994     to enclose the complex geometry on both sides.
995 greg 1.20 The sign of the thickness is important, as it indicates whether the
996 greg 1.21 proxied geometry is behind the BSDF surface (when thickness is positive)
997 greg 1.20 or in front (when thickness is negative).
998 greg 1.18 .LP
999     The second string argument is the name of the BSDF file, which is
1000     found in the usual auxiliary locations.
1001     The following three string parameters name variables for an "up" vector,
1002     which together with the surface normal, define the
1003     local coordinate system that orients the BSDF.
1004     These variables, along with the thickness, are defined in a function
1005     file given as the next string argument.
1006     An optional transform is used to scale the thickness and reorient the up vector.
1007     .LP
1008     If no real arguments are given, the BSDF is used by itself to determine
1009     reflection and transmission.
1010     If there are at least 3 real arguments, the first triplet is an
1011     additional diffuse reflectance for the front side.
1012     At least 6 real arguments adds diffuse reflectance to the rear side of the surface.
1013     If there are 9 real arguments, the final triplet will be taken as an additional
1014     diffuse transmittance.
1015     All diffuse components as well as the non-diffuse transmission are
1016     modified by patterns applied to this material.
1017     The non-diffuse reflection from either side are unaffected.
1018     Textures perturb the effective surface normal in the usual way.
1019     .LP
1020     The surface normal of this type is not altered to face the incoming ray,
1021     so the front and back BSDF reflections may differ.
1022     (Transmission is identical front-to-back by physical law.)\0
1023     If back visibility is turned off during rendering and there is no
1024     transmission or back-side reflection, only then the surface will be
1025     invisible from behind.
1026     Unlike other data-driven material types, the BSDF type is fully
1027     supported and all parts of the distribution are properly sampled.
1028     .LP
1029 greg 1.35 .UL aBSDF
1030 greg 1.34 .PP
1031 greg 1.35 The aBSDF material is identical to the BSDF type with two important
1032 greg 1.34 differences.
1033     First, proxy geometry is not supported, so there is no thickness parameter.
1034 greg 1.35 Second, an aBSDF is assumed to have some specular through component
1035     (the 'a' stands for "aperture"), which
1036 greg 1.34 is treated specially during the direct calculation and when viewing the
1037     material.
1038     Based on the BSDF data, the coefficient of specular transmission is
1039     determined and used for modifying unscattered shadow and view rays.
1040     .DS
1041 greg 1.35 mod aBSDF id
1042 greg 1.34 5+ BSDFfile ux uy uz funcfile transform
1043     0
1044     0|3|6|9
1045     rfdif gfdif bfdif
1046     rbdif gbdif bbdif
1047     rtdif gtdif btdif
1048     .DE
1049     .LP
1050     If a material has no specular transmitted component, it is much better
1051 greg 1.35 to use the BSDF type with a zero thickness than to use aBSDF.
1052 greg 1.34 .LP
1053 greg 1.1 .UL Antimatter
1054     .PP
1055     Antimatter is a material that can "subtract" volumes from other volumes.
1056     A ray passing into an antimatter object becomes blind to all the specified
1057     modifiers:
1058     .DS
1059     mod antimatter id
1060     N mod1 mod2 .. modN
1061     0
1062     0
1063     .DE
1064     The first modifier will also be used to shade the area leaving the
1065     antimatter volume and entering the regular volume.
1066     If mod1 is void, the antimatter volume is completely invisible.
1067 greg 1.31 If shading is desired at antimatter surfaces, it is important
1068     that the related volumes are closed with outward-facing normals.
1069     Antimatter surfaces should not intersect with other antimatter boundaries,
1070     and it is unwise to use the same modifier in nested antimatter volumes.
1071 greg 1.1 The viewpoint must be outside all volumes concerned for a correct
1072     rendering.
1073     .NH 3
1074     Textures
1075     .PP
1076     A texture is a perturbation of the surface normal, and
1077     is given by either a function or data.
1078     .LP
1079     .UL Texfunc
1080     .PP
1081     A texfunc uses an auxiliary function file
1082     to specify a procedural texture:
1083     .DS
1084     mod texfunc id
1085     4+ xpert ypert zpert funcfile transform
1086     0
1087     n A1 A2 .. An
1088     .DE
1089     .LP
1090     .UL Texdata
1091     .PP
1092     A texdata texture uses three data files to get the surface
1093     normal perturbations.
1094     The variables
1095     .I xfunc,
1096     .I yfunc
1097     and
1098     .I zfunc
1099     take three arguments
1100     each from the interpolated values in
1101     .I xdfname,
1102     .I ydfname
1103     and
1104     .I zdfname.
1105     .DS
1106     mod texdata id
1107     8+ xfunc yfunc zfunc xdfname ydfname zdfname vfname x0 x1 .. xf
1108     0
1109     n A1 A2 .. An
1110     .DE
1111     .NH 3
1112     Patterns
1113     .PP
1114     Patterns are used to modify the reflectance of materials.
1115     The basic types are given below.
1116     .LP
1117     .UL Colorfunc
1118     .PP
1119     A colorfunc is a procedurally defined color pattern.
1120     It is specified as follows:
1121     .DS
1122     mod colorfunc id
1123     4+ red green blue funcfile transform
1124     0
1125     n A1 A2 .. An
1126     .DE
1127     .LP
1128     .UL Brightfunc
1129     .PP
1130     A brightfunc is the same as a colorfunc, except it is monochromatic.
1131     .DS
1132     mod brightfunc id
1133     2+ refl funcfile transform
1134     0
1135     n A1 A2 .. An
1136     .DE
1137     .LP
1138     .UL Colordata
1139     .PP
1140     Colordata uses an interpolated data map to modify a material's color.
1141     The map is n-dimensional, and is stored in three
1142     auxiliary files, one for each color.
1143     The coordinates used to look up and interpolate the data are
1144     defined in another auxiliary file.
1145     The interpolated data values are modified by functions of
1146     one or three variables.
1147     If the functions are of one variable, then they are passed the
1148     corresponding color component (red or green or blue).
1149     If the functions are of three variables, then they are passed the
1150     original red, green, and blue values as parameters.
1151     .DS
1152     mod colordata id
1153     7+n+
1154     rfunc gfunc bfunc rdatafile gdatafile bdatafile
1155     funcfile x1 x2 .. xn transform
1156     0
1157     m A1 A2 .. Am
1158     .DE
1159     .LP
1160     .UL Brightdata
1161     .PP
1162     Brightdata is like colordata, except monochromatic.
1163     .DS
1164     mod brightdata id
1165     3+n+
1166     func datafile
1167     funcfile x1 x2 .. xn transform
1168     0
1169     m A1 A2 .. Am
1170     .DE
1171     .LP
1172     .UL Colorpict
1173     .PP
1174     Colorpict is a special case of colordata, where the pattern is
1175     a two-dimensional image stored in the RADIANCE picture format.
1176     The dimensions of the image data are determined by the picture
1177     such that the smaller dimension is always 1, and the other
1178     is the ratio between the larger and the smaller.
1179     For example, a 500x338 picture would have coordinates (u,v)
1180     in the rectangle between (0,0) and (1.48,1).
1181     .DS
1182     mod colorpict id
1183     7+
1184     rfunc gfunc bfunc pictfile
1185     funcfile u v transform
1186     0
1187     m A1 A2 .. Am
1188     .DE
1189     .LP
1190     .UL Colortext
1191     .PP
1192     Colortext is dichromatic writing in a polygonal font.
1193     The font is defined in an auxiliary file, such as
1194     .I helvet.fnt.
1195     The text itself is also specified in a separate file, or
1196     can be part of the material arguments.
1197     The character size, orientation, aspect ratio and slant is
1198     determined by right and down motion vectors.
1199     The upper left origin for the text block as well as
1200     the foreground and background colors
1201     must also be given.
1202     .DS
1203     mod colortext id
1204     2 fontfile textfile
1205     0
1206     15+
1207     Ox Oy Oz
1208     Rx Ry Rz
1209     Dx Dy Dz
1210     rfore gfore bfore
1211     rback gback bback
1212     [spacing]
1213     .DE
1214     or:
1215     .DS
1216     mod colortext id
1217     2+N fontfile . This is a line with N words ...
1218     0
1219     15+
1220     Ox Oy Oz
1221     Rx Ry Rz
1222     Dx Dy Dz
1223     rfore gfore bfore
1224     rback gback bback
1225     [spacing]
1226     .DE
1227     .LP
1228     .UL Brighttext
1229     .PP
1230     Brighttext is like colortext, but the writing is monochromatic.
1231     .DS
1232     mod brighttext id
1233     2 fontfile textfile
1234     0
1235     11+
1236     Ox Oy Oz
1237     Rx Ry Rz
1238     Dx Dy Dz
1239     foreground background
1240     [spacing]
1241     .DE
1242     or:
1243     .DS
1244     mod brighttext id
1245     2+N fontfile . This is a line with N words ...
1246     0
1247     11+
1248     Ox Oy Oz
1249     Rx Ry Rz
1250     Dx Dy Dz
1251     foreground background
1252     [spacing]
1253     .DE
1254     .LP
1255     By default, a uniform spacing algorithm is used that guarantees
1256     every character will appear in a precisely determined position.
1257     Unfortunately, such a scheme results in rather unattractive and difficult to
1258     read text with most fonts.
1259     The optional
1260     .I spacing
1261     value defines the distance between characters for proportional spacing.
1262     A positive value selects a spacing algorithm that preserves right margins and
1263     indentation, but does not provide the ultimate in proportionally spaced text.
1264     A negative value insures that characters are properly spaced, but the
1265     placement of words then varies unpredictably.
1266     The choice depends on the relative importance of spacing versus formatting.
1267     When presenting a section of formatted text, a positive spacing value is
1268     usually preferred.
1269     A single line of text will often be accompanied by a negative spacing value.
1270     A section of text meant to depict a picture, perhaps using a special purpose
1271     font such as hexbit4x1.fnt, calls for uniform spacing.
1272     Reasonable magnitudes for proportional spacing are
1273     between 0.1 (for tightly spaced characters) and 0.3 (for wide spacing).
1274 greg 1.41 .LP
1275     .UL Spectrum
1276     .PP
1277     The spectrum primitive is the most basic type for introducing spectral
1278     color to a material.
1279     Since materials only provide RGB parameters, spectral patterns
1280     are the only way to superimpose wavelength-dependent behavior.
1281     .DS
1282     mod spectrum id
1283     0
1284     0
1285     5+ nmA nmB s1 s2 .. sN
1286     .DE
1287 greg 1.43 The first two real arguments indicate the extrema of the
1288 greg 1.41 spectral range in nanometers.
1289 greg 1.44 Subsequent real values correspond to multipliers at each wavelength.
1290 greg 1.42 The nmA wavelength may be greater or less than nmB,
1291     but they may not be equal, and their ordering matches
1292     the order of the spectral values.
1293 greg 1.41 A minimum of 3 values must be given, which would act
1294     more or less the same as a constant RGB multiplier.
1295     As with RGB values, spectral quantities normally range between 0
1296     and 1 at each wavelength, or average to 1.0 against a standard
1297     sensitivity functions such as V(lambda).
1298     The best results obtain when the spectral range and number
1299     of samples match rendering options, though resampling will handle
1300     any differences, zero-filling wavelenths outside the nmA to nmB
1301     range.
1302     A warning will be issued if the given wavelength range does not
1303     adequately cover the visible spectrum.
1304     .LP
1305     .UL Specfile
1306     .PP
1307     The specfile primitive is equivalent to the spectrum type, but
1308     the wavelength range and values are contained in a 1-dimensional
1309     data file.
1310     This may be a more convenient way to specify a spectral color,
1311     especially one corresponding to a standard illuminant such as D65
1312     or a library of measured spectra.
1313     .DS
1314     mod specfile id
1315     1 datafile
1316     0
1317     0
1318     .DE
1319     As with the spectrum type, rendering wavelengths outside the defined
1320     range will be zero-filled.
1321     Unlike the spectrum type, the file may contain non-uniform samples.
1322     .LP
1323     .UL Specfunc
1324     .PP
1325     The specfunc primitive offers dynamic control over a spectral
1326     pattern, similar to the colorfunc type.
1327     .DS
1328     mod specfunc id
1329 greg 1.45 2+ sfunc funcfile transform
1330 greg 1.41 0
1331     2+ nmA nmB A3 ..
1332     .DE
1333     Like the spectrum primitive, the wavelength range is specified
1334     in the first two real arguments, and additional real values are
1335 greg 1.44 set in the evaluation context.
1336 greg 1.41 This function is fed a wavelenth sample
1337     between nmA and nmB as its only argument,
1338     and it returns the corresponding spectral intensity.
1339 greg 1.46 .LP
1340     .UL Specdata
1341     .PP
1342     Specdata is like brightdata and colordata, but with more
1343     than 3 specular samples.
1344     .DS
1345     mod specdata id
1346     3+n+
1347     func datafile
1348     funcfile x1 x2 .. xn transform
1349     0
1350     m A1 A2 .. Am
1351     .DE
1352     The data file must have one more dimension than the coordinate
1353     variable count, as this final dimension corresponds to the covered
1354     spectrum.
1355     The starting and ending wavelengths are specified in "datafile"
1356     as well as the number of spectral samples.
1357     The function "func" will be called with two parameters, the
1358     interpolated spectral value for the current coordinate and the
1359     associated wavelength.
1360     If the spectrum is broken into 12 components, then 12 calls
1361     will be made to "func" for the relevant ray evaluation.
1362     .LP
1363     .UL Specpict
1364     .PP
1365     Specpict is a special case of specdata, where the pattern is
1366     a hyperspectral image stored in the common-exponent file format.
1367     The dimensions of the image data are determined by the picture
1368     just as with the colorpict primitive.
1369     .DS
1370     mod specpict id
1371     5+
1372     func specfile
1373     funcfile u v transform
1374     0
1375     m A1 A2 .. Am
1376     .DE
1377     The function "func" is called with the interpolated pixel value
1378     and the wavelength sample in nanometers, the same as specdata,
1379     with as many calls made as there are components in "specfile".
1380 greg 1.1 .NH 3
1381     Mixtures
1382     .PP
1383     A mixture is a blend of one or more materials or textures and patterns.
1384 greg 1.28 Blended materials should not be light source types or virtual source types.
1385 greg 1.1 The basic types are given below.
1386     .LP
1387     .UL Mixfunc
1388     .PP
1389     A mixfunc mixes two modifiers procedurally.
1390     It is specified as follows:
1391     .DS
1392     mod mixfunc id
1393     4+ foreground background vname funcfile transform
1394     0
1395     n A1 A2 .. An
1396     .DE
1397     Foreground and background are modifier names that must be
1398     defined earlier in the scene description.
1399     If one of these is a material, then
1400     the modifier of the mixfunc must be "void".
1401     (Either the foreground or background modifier may be "void",
1402     which serves as a form of opacity control when used with a material.)\0
1403     Vname is the coefficient defined in funcfile that determines the influence
1404     of foreground.
1405     The background coefficient is always (1-vname).
1406     .LP
1407     .UL Mixdata
1408     .PP
1409     Mixdata combines two modifiers using an auxiliary data file:
1410     .DS
1411     mod mixdata id
1412     5+n+
1413     foreground background func datafile
1414     funcfile x1 x2 .. xn transform
1415     0
1416     m A1 A2 .. Am
1417     .DE
1418     .LP
1419     .UL Mixpict
1420     .PP
1421     Mixpict combines two modifiers based on a picture:
1422     .DS
1423     mod mixpict id
1424     7+
1425     foreground background func pictfile
1426     funcfile u v transform
1427     0
1428     m A1 A2 .. Am
1429     .DE
1430     The mixing coefficient function "func" takes three
1431     arguments, the red, green and blue values
1432     corresponding to the pixel at (u,v).
1433     .LP
1434     .UL Mixtext
1435     .PP
1436     Mixtext uses one modifier for the text foreground, and one for the
1437     background:
1438     .DS
1439     mod mixtext id
1440     4 foreground background fontfile textfile
1441     0
1442     9+
1443     Ox Oy Oz
1444     Rx Ry Rz
1445     Dx Dy Dz
1446     [spacing]
1447     .DE
1448     or:
1449     .DS
1450     mod mixtext id
1451     4+N
1452     foreground background fontfile .
1453     This is a line with N words ...
1454     0
1455     9+
1456     Ox Oy Oz
1457     Rx Ry Rz
1458     Dx Dy Dz
1459     [spacing]
1460     .DE
1461     .NH 2
1462     Auxiliary Files
1463     .PP
1464     Auxiliary files used in textures and patterns
1465     are accessed by the programs during image generation.
1466     These files may be located in the working directory, or in
1467     a library directory.
1468     The environment variable
1469     .I RAYPATH
1470     can be assigned an alternate set of search directories.
1471     Following is a brief description of some common file types.
1472     .NH 3
1473     Function Files
1474     .PP
1475     A function file contains the definitions of variables, functions
1476     and constants used by a primitive.
1477     The transformation that accompanies the file name contains the necessary
1478     rotations, translations and scalings to bring the coordinates of
1479     the function file into agreement with the world coordinates.
1480     The transformation specification is the same as for the
1481     .I xform
1482     command.
1483     An example function file is given below:
1484     .DS
1485     {
1486     This is a comment, enclosed in curly braces.
1487     {Comments can be nested.}
1488     }
1489     { standard expressions use +,-,*,/,^,(,) }
1490     vname = Ny * func(A1) ;
1491     { constants are defined with a colon }
1492     const : sqrt(PI/2) ;
1493     { user-defined functions add to library }
1494     func(x) = 5 + A1*sin(x/3) ;
1495     { functions may be passed and recursive }
1496     rfunc(f,x) = if(x,f(x),f(-x)*rfunc(f,x+1)) ;
1497     { constant functions may also be defined }
1498     cfunc(x) : 10*x / sqrt(x) ;
1499     .DE
1500     Many variables and functions are already defined by the program,
1501     and they are listed in the file
1502     .I rayinit.cal.
1503     The following variables are particularly important:
1504     .DS
1505     Dx, Dy, Dz - incident ray direction
1506 greg 1.4 Nx, Ny, Nz - surface normal at intersection point
1507 greg 1.1 Px, Py, Pz - intersection point
1508 greg 1.4 T - distance from start
1509     Ts - single ray (shadow) distance
1510 greg 1.1 Rdot - cosine between ray and normal
1511     arg(0) - number of real arguments
1512     arg(i) - i'th real argument
1513     .DE
1514 greg 1.4 For mesh objects, the local surface coordinates are available:
1515     .DS
1516     Lu, Lv - local (u,v) coordinates
1517     .DE
1518 greg 1.1 For BRDF types, the following variables are defined as well:
1519     .DS
1520     NxP, NyP, NzP - perturbed surface normal
1521     RdotP - perturbed dot product
1522     CrP, CgP, CbP - perturbed material color
1523     .DE
1524     A unique context is set up for each file so that the same variable
1525     may appear in different function files without conflict.
1526     The variables listed above and any others defined in
1527     rayinit.cal are available globally.
1528     If no file is needed by a given primitive because all the required
1529     variables are global, a period (`.') can be given in
1530     place of the file name.
1531     It is also possible to give an expression instead of a straight
1532 greg 1.13 variable name in a scene file.
1533 greg 1.14 Functions (requiring parameters)
1534 greg 1.1 must be given as names and not as expressions.
1535     .PP
1536     Constant expressions are used as an optimization in function
1537     files.
1538     They are replaced wherever they occur in an expression by their
1539     value.
1540     Constant expressions are evaluated only once, so they must not
1541     contain any variables or values that can change, such as the ray
1542     variables Px and Ny or the primitive argument function arg().
1543     All the math library functions such as sqrt() and cos() have the
1544     constant attribute, so they will be replaced by immediate values
1545     whenever they are given constant arguments.
1546     Thus, the subexpression cos(PI*sqrt(2)) is immediately replaced
1547     by its value, -.266255342, and does not cause any additional overhead
1548     in the calculation.
1549     .PP
1550     It is generally a good idea to define constants and variables before
1551     they are referred to in a function file.
1552     Although evaluation does not take place until later, the interpreter
1553     does variable scoping and constant subexpression evaluation based on
1554     what it has compiled already.
1555     For example, a variable that is defined globally in rayinit.cal then
1556     referenced in the local context of a function file cannot
1557     subsequently be redefined in the same file because the compiler
1558     has already determined the scope of the referenced variable as global.
1559     To avoid such conflicts, one can state the scope of a variable explicitly
1560     by preceding the variable name with a context mark (a back-quote) for
1561     a local variable, or following the name with a context mark for a global
1562     variable.
1563     .NH 3
1564     Data Files
1565     .PP
1566     Data files contain n-dimensional arrays of real numbers used
1567     for interpolation.
1568     Typically, definitions in a function file determine how
1569     to index and use interpolated data values.
1570     The basic data file format is as follows:
1571     .DS
1572     N
1573     beg1 end1 m1
1574     0 0 m2 x2.1 x2.2 x2.3 x2.4 .. x2.m2
1575     ...
1576     begN endN mN
1577     DATA, later dimensions changing faster.
1578     .DE
1579     N is the number of dimensions.
1580     For each dimension, the beginning and ending coordinate
1581     values and the dimension size is given.
1582     Alternatively, individual coordinate values can be given when
1583     the points are not evenly spaced.
1584     These values must either be increasing or decreasing monotonically.
1585     The data is m1*m2*...*mN real numbers in ASCII form.
1586     Comments may appear anywhere in the file, beginning with a pound
1587     sign ('#') and continuing to the end of line.
1588     .NH 3
1589     Font Files
1590     .PP
1591     A font file lists the polygons which make up a character set.
1592     Comments may appear anywhere in the file, beginning with a pound
1593     sign ('#') and continuing to the end of line.
1594     All numbers are decimal integers:
1595     .DS
1596     code n
1597     x0 y0
1598     x1 y1
1599     ...
1600     xn yn
1601     ...
1602     .DE
1603     The ASCII codes can appear in any order.
1604     N is the number of vertices, and the last is automatically
1605     connected to the first.
1606     Separate polygonal sections are joined by coincident sides.
1607     The character coordinate system is a square with lower left corner at
1608     (0,0), lower right at (255,0) and upper right at (255,255).
1609     .NH 2
1610     Generators
1611     .PP
1612     A generator is any program that produces a scene description
1613     as its output.
1614     They usually appear as commands in a scene description file.
1615     An example of a simple generator is
1616     .I genbox.
1617     .I Genbox
1618     takes the arguments of width, height and depth to produce
1619     a parallelepiped description.
1620     .I Genprism
1621     takes a list of 2-dimensional coordinates and extrudes them along a vector to
1622     produce a 3-dimensional prism.
1623     .I Genrev
1624     is a more sophisticated generator
1625     that produces an object of rotation from parametric functions
1626     for radius and axis position.
1627     .I Gensurf
1628     tessellates a surface defined by the
1629     parametric functions x(s,t), y(s,t), and z(s,t).
1630     .I Genworm
1631     links cylinders and spheres along a curve.
1632     .I Gensky
1633     produces a sun and sky distribution corresponding
1634     to a given time and date.
1635     .PP
1636     .I Xform
1637     is a program that transforms a scene description from one
1638     coordinate space to another.
1639     .I Xform
1640     does rotation, translation, scaling, and mirroring.
1641     .NH 1
1642     Image Generation
1643     .PP
1644     Once the scene has been described in three-dimensions, it
1645     is possible to generate a two-dimensional image from a
1646     given perspective.
1647     .PP
1648     The image generating programs use an
1649     .I octree
1650     to efficiently trace rays through the scene.
1651     An octree subdivides space into nested octants which
1652     contain sets of surfaces.
1653     In RADIANCE, an octree is created from a scene description by
1654     .I oconv.
1655     The details of this process are not important,
1656     but the octree will serve as input to the ray-tracing
1657     programs and directs the use of a scene description.
1658     .PP
1659     .I Rview
1660     is ray-tracing program for viewing a scene interactively.
1661     When the user specifies a new perspective,
1662 greg 1.9 .I rview
1663 greg 1.1 quickly displays a rough
1664     image on the terminal, then progressively
1665     increases the resolution as the user looks on.
1666     He can select a particular section of the image to improve,
1667     or move to a different view and start over.
1668     This mode of interaction is useful for debugging scenes
1669     as well as determining the best view for a final image.
1670     .PP
1671     .I Rpict
1672     produces a high-resolution picture of a scene from
1673     a particular perspective.
1674     This program features adaptive sampling, crash
1675     recovery and progress reporting, all of which are important
1676     for time-consuming images.
1677     .PP
1678     A number of filters are available for manipulating picture files.
1679     .I Pfilt
1680     sets the exposure and performs anti-aliasing.
1681     .I Pcompos
1682     composites (cuts and pastes) pictures.
1683     .I Pcond
1684     conditions a picture for a specific display device.
1685     .I Pcomb
1686     performs arbitrary math on one or more pictures.
1687     .I Protate
1688     rotates a picture 90 degrees clockwise.
1689     .I Pflip
1690     flips a picture horizontally, vertically, or both (180 degree rotation).
1691     .I Pvalue
1692     converts a picture to and from simpler formats.
1693     .PP
1694     Pictures may be displayed directly under X11 using the program
1695     .I ximage,
1696     or converted a standard image format.
1697 greg 1.17 .I Ra_bmp
1698     converts to and from Microsoft Bitmap images.
1699 greg 1.1 .I Ra_ppm
1700     converts to and from Poskanzer Portable Pixmap formats.
1701     .I Ra_ps
1702     converts to PostScript color and greyscale formats.
1703     .I Ra_rgbe
1704     converts to and from Radiance uncompressed picture format.
1705     .I Ra_t16
1706     converts to and from Targa 16 and 24-bit image formats.
1707     .I Ra_t8
1708     converts to and from Targa 8-bit image format.
1709     .I Ra_tiff
1710     converts to and from TIFF.
1711     .I Ra_xyze
1712     converts to and from Radiance CIE picture format.
1713     .NH 1
1714     License
1715     .PP
1716 greg 1.4 .DS
1717     The Radiance Software License, Version 1.0
1718    
1719 greg 1.14 Copyright (c) 1990 - 2008 The Regents of the University of California,
1720 greg 1.4 through Lawrence Berkeley National Laboratory. All rights reserved.
1721    
1722     Redistribution and use in source and binary forms, with or without
1723     modification, are permitted provided that the following conditions
1724     are met:
1725    
1726     1. Redistributions of source code must retain the above copyright
1727     notice, this list of conditions and the following disclaimer.
1728    
1729     2. Redistributions in binary form must reproduce the above copyright
1730     notice, this list of conditions and the following disclaimer in
1731     the documentation and/or other materials provided with the
1732     distribution.
1733    
1734     3. The end-user documentation included with the redistribution,
1735     if any, must include the following acknowledgment:
1736     "This product includes Radiance software
1737     (http://radsite.lbl.gov/)
1738     developed by the Lawrence Berkeley National Laboratory
1739     (http://www.lbl.gov/)."
1740     Alternately, this acknowledgment may appear in the software itself,
1741     if and wherever such third-party acknowledgments normally appear.
1742    
1743     4. The names "Radiance," "Lawrence Berkeley National Laboratory"
1744     and "The Regents of the University of California" must
1745     not be used to endorse or promote products derived from this
1746     software without prior written permission. For written
1747     permission, please contact [email protected].
1748    
1749     5. Products derived from this software may not be called "Radiance",
1750     nor may "Radiance" appear in their name, without prior written
1751     permission of Lawrence Berkeley National Laboratory.
1752    
1753     THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
1754     WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
1755     OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
1756     DISCLAIMED. IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR
1757     ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
1758     SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
1759     LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
1760     USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
1761     ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
1762     OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
1763     OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
1764     SUCH DAMAGE.
1765     .DE
1766 greg 1.1 .NH 1
1767     Acknowledgements
1768     .PP
1769     This work was supported by the Assistant Secretary of Conservation
1770     and Renewable Energy, Office of Building Energy Research and
1771     Development, Buildings Equipment Division of the U.S. Department of
1772     Energy under Contract No. DE-AC03-76SF00098.
1773     .PP
1774     Additional work was sponsored by the Swiss federal government
1775     under the Swiss LUMEN Project and was
1776     carried out in the Laboratoire d'Energie Solaire (LESO Group) at
1777     the Ecole Polytechnique Federale de Lausanne (EPFL University)
1778     in Lausanne, Switzerland.
1779     .NH 1
1780     References
1781 greg 1.4 .LP
1782 greg 1.40 Ward, Gregory J., Bruno Bueno, David Geisler-Moroder,
1783     Lars O. Grobe, Jacob C. Jonsson, Eleanor
1784     S. Lee, Taoning Wang, Helen Rose Wilson,
1785     ``Daylight Simulation Workflows Incorporating
1786     Measured Bidirectional Scattering Distribution Functions,''
1787     .I "Energy & Buildings",
1788     Vol. 259, No. 111890, 2022.
1789     .LP
1790 greg 1.36 Wang, Taoning, Gregory Ward, Eleanor Lee,
1791     ``Efficient modeling of optically-complex, non-coplanar
1792     exterior shading: Validation of matrix algebraic methods,''
1793     .I "Energy & Buildings",
1794     vol. 174, pp. 464-83, Sept. 2018.
1795     .LP
1796 greg 1.33 Lee, Eleanor S., David Geisler-Moroder, Gregory Ward,
1797     ``Modeling the direct sun component in buildings using matrix
1798     algebraic approaches: Methods and validation,''
1799     .I Solar Energy,
1800     vol. 160, 15 January 2018, pp 380-395.
1801     .LP
1802 greg 1.29 Ward, G., M. Kurt & N. Bonneel,
1803     ``Reducing Anisotropic BSDF Measurement to Common Practice,''
1804     .I Workshop on Material Appearance Modeling,
1805     2014.
1806     .LP
1807 greg 1.26 McNeil, A., C.J. Jonsson, D. Appelfeld, G. Ward, E.S. Lee,
1808     ``A validation of a ray-tracing tool used to generate
1809     bi-directional scattering distribution functions for
1810     complex fenestration systems,''
1811     .I "Solar Energy",
1812     98, 404-14, November 2013.
1813     .LP
1814 greg 1.22 Ward, G., R. Mistrick, E.S. Lee, A. McNeil, J. Jonsson,
1815     ``Simulating the Daylight Performance of Complex Fenestration Systems
1816 greg 1.23 Using Bidirectional Scattering Distribution Functions within Radiance,''
1817 greg 1.24 .I "Leukos",
1818     7(4),
1819 greg 1.22 April 2011.
1820     .LP
1821 greg 1.10 Cater, K., A. Chalmers, G. Ward,
1822     ``Detail to Attention: Exploiting Visual Tasks for Selective Rendering,''
1823     .I "Eurograhics Symposium on Rendering",
1824     June 2003.
1825     .LP
1826 greg 1.4 Ward, G., Elena Eydelberg-Vileshin,
1827     ``Picture Perfect RGB Rendering Using Spectral Prefiltering and
1828     Sharp Color Primaries,''
1829     13th Eurographics Workshop on Rendering, P. Debevec and
1830     S. Gibson (Editors), June 2002.
1831     .LP
1832     Ward, G. and M. Simmons,
1833     ``The Holodeck Ray Cache: An Interactive Rendering System for Global
1834     Illumination in Nondiffuse Environments,''
1835     .I "ACM Transactions on Graphics,"
1836     18(4):361-98, October 1999.
1837     .LP
1838     Larson, G.W., H. Rushmeier, C. Piatko,
1839     ``A Visibility Matching Tone Reproduction Operator for High Dynamic
1840     Range Scenes,''
1841     .I "IEEE Transactions on Visualization and Computer Graphics",
1842     3(4), 291-306, December 1997.
1843     .LP
1844     Ward, G.,
1845     ``Making Global Illumination User Friendly,''
1846     .I "Sixth Eurographics Workshop on Rendering",
1847     proceedings to be published by Springer-Verlag,
1848     Dublin, Ireland, June 1995.
1849     .LP
1850     Rushmeier, H., G. Ward, C. Piatko, P. Sanders, B. Rust,
1851     ``Comparing Real and Synthetic Images: Some Ideas about Metrics,''
1852     .I "Sixth Eurographics Workshop on Rendering",
1853     proceedings to be published by Springer-Verlag,
1854     Dublin, Ireland, June 1995.
1855 greg 1.1 .LP
1856     Ward, G.,
1857     ``The Radiance Lighting Simulation and Rendering System,''
1858     .I "Computer Graphics",
1859     Orlando, July 1994.
1860     .LP
1861     Rushmeier, H., G. Ward,
1862     ``Energy-Preserving Non-Linear Filters,''
1863     .I "Computer Graphics",
1864     Orlando, July 1994.
1865     .LP
1866     Ward, G.,
1867     ``A Contrast-Based Scalefactor for Luminance Display,''
1868     .I "Graphics Gems IV",
1869     Edited by Paul Heckbert,
1870     Academic Press 1994.
1871     .LP
1872     Ward, G.,
1873     ``Measuring and Modeling Anisotropic Reflection,''
1874     .I "Computer Graphics",
1875     Chicago, July 1992.
1876     .LP
1877     Ward, G., P. Heckbert,
1878     ``Irradiance Gradients,''
1879     .I "Third Annual Eurographics Workshop on Rendering",
1880     to be published by Springer-Verlag, held in Bristol, UK, May 1992.
1881     .LP
1882     Ward, G.,
1883     ``Adaptive Shadow Testing for Ray Tracing,''
1884     .I "Second Annual Eurographics Workshop on Rendering",
1885     to be published by Springer-Verlag, held in Barcelona, SPAIN, May 1991.
1886     .LP
1887     Ward, G.,
1888     ``Visualization,''
1889     .I "Lighting Design and Application",
1890     Vol. 20, No. 6, June 1990.
1891     .LP
1892     Ward, G., F. Rubinstein, R. Clear,
1893     ``A Ray Tracing Solution for Diffuse Interreflection,''
1894     .I "Computer Graphics",
1895     Vol. 22, No. 4, August 1988.
1896     .LP
1897     Ward, G., F. Rubinstein,
1898     ``A New Technique for Computer Simulation of Illuminated Spaces,''
1899     .I "Journal of the Illuminating Engineering Society",
1900     Vol. 17, No. 1, Winter 1988.