ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/ray.1
Revision: 1.47
Committed: Mon Dec 9 19:21:38 2024 UTC (4 months, 3 weeks ago) by greg
Branch: MAIN
CVS Tags: HEAD
Changes since 1.46: +61 -3 lines
Log Message:
docs: Added description of new WGMDfunc material

File Contents

# User Rev Content
1 greg 1.47 .\" RCSid "$Id: ray.1,v 1.46 2023/12/13 23:26:16 greg Exp $"
2 greg 1.1 .\" Print using the -ms macro package
3 greg 1.47 .DA 12/09/2024
4 greg 1.1 .LP
5 greg 1.47 .tl """Copyright \(co 2024 Regents, University of California
6 greg 1.1 .sp 2
7     .TL
8     The
9     .so ../src/rt/VERSION
10     .br
11     Synthetic Imaging System
12     .AU
13 greg 1.9 Building Technologies Department
14 greg 1.1 .br
15     Lawrence Berkeley Laboratory
16     .br
17 greg 1.4 1 Cyclotron Rd., MS 90-3111
18 greg 1.1 .br
19     Berkeley, CA 94720
20     .NH 1
21     Introduction
22     .PP
23     RADIANCE was developed as a research tool
24     for predicting the distribution of visible radiation in
25     illuminated spaces.
26     It takes as input a three-dimensional geometric model of
27     the physical environment, and produces a map of
28     spectral radiance values in a color image.
29     The technique of ray-tracing follows light backwards
30     from the image plane to the source(s).
31     Because it can produce realistic images from a simple description,
32     RADIANCE has a wide range of applications in graphic arts,
33     lighting design, computer-aided engineering and architecture.
34     .KF
35     .sp 25
36     .ce
37     .B "Figure 1."
38     .sp
39     .KE
40     .PP
41     The diagram in Figure 1 shows the flow between programs (boxes) and
42     data (ovals).
43     The central program is
44     .I rpict,
45     which produces a picture from a scene description.
46     .I Rview
47     is a variation of
48     .I rpict
49     that computes and displays images interactively.
50 greg 1.4 Other programs (not shown) connect many of these elements together,
51     such as the executive programs
52     .I rad
53     and
54     .I ranimate,
55     the interactive rendering program
56     .I rholo,
57     and the animation program
58     .I ranimove.
59     The program
60     .I obj2mesh
61     acts as both a converter and scene compiler, converting a Wavefront .OBJ
62     file into a compiled mesh octree for efficient rendering.
63 greg 1.1 .PP
64     A scene description file lists the surfaces and materials
65 greg 1.4 that make up a specific environment.
66     The current surface types are spheres, polygons, cones, and cylinders.
67     There is also a composite surface type, called mesh, and a pseudosurface
68     type, called instance, which facilitates very complex geometries.
69     Surfaces can be made from materials such as plastic, metal, and glass.
70     Light sources can be distant disks as well as local spheres, disks
71     and polygons.
72 greg 1.1 .PP
73     From a three-dimensional scene description and a specified view,
74     .I rpict
75     produces a two-dimensional image.
76     A picture file is a compressed binary representation of the
77     pixels in the image.
78     This picture can be scaled in size and
79     brightness, anti-aliased, and sent to a graphics output device.
80     .PP
81     A header in each picture file lists the program(s) and
82     parameters that produced it.
83     This is useful for identifying a picture
84     without having to display it.
85     The information can be read by the program
86     .I getinfo.
87     .NH 1
88     Scene Description
89     .PP
90     A scene description file represents a
91     three-dimensional physical environment
92     in Cartesian (rectilinear) world coordinates.
93     It is stored as ASCII text, with the following basic format:
94     .DS
95     # comment
96    
97     modifier type identifier
98 greg 1.4 n S1 S2 "S 3" .. Sn
99 greg 1.1 0
100     m R1 R2 R3 .. Rm
101    
102     modifier alias identifier reference
103    
104     ! command
105    
106     ...
107     .DE
108     .PP
109     A comment line begins with a pound sign, `#'.
110     .PP
111     The scene description
112     .I primitives
113     all have the same general format, and can
114     be either surfaces or modifiers.
115     A primitive has a modifier, a type, and an identifier.
116     A modifier is either the identifier of a
117     .I "previously defined"
118     primitive, or "void"\(dg.
119     .FS
120     \(dgThe most recent definition of a modifier is the one used,
121     and later definitions do not cause relinking of loaded
122     primitives.
123     Thus, the same identifier may be used repeatedly, and each new
124     definition will apply to the primitives following it.
125     .FE
126 greg 1.4 An identifier can be any string (i.e., any sequence of non-white characters).
127 greg 1.1 The
128     .I arguments
129     associated with a primitive can be strings or real numbers.
130     The first integer following the identifier is the number
131     of string arguments, and it is followed by the arguments themselves
132 greg 1.4 (separated by white space or enclosed in quotes).
133 greg 1.1 The next integer is the number of integer arguments, and is followed
134     by the integer arguments.
135     (There are currently no primitives that use them, however.)
136     The next integer is the real argument count, and it is followed
137     by the real arguments.
138     .PP
139     An alias gets its type and arguments from a previously defined primitive.
140     This is useful when the same material is used with a different
141     modifier, or as a convenient naming mechanism.
142 greg 1.2 The reserved modifier name "inherit" may be used to specificy that
143     an alias will inherit its modifier from the original.
144 greg 1.1 Surfaces cannot be aliased.
145     .PP
146     A line beginning with an exclamation point, `!',
147     is interpreted as a command.
148     It is executed by the shell, and its output is read as input to
149     the program.
150     The command must not try to read from its standard input, or
151     confusion will result.
152     A command may be continued over multiple lines using a backslash, `\\',
153     to escape the newline.
154     .PP
155 greg 1.4 White space is generally ignored, except as a separator.
156 greg 1.1 The exception is the newline character after a command or comment.
157     Commands, comments and primitives may appear in any combination, so long
158     as they are not intermingled.
159     .NH 2
160     Primitive Types
161     .PP
162     Primitives can be surfaces, materials, textures or patterns.
163 greg 1.4 Modifiers can be materials, mixtures, textures or patterns.
164 greg 1.1 Simple surfaces must have one material in their modifier list.
165     .NH 3
166     Surfaces
167     .PP
168     A scene description will consist mostly of surfaces.
169     The basic types are given below.
170     .LP
171     .UL Source
172     .PP
173     A source is not really a surface, but a solid angle.
174     It is used for specifying light sources that are very distant.
175     The direction to the center of the source and the number of degrees
176     subtended by its disk are given as follows:
177     .DS
178     mod source id
179     0
180     0
181     4 xdir ydir zdir angle
182     .DE
183     .LP
184     .UL Sphere
185     .PP
186     A sphere is given by its center and radius:
187     .DS
188     mod sphere id
189     0
190     0
191     4 xcent ycent zcent radius
192     .DE
193     .LP
194     .UL Bubble
195     .PP
196     A bubble is simply a sphere whose surface normal points inward.
197     .LP
198     .UL Polygon
199     .PP
200     A polygon is given by a list of three-dimensional vertices,
201     which are ordered counter-clockwise as viewed from
202     the front side (into the surface normal).
203     The last vertex is automatically connected to the first.
204     Holes are represented in polygons as interior vertices connected to
205     the outer perimeter by coincident edges (seams).
206     .DS
207     mod polygon id
208     0
209     0
210     3n
211     x1 y1 z1
212     x2 y2 z2
213     ...
214     xn yn zn
215     .DE
216     .LP
217     .UL Cone
218     .PP
219     A cone is a megaphone-shaped object.
220     It is truncated by two planes perpendicular to its axis,
221     and one of its ends may come to a point.
222     It is given as two axis endpoints, and the starting
223     and ending radii:
224     .DS
225     mod cone id
226     0
227     0
228     8
229     x0 y0 z0
230     x1 y1 z1
231     r0 r1
232     .DE
233     .LP
234     .UL Cup
235     .PP
236 greg 1.4 A cup is an inverted cone (i.e., has an inward surface normal).
237 greg 1.1 .LP
238     .UL Cylinder
239     .PP
240     A cylinder is like a cone, but its starting and ending radii are
241     equal.
242     .DS
243     mod cylinder id
244     0
245     0
246     7
247     x0 y0 z0
248     x1 y1 z1
249     rad
250     .DE
251     .LP
252     .UL Tube
253     .PP
254     A tube is an inverted cylinder.
255     .LP
256     .UL Ring
257     .PP
258     A ring is a circular disk given by its center, surface
259     normal, and inner and outer radii:
260     .DS
261     mod ring id
262     0
263     0
264     8
265     xcent ycent zcent
266     xdir ydir zdir
267     r0 r1
268     .DE
269     .LP
270     .UL Mesh
271     .PP
272     A mesh is a compound surface, made up of many triangles and
273     an octree data structure to accelerate ray intersection.
274     It is typically converted from a Wavefront .OBJ file using the
275 greg 1.4 .I obj2mesh
276     program.
277 greg 1.1 .DS
278     mod mesh id
279     1+ meshfile transform
280     0
281     0
282     .DE
283 greg 1.3 If the modifier is "void", then surfaces will use the modifiers given
284     in the original mesh description.
285     Otherwise, the modifier specified is used in their place.
286 greg 1.1 The transform moves the mesh to the desired location in the scene.
287     Multiple instances using the same meshfile take little extra memory,
288     and the compiled mesh itself takes much less space than individual
289     polygons would.
290     In the case of an unsmoothed mesh, using the mesh primitive reduces
291     memory requirements by a factor of 30 relative to individual triangles.
292     If a mesh has smoothed surfaces, we save a factor of 50 or more,
293     permitting very detailed geometries that would otherwise exhaust the
294     available memory.
295     In addition, the mesh primitive can have associated (u,v) coordinates
296     for pattern and texture mapping.
297 greg 1.4 These are made available to function files via the Lu and Lv variables.
298 greg 1.1 .LP
299     .UL Instance
300     .PP
301     An instance is a compound surface, given by the contents of an
302     octree file (created by oconv).
303     .DS
304     mod instance id
305     1+ octree transform
306     0
307     0
308     .DE
309     If the modifier is "void", then surfaces will use the modifiers given
310     in the original description.
311     Otherwise, the modifier specified is used in their place.
312     The transform moves the octree to the desired location in the scene.
313     Multiple instances using the same octree take little extra memory,
314     hence very complex descriptions can be rendered using this primitive.
315     .PP
316     There are a number of important limitations to be aware of when using
317     instances.
318     First, the scene description used to generate the octree must stand on
319     its own, without referring to modifiers in the parent description.
320     This is necessary for oconv to create the octree.
321     Second, light sources in the octree will not be incorporated correctly
322     in the calculation, and they are not recommended.
323     Finally, there is no advantage (other than convenience) to
324     using a single instance of an octree, or an octree containing only a
325     few surfaces.
326     An xform command on the subordinate description is prefered in such cases.
327     .NH 3
328     Materials
329     .PP
330     A material defines the way light interacts with a surface.
331     The basic types are given below.
332     .LP
333     .UL Light
334     .PP
335 greg 1.4 Light is the basic material for self-luminous surfaces (i.e., light
336 greg 1.1 sources).
337     In addition to the source surface type, spheres, discs (rings with zero
338     inner radius), cylinders (provided they are long enough), and
339     polygons can act as light sources.
340     Polygons work best when they are rectangular.
341     Cones cannot be used at this time.
342     A pattern may be used to specify a light output distribution.
343     Light is defined simply as a RGB radiance value (watts/steradian/m2):
344     .DS
345     mod light id
346     0
347     0
348     3 red green blue
349     .DE
350     .LP
351     .UL Illum
352     .PP
353     Illum is used for secondary light sources with broad distributions.
354     A secondary light source is treated like any other
355     light source, except when viewed directly.
356     It then acts like it is made of a different material (indicated by
357     the string argument), or becomes invisible (if no string argument is given,
358     or the argument is "void").
359     Secondary sources are useful when modeling windows or
360     brightly illuminated surfaces.
361     .DS
362     mod illum id
363     1 material
364     0
365     3 red green blue
366     .DE
367     .LP
368     .UL Glow
369     .PP
370     Glow is used for surfaces that are self-luminous, but limited
371     in their effect.
372     In addition to the radiance value, a maximum radius for
373     shadow testing is given:
374     .DS
375     mod glow id
376     0
377     0
378     4 red green blue maxrad
379     .DE
380     If maxrad is zero, then the surface will never be tested
381     for shadow, although it may participate in an interreflection calculation.
382     If maxrad is negative, then the surface will never contribute to scene
383     illumination.
384     Glow sources will never illuminate objects on the other side of an
385     illum surface.
386     This provides a convenient way to illuminate local light fixture
387     geometry without overlighting nearby objects.
388     .LP
389     .UL Spotlight
390     .PP
391     Spotlight is used for self-luminous surfaces having directed output.
392     As well as radiance, the full cone angle (in degrees)
393     and orientation (output direction) vector are given.
394     The length of the orientation vector is the distance
395 greg 1.4 of the effective focus behind the source center (i.e., the focal length).
396 greg 1.1 .DS
397     mod spotlight id
398     0
399     0
400     7 red green blue angle xdir ydir zdir
401     .DE
402     .LP
403     .UL Mirror
404     .PP
405 greg 1.9 Mirror is used for planar surfaces that produce virtual
406 greg 1.1 source reflections.
407     This material should be used sparingly, as it may cause the light
408     source calculation to blow up if it is applied to many small surfaces.
409     This material is only supported for flat surfaces such as polygons
410     and rings.
411     The arguments are simply the RGB reflectance values, which should be
412     between 0 and 1.
413     An optional string argument may be used like the illum type to specify a
414     different material to be used for shading non-source rays.
415     If this alternate material is given as "void", then the mirror surface
416     will be invisible.
417     This is only appropriate if the surface hides other (more detailed)
418     geometry with the same overall reflectance.
419     .DS
420     mod mirror id
421     1 material
422     0
423     3 red green blue
424     .DE
425     .LP
426     .UL Prism1
427     .PP
428     The prism1 material is for general light redirection from prismatic
429 greg 1.9 glazings, generating virtual light sources.
430 greg 1.4 It can only be used to modify a planar surface (i.e., a polygon or disk)
431 greg 1.1 and should not result in either light concentration or scattering.
432     The new direction of the ray can be on either side of the material,
433     and the definitions must have the correct bidirectional properties
434 greg 1.9 to work properly with virtual light sources.
435 greg 1.1 The arguments give the coefficient for the redirected light
436     and its direction.
437     .DS
438     mod prism1 id
439     5+ coef dx dy dz funcfile transform
440     0
441     n A1 A2 .. An
442     .DE
443     The new direction variables
444     .I "dx, dy"
445     and
446     .I dz
447     need not produce a normalized vector.
448     For convenience, the variables
449     .I "DxA, DyA"
450     and
451     .I DzA
452     are defined as the normalized direction to the target light source.
453     See section 2.2.1 on function files for further information.
454     .LP
455     .UL Prism2
456     .PP
457     The material prism2 is identical to prism1 except that
458     it provides for two ray redirections rather than one.
459     .DS
460     mod prism2 id
461     9+ coef1 dx1 dy1 dz1 coef2 dx2 dy2 dz2 funcfile transform
462     0
463     n A1 A2 .. An
464     .DE
465     .LP
466     .UL Mist
467     .PP
468     Mist is a virtual material used to delineate a volume
469     of participating atmosphere.
470     A list of important light sources may be given, along with an
471     extinction coefficient, scattering albedo and scattering eccentricity
472     parameter.
473     The light sources named by the string argument list
474     will be tested for scattering within the volume.
475     Sources are identified by name, and virtual light sources may be indicated
476     by giving the relaying object followed by '>' followed by the source, i.e:
477     .DS
478     3 source1 mirror1>source10 mirror2>mirror1>source3
479     .DE
480     Normally, only one source is given per mist material, and there is an
481     upper limit of 32 to the total number of active scattering sources.
482     The extinction coefficient, if given, is added to the global
483     coefficient set on the command line.
484     Extinction is in units of 1/distance (distance based on the world coordinates),
485     and indicates the proportional loss of radiance over one unit distance.
486     The scattering albedo, if present, will override the global setting within
487     the volume.
488     An albedo of 0\00\00 means a perfectly absorbing medium, and an albedo of
489     1\01\01\0 means
490     a perfectly scattering medium (no absorption).
491     The scattering eccentricity parameter will likewise override the global
492     setting if it is present.
493     Scattering eccentricity indicates how much scattered light favors the
494 greg 1.15 forward direction, as fit by the Henyey-Greenstein function:
495 greg 1.1 .DS
496     P(theta) = (1 - g*g) / (1 + g*g - 2*g*cos(theta))^1.5
497     .DE
498     A perfectly isotropic scattering medium has a g parameter of 0, and
499     a highly directional material has a g parameter close to 1.
500     Fits to the g parameter may be found along with typical extinction
501     coefficients and scattering albedos for various atmospheres and
502     cloud types in USGS meteorological tables.
503     (A pattern will be applied to the extinction values.)\0
504     .DS
505     mod mist id
506     N src1 src2 .. srcN
507     0
508     0|3|6|7 [ rext gext bext [ ralb galb balb [ g ] ] ]
509     .DE
510     There are two usual uses of the mist type.
511     One is to surround a beam from a spotlight or laser so that it is
512     visible during rendering.
513     For this application, it is important to use a cone (or cylinder) that
514     is long enough and wide enough to contain the important visible portion.
515     Light source photometry and intervening objects will have the desired
516     effect, and crossing beams will result in additive scattering.
517     For this application, it is best to leave off the real arguments, and
518     use the global rendering parameters to control the atmosphere.
519     The second application is to model clouds or other localized media.
520     Complex boundary geometry may be used to give shape to a uniform medium,
521     so long as the boundary encloses a proper volume.
522     Alternatively, a pattern may be used to set the line integral value
523     through the cloud for a ray entering or exiting a point in a given
524     direction.
525     For this application, it is best if cloud volumes do not overlap each other,
526     and opaque objects contained within them may not be illuminated correctly
527     unless the line integrals consider enclosed geometry.
528     .LP
529     .UL Plastic
530     .PP
531     Plastic is a material with uncolored highlights.
532     It is given by its RGB reflectance, its fraction of specularity,
533     and its roughness value.
534     Roughness is specified as the rms slope of surface facets.
535     A value of 0 corresponds to a perfectly smooth surface, and
536     a value of 1 would be a very rough surface.
537     Specularity fractions greater than 0.1 and
538     roughness values greater than 0.2 are not very
539     realistic.
540     (A pattern modifying plastic will affect the material color.)
541     .DS
542     mod plastic id
543     0
544     0
545     5 red green blue spec rough
546     .DE
547     .LP
548     .UL Metal
549     .PP
550     Metal is similar to plastic, but specular highlights
551     are modified by the material color.
552     Specularity of metals is usually .9 or greater.
553     As for plastic, roughness values above .2 are uncommon.
554     .LP
555     .UL Trans
556     .PP
557     Trans is a translucent material, similar to plastic.
558     The transmissivity is the fraction of penetrating light that
559     travels all the way through the material.
560     The transmitted specular component is the fraction of transmitted
561     light that is not diffusely scattered.
562     Transmitted and diffusely reflected light is modified by the material color.
563     Translucent objects are infinitely thin.
564     .DS
565     mod trans id
566     0
567     0
568     7 red green blue spec rough trans tspec
569     .DE
570     .LP
571     .UL Plastic2
572     .PP
573     Plastic2 is similar to plastic, but with anisotropic
574     roughness.
575     This means that highlights in the surface will appear elliptical rather
576     than round.
577     The orientation of the anisotropy is determined by the unnormalized
578     direction vector
579     .I "ux uy uz".
580     These three expressions (separated by white space) are evaluated in
581     the context of the function file
582     .I funcfile.
583 greg 1.4 If no function file is required (i.e., no special variables or
584 greg 1.1 functions are required), a period (`.') may be given in its
585     place.
586     (See the discussion of Function Files in the Auxiliary Files section).
587     The
588     .I urough
589     value defines the roughness along the
590     .B u
591     vector given projected onto the surface.
592     The
593     .I vrough
594     value defines the roughness perpendicular to this vector.
595     Note that the highlight will be narrower in the direction of the
596     smaller roughness value.
597     Roughness values of zero are not allowed for efficiency reasons
598     since the behavior would be the same as regular plastic in that
599     case.
600     .DS
601     mod plastic2 id
602     4+ ux uy uz funcfile transform
603     0
604     6 red green blue spec urough vrough
605     .DE
606     .LP
607     .UL Metal2
608     .PP
609     Metal2 is the same as plastic2, except that the highlights are
610     modified by the material color.
611     .LP
612     .UL Trans2
613     .PP
614     Trans2 is the anisotropic version of trans.
615     The string arguments are the same as for plastic2, and the real
616     arguments are the same as for trans but with an additional roughness
617     value.
618     .DS
619     mod trans2 id
620     4+ ux uy uz funcfile transform
621     0
622     8 red green blue spec urough vrough trans tspec
623     .DE
624     .LP
625 greg 1.30 .UL Ashik2
626     .PP
627     Ashik2 is the anisotropic reflectance model by Ashikhmin & Shirley.
628     The string arguments are the same as for plastic2, but the real
629     arguments have additional flexibility to specify the specular color.
630     Also, rather than roughness, specular power is used, which has no
631     physical meaning other than larger numbers are equivalent to a smoother
632     surface.
633 greg 1.39 Unlike other material types, total reflectance is the sum of
634     diffuse and specular colors, and should be adjusted accordingly.
635 greg 1.30 .DS
636     mod ashik2 id
637     4+ ux uy uz funcfile transform
638     0
639     8 dred dgrn dblu sred sgrn sblu u-power v-power
640     .DE
641     .LP
642 greg 1.47 .UL WGMDfunc
643     .PP
644     WGMDfunc is a more programmable version of trans2,
645     with separate modifier paths and variables to control each component.
646     (WGMD stands for Ward-Geisler-Moroder-Duer, which is the basis for
647     this empirical model, similar to the previous ones beside Ashik2.)\0
648     The specification of this material is given below.
649     .DS
650     mod WGMDfunc id
651     13+ rs_mod rs rs_urough rs_vrough
652     ts_mod ts ts_urough ts_vrough
653     td_mod
654     ux uy uz funcfile transform
655     0
656     9+ rfdif gfdif bfdif
657     rbdif gbdif bbdif
658     rtdif gtdif btdif
659     A10 ..
660     .DE
661     The sum of specular reflectance (
662     .I rs
663     ), specular transmittance (
664     .I ts
665     ), diffuse reflectance (
666     .I "rfdif gfdif bfdif"
667     for front and
668     .I "rbdif gbdif bbdif"
669     for back)
670     and diffuse transmittance (
671     .I "rtdif gtdif btdif"
672     ) should be less than 1 for each
673     channel.
674     .PP
675     Unique to this material, separate modifier channels are
676     provided for each component.
677     The main modifier is used on the diffuse reflectance, both
678     front and back.
679     The
680     .I rs_mod
681     modifier is used for specular reflectance.
682     If "void" is given for
683     .I rs_mod,
684     then the specular reflection color will be white.
685     The special "inherit" keyword may also be given, in which case
686     specular reflectance will share the main modifier.
687     This behavior is replicated for the specular transmittance modifier
688     .I ts_mod,
689     which has its own independent roughness expressions.
690     Finally, the diffuse transmittance modifier is given as
691     .I td_mod,
692     which may also be "void" or "inherit".
693     Note that any spectra or color for specular components must be
694     carried by the named modifier(s).
695     .PP
696     The main advantage to this material over BRTDfunc and
697     other programmable types described below is that the specular sampling is
698     well-defined, so that all components are fully computed.
699     .LP
700 greg 1.1 .UL Dielectric
701     .PP
702     A dielectric material is transparent, and it refracts light
703     as well as reflecting it.
704     Its behavior is determined by the index of refraction and
705     transmission coefficient in each wavelength band per unit length.
706     Common glass has a index of refraction (n) around 1.5,
707     and a transmission coefficient of roughly 0.92 over an inch.
708     An additional number, the Hartmann constant, describes how
709     the index of refraction changes as a function of wavelength.
710     It is usually zero.
711     (A pattern modifies only the refracted value.)
712     .DS
713     mod dielectric id
714     0
715     0
716     5 rtn gtn btn n hc
717     .DE
718     .LP
719     .UL Interface
720     .PP
721     An interface is a boundary between two dielectrics.
722     The first transmission coefficient and refractive index are for the inside;
723     the second ones are for the outside.
724     Ordinary dielectrics are surrounded by a vacuum (1 1 1 1).
725     .DS
726     mod interface id
727     0
728     0
729     8 rtn1 gtn1 btn1 n1 rtn2 gtn2 btn2 n2
730     .DE
731     .LP
732     .UL Glass
733     .PP
734     Glass is similar to dielectric, but it is optimized for thin glass
735     surfaces (n = 1.52).
736     One transmitted ray and one reflected ray is produced.
737     By using a single surface is in place of two, internal reflections
738     are avoided.
739     The surface orientation is irrelevant, as it is for plastic,
740     metal, and trans.
741     The only specification required is the transmissivity at normal
742     incidence.
743     (Transmissivity is the amount of light not absorbed in one traversal
744     of the material.
745     Transmittance -- the value usually measured -- is the total light
746     transmitted through the pane including multiple reflections.)\0
747     To compute transmissivity (tn) from transmittance (Tn) use:
748     .DS
749     tn = (sqrt(.8402528435+.0072522239*Tn*Tn)-.9166530661)/.0036261119/Tn
750     .DE
751     Standard 88% transmittance glass has a transmissivity of 0.96.
752     (A pattern modifying glass will affect the transmissivity.)
753     If a fourth real argument is given, it is interpreted as the index of
754     refraction to use instead of 1.52.
755     .DS
756     mod glass id
757     0
758     0
759     3 rtn gtn btn
760     .DE
761     .LP
762     .UL Plasfunc
763     .PP
764     Plasfunc in used for the procedural definition of plastic-like
765     materials with arbitrary bidirectional reflectance distribution
766     functions (BRDF's).
767     The arguments to this material include the color and specularity,
768     as well as the function defining the specular distribution and the
769     auxiliary file where it may be found.
770     .DS
771     mod plasfunc id
772     2+ refl funcfile transform
773     0
774     4+ red green blue spec A5 ..
775     .DE
776     The function
777     .I refl
778     takes four arguments, the x, y and z
779     direction towards the incident light, and the solid angle
780     subtended by the source.
781     The solid angle is provided to facilitate averaging, and is usually
782     ignored.
783     The
784     .I refl
785     function should integrate to 1 over
786     the projected hemisphere to maintain energy balance.
787     At least four real arguments must be given, and these are made
788     available along with any additional values to the reflectance
789     function.
790     Currently, only the contribution from direct light sources is
791     considered in the specular calculation.
792     As in most material types, the surface normal is always
793     altered to face the incoming ray.
794     .LP
795     .UL Metfunc
796     .PP
797     Metfunc is identical to plasfunc and takes the same arguments, but
798     the specular component is multiplied also by the material color.
799     .LP
800     .UL Transfunc
801     .PP
802     Transfunc is similar to plasfunc but with an arbitrary bidirectional
803     transmittance distribution as well as a reflectance distribution.
804     Both reflectance and transmittance are specified with the same function.
805     .DS
806     mod transfunc id
807     2+ brtd funcfile transform
808     0
809     6+ red green blue rspec trans tspec A7 ..
810     .DE
811     Where
812     .I trans
813     is the total light transmitted and
814     .I tspec
815     is the non-Lambertian fraction of transmitted light.
816     The function
817     .I brtd
818     should integrate to 1 over each projected hemisphere.
819     .LP
820     .UL BRTDfunc
821     .PP
822     The material BRTDfunc gives the maximum flexibility over surface
823     reflectance and transmittance, providing for spectrally-dependent
824     specular rays and reflectance and transmittance distribution functions.
825     .DS
826     mod BRTDfunc id
827     10+ rrefl grefl brefl
828     rtrns gtrns btrns
829     rbrtd gbrtd bbrtd
830     funcfile transform
831     0
832     9+ rfdif gfdif bfdif
833     rbdif gbdif bbdif
834     rtdif gtdif btdif
835     A10 ..
836     .DE
837     The variables
838     .I "rrefl, grefl"
839     and
840     .I brefl
841     specify the color coefficients for
842     the ideal specular (mirror) reflection of the surface.
843     The variables
844     .I "rtrns, gtrns"
845     and
846     .I btrns
847     specify the color coefficients for the ideal specular transmission.
848     The functions
849     .I "rbrtd, gbrtd"
850     and
851     .I bbrtd
852     take the direction to the incident light (and its solid angle)
853     and compute the color coefficients for the directional diffuse part of
854     reflection and transmission.
855     As a special case, three identical values of '0' may be given in place of
856     these function names to indicate no directional diffuse component.
857     .PP
858     Unlike most other material types, the surface normal is not altered to
859     face the incoming ray.
860     Thus, functions and variables must pay attention to the orientation of
861     the surface and make adjustments appropriately.
862     However, the special variables for the perturbed dot product and surface
863     normal,
864     .I "RdotP, NxP, NyP"
865     and
866     .I NzP
867     are reoriented as if the ray hit the front surface for convenience.
868     .PP
869     A diffuse reflection component may be given for the front side with
870     .I "rfdif, gfdif"
871     and
872     .I bfdif
873     for the front side of the surface or
874     .I "rbdif, gbdif"
875     and
876     .I bbdif
877     for the back side.
878     The diffuse transmittance (must be the same for both sides by physical law)
879     is given by
880     .I "rtdif, gtdif"
881     and
882     .I btdif.
883     A pattern will modify these diffuse scattering values,
884     and will be available through the special variables
885     .I "CrP, CgP"
886     and
887     .I CbP.
888     .PP
889     Care must be taken when using this material type to produce a physically
890     valid reflection model.
891     The reflectance functions should be bidirectional, and under no circumstances
892     should the sum of reflected diffuse, transmitted diffuse, reflected specular,
893     transmitted specular and the integrated directional diffuse component be
894     greater than one.
895     .LP
896     .UL Plasdata
897     .PP
898     Plasdata is used for arbitrary BRDF's that are most conveniently
899     given as interpolated data.
900     The arguments to this material are the data file and coordinate index
901     functions, as well as a function to optionally modify the data
902     values.
903     .DS
904     mod plasdata id
905     3+n+
906     func datafile
907     funcfile x1 x2 .. xn transform
908     0
909     4+ red green blue spec A5 ..
910     .DE
911     The coordinate indices
912     .I "(x1, x2,"
913     etc.) are themselves functions of
914     the x, y and z direction to the incident light, plus the solid angle
915     subtended by the light source (usually ignored).
916     The data function
917     .I (func)
918     takes five variables, the
919     interpolated value from the n-dimensional data file, followed by the
920     x, y and z direction to the incident light and the solid angle of the source.
921     The light source direction and size may of course be ignored by the function.
922     .LP
923     .UL Metdata
924     .PP
925     As metfunc is to plasfunc, metdata is to plasdata.
926     Metdata takes the same arguments as plasdata, but the specular
927     component is modified by the given material color.
928     .LP
929     .UL Transdata
930     .PP
931     Transdata is like plasdata but the specification includes transmittance
932     as well as reflectance.
933     The parameters are as follows.
934     .DS
935     mod transdata id
936     3+n+
937     func datafile
938     funcfile x1 x2 .. xn transform
939     0
940     6+ red green blue rspec trans tspec A7 ..
941     .DE
942     .LP
943 greg 1.18 .UL BSDF
944     .PP
945     The BSDF material type loads an XML (eXtensible Markup Language)
946     file describing a bidirectional scattering distribution function.
947     Real arguments to this material may define additional
948     diffuse components that augment the BSDF data.
949 greg 1.19 String arguments are used to define thickness for proxied
950     surfaces and the "up" orientation for the material.
951 greg 1.18 .DS
952     mod BSDF id
953     6+ thick BSDFfile ux uy uz funcfile transform
954     0
955     0|3|6|9
956     rfdif gfdif bfdif
957     rbdif gbdif bbdif
958     rtdif gtdif btdif
959     .DE
960 greg 1.19 The first string argument is a "thickness" parameter that may be used
961     to hide detail geometry being proxied by an aggregate BSDF material.
962     If a view or shadow ray hits a BSDF proxy with non-zero thickness,
963     it will pass directly through as if the surface were not there.
964 greg 1.18 Similar to the illum type, this permits direct viewing and
965     shadow testing of complex geometry.
966 greg 1.19 The BSDF is used when a scattered (indirect) ray hits the surface,
967     and any transmitted sample rays will be offset by the thickness amount
968     to avoid the hidden geometry and gather samples from the other side.
969     In this manner, BSDF surfaces can improve the results for indirect
970     scattering from complex systems without sacrificing appearance or
971     shadow accuracy.
972     If the BSDF has transmission and back-side reflection data,
973     a parallel BSDF surface may be
974     placed slightly less than the given thickness away from the front surface
975     to enclose the complex geometry on both sides.
976 greg 1.20 The sign of the thickness is important, as it indicates whether the
977 greg 1.21 proxied geometry is behind the BSDF surface (when thickness is positive)
978 greg 1.20 or in front (when thickness is negative).
979 greg 1.18 .LP
980     The second string argument is the name of the BSDF file, which is
981     found in the usual auxiliary locations.
982     The following three string parameters name variables for an "up" vector,
983     which together with the surface normal, define the
984     local coordinate system that orients the BSDF.
985     These variables, along with the thickness, are defined in a function
986     file given as the next string argument.
987     An optional transform is used to scale the thickness and reorient the up vector.
988     .LP
989     If no real arguments are given, the BSDF is used by itself to determine
990     reflection and transmission.
991     If there are at least 3 real arguments, the first triplet is an
992     additional diffuse reflectance for the front side.
993     At least 6 real arguments adds diffuse reflectance to the rear side of the surface.
994     If there are 9 real arguments, the final triplet will be taken as an additional
995     diffuse transmittance.
996     All diffuse components as well as the non-diffuse transmission are
997     modified by patterns applied to this material.
998     The non-diffuse reflection from either side are unaffected.
999     Textures perturb the effective surface normal in the usual way.
1000     .LP
1001     The surface normal of this type is not altered to face the incoming ray,
1002     so the front and back BSDF reflections may differ.
1003     (Transmission is identical front-to-back by physical law.)\0
1004     If back visibility is turned off during rendering and there is no
1005     transmission or back-side reflection, only then the surface will be
1006     invisible from behind.
1007     Unlike other data-driven material types, the BSDF type is fully
1008     supported and all parts of the distribution are properly sampled.
1009     .LP
1010 greg 1.35 .UL aBSDF
1011 greg 1.34 .PP
1012 greg 1.35 The aBSDF material is identical to the BSDF type with two important
1013 greg 1.34 differences.
1014     First, proxy geometry is not supported, so there is no thickness parameter.
1015 greg 1.35 Second, an aBSDF is assumed to have some specular through component
1016     (the 'a' stands for "aperture"), which
1017 greg 1.34 is treated specially during the direct calculation and when viewing the
1018     material.
1019     Based on the BSDF data, the coefficient of specular transmission is
1020     determined and used for modifying unscattered shadow and view rays.
1021     .DS
1022 greg 1.35 mod aBSDF id
1023 greg 1.34 5+ BSDFfile ux uy uz funcfile transform
1024     0
1025     0|3|6|9
1026     rfdif gfdif bfdif
1027     rbdif gbdif bbdif
1028     rtdif gtdif btdif
1029     .DE
1030     .LP
1031     If a material has no specular transmitted component, it is much better
1032 greg 1.35 to use the BSDF type with a zero thickness than to use aBSDF.
1033 greg 1.34 .LP
1034 greg 1.1 .UL Antimatter
1035     .PP
1036     Antimatter is a material that can "subtract" volumes from other volumes.
1037     A ray passing into an antimatter object becomes blind to all the specified
1038     modifiers:
1039     .DS
1040     mod antimatter id
1041     N mod1 mod2 .. modN
1042     0
1043     0
1044     .DE
1045     The first modifier will also be used to shade the area leaving the
1046     antimatter volume and entering the regular volume.
1047     If mod1 is void, the antimatter volume is completely invisible.
1048 greg 1.31 If shading is desired at antimatter surfaces, it is important
1049     that the related volumes are closed with outward-facing normals.
1050     Antimatter surfaces should not intersect with other antimatter boundaries,
1051     and it is unwise to use the same modifier in nested antimatter volumes.
1052 greg 1.1 The viewpoint must be outside all volumes concerned for a correct
1053     rendering.
1054     .NH 3
1055     Textures
1056     .PP
1057     A texture is a perturbation of the surface normal, and
1058     is given by either a function or data.
1059     .LP
1060     .UL Texfunc
1061     .PP
1062     A texfunc uses an auxiliary function file
1063     to specify a procedural texture:
1064     .DS
1065     mod texfunc id
1066     4+ xpert ypert zpert funcfile transform
1067     0
1068     n A1 A2 .. An
1069     .DE
1070     .LP
1071     .UL Texdata
1072     .PP
1073     A texdata texture uses three data files to get the surface
1074     normal perturbations.
1075     The variables
1076     .I xfunc,
1077     .I yfunc
1078     and
1079     .I zfunc
1080     take three arguments
1081     each from the interpolated values in
1082     .I xdfname,
1083     .I ydfname
1084     and
1085     .I zdfname.
1086     .DS
1087     mod texdata id
1088     8+ xfunc yfunc zfunc xdfname ydfname zdfname vfname x0 x1 .. xf
1089     0
1090     n A1 A2 .. An
1091     .DE
1092     .NH 3
1093     Patterns
1094     .PP
1095     Patterns are used to modify the reflectance of materials.
1096     The basic types are given below.
1097     .LP
1098     .UL Colorfunc
1099     .PP
1100     A colorfunc is a procedurally defined color pattern.
1101     It is specified as follows:
1102     .DS
1103     mod colorfunc id
1104     4+ red green blue funcfile transform
1105     0
1106     n A1 A2 .. An
1107     .DE
1108     .LP
1109     .UL Brightfunc
1110     .PP
1111     A brightfunc is the same as a colorfunc, except it is monochromatic.
1112     .DS
1113     mod brightfunc id
1114     2+ refl funcfile transform
1115     0
1116     n A1 A2 .. An
1117     .DE
1118     .LP
1119     .UL Colordata
1120     .PP
1121     Colordata uses an interpolated data map to modify a material's color.
1122     The map is n-dimensional, and is stored in three
1123     auxiliary files, one for each color.
1124     The coordinates used to look up and interpolate the data are
1125     defined in another auxiliary file.
1126     The interpolated data values are modified by functions of
1127     one or three variables.
1128     If the functions are of one variable, then they are passed the
1129     corresponding color component (red or green or blue).
1130     If the functions are of three variables, then they are passed the
1131     original red, green, and blue values as parameters.
1132     .DS
1133     mod colordata id
1134     7+n+
1135     rfunc gfunc bfunc rdatafile gdatafile bdatafile
1136     funcfile x1 x2 .. xn transform
1137     0
1138     m A1 A2 .. Am
1139     .DE
1140     .LP
1141     .UL Brightdata
1142     .PP
1143     Brightdata is like colordata, except monochromatic.
1144     .DS
1145     mod brightdata id
1146     3+n+
1147     func datafile
1148     funcfile x1 x2 .. xn transform
1149     0
1150     m A1 A2 .. Am
1151     .DE
1152     .LP
1153     .UL Colorpict
1154     .PP
1155     Colorpict is a special case of colordata, where the pattern is
1156     a two-dimensional image stored in the RADIANCE picture format.
1157     The dimensions of the image data are determined by the picture
1158     such that the smaller dimension is always 1, and the other
1159     is the ratio between the larger and the smaller.
1160     For example, a 500x338 picture would have coordinates (u,v)
1161     in the rectangle between (0,0) and (1.48,1).
1162     .DS
1163     mod colorpict id
1164     7+
1165     rfunc gfunc bfunc pictfile
1166     funcfile u v transform
1167     0
1168     m A1 A2 .. Am
1169     .DE
1170     .LP
1171     .UL Colortext
1172     .PP
1173     Colortext is dichromatic writing in a polygonal font.
1174     The font is defined in an auxiliary file, such as
1175     .I helvet.fnt.
1176     The text itself is also specified in a separate file, or
1177     can be part of the material arguments.
1178     The character size, orientation, aspect ratio and slant is
1179     determined by right and down motion vectors.
1180     The upper left origin for the text block as well as
1181     the foreground and background colors
1182     must also be given.
1183     .DS
1184     mod colortext id
1185     2 fontfile textfile
1186     0
1187     15+
1188     Ox Oy Oz
1189     Rx Ry Rz
1190     Dx Dy Dz
1191     rfore gfore bfore
1192     rback gback bback
1193     [spacing]
1194     .DE
1195     or:
1196     .DS
1197     mod colortext id
1198     2+N fontfile . This is a line with N words ...
1199     0
1200     15+
1201     Ox Oy Oz
1202     Rx Ry Rz
1203     Dx Dy Dz
1204     rfore gfore bfore
1205     rback gback bback
1206     [spacing]
1207     .DE
1208     .LP
1209     .UL Brighttext
1210     .PP
1211     Brighttext is like colortext, but the writing is monochromatic.
1212     .DS
1213     mod brighttext id
1214     2 fontfile textfile
1215     0
1216     11+
1217     Ox Oy Oz
1218     Rx Ry Rz
1219     Dx Dy Dz
1220     foreground background
1221     [spacing]
1222     .DE
1223     or:
1224     .DS
1225     mod brighttext id
1226     2+N fontfile . This is a line with N words ...
1227     0
1228     11+
1229     Ox Oy Oz
1230     Rx Ry Rz
1231     Dx Dy Dz
1232     foreground background
1233     [spacing]
1234     .DE
1235     .LP
1236     By default, a uniform spacing algorithm is used that guarantees
1237     every character will appear in a precisely determined position.
1238     Unfortunately, such a scheme results in rather unattractive and difficult to
1239     read text with most fonts.
1240     The optional
1241     .I spacing
1242     value defines the distance between characters for proportional spacing.
1243     A positive value selects a spacing algorithm that preserves right margins and
1244     indentation, but does not provide the ultimate in proportionally spaced text.
1245     A negative value insures that characters are properly spaced, but the
1246     placement of words then varies unpredictably.
1247     The choice depends on the relative importance of spacing versus formatting.
1248     When presenting a section of formatted text, a positive spacing value is
1249     usually preferred.
1250     A single line of text will often be accompanied by a negative spacing value.
1251     A section of text meant to depict a picture, perhaps using a special purpose
1252     font such as hexbit4x1.fnt, calls for uniform spacing.
1253     Reasonable magnitudes for proportional spacing are
1254     between 0.1 (for tightly spaced characters) and 0.3 (for wide spacing).
1255 greg 1.41 .LP
1256     .UL Spectrum
1257     .PP
1258     The spectrum primitive is the most basic type for introducing spectral
1259     color to a material.
1260     Since materials only provide RGB parameters, spectral patterns
1261     are the only way to superimpose wavelength-dependent behavior.
1262     .DS
1263     mod spectrum id
1264     0
1265     0
1266     5+ nmA nmB s1 s2 .. sN
1267     .DE
1268 greg 1.43 The first two real arguments indicate the extrema of the
1269 greg 1.41 spectral range in nanometers.
1270 greg 1.44 Subsequent real values correspond to multipliers at each wavelength.
1271 greg 1.42 The nmA wavelength may be greater or less than nmB,
1272     but they may not be equal, and their ordering matches
1273     the order of the spectral values.
1274 greg 1.41 A minimum of 3 values must be given, which would act
1275     more or less the same as a constant RGB multiplier.
1276     As with RGB values, spectral quantities normally range between 0
1277     and 1 at each wavelength, or average to 1.0 against a standard
1278     sensitivity functions such as V(lambda).
1279     The best results obtain when the spectral range and number
1280     of samples match rendering options, though resampling will handle
1281     any differences, zero-filling wavelenths outside the nmA to nmB
1282     range.
1283     A warning will be issued if the given wavelength range does not
1284     adequately cover the visible spectrum.
1285     .LP
1286     .UL Specfile
1287     .PP
1288     The specfile primitive is equivalent to the spectrum type, but
1289     the wavelength range and values are contained in a 1-dimensional
1290     data file.
1291     This may be a more convenient way to specify a spectral color,
1292     especially one corresponding to a standard illuminant such as D65
1293     or a library of measured spectra.
1294     .DS
1295     mod specfile id
1296     1 datafile
1297     0
1298     0
1299     .DE
1300     As with the spectrum type, rendering wavelengths outside the defined
1301     range will be zero-filled.
1302     Unlike the spectrum type, the file may contain non-uniform samples.
1303     .LP
1304     .UL Specfunc
1305     .PP
1306     The specfunc primitive offers dynamic control over a spectral
1307     pattern, similar to the colorfunc type.
1308     .DS
1309     mod specfunc id
1310 greg 1.45 2+ sfunc funcfile transform
1311 greg 1.41 0
1312     2+ nmA nmB A3 ..
1313     .DE
1314     Like the spectrum primitive, the wavelength range is specified
1315     in the first two real arguments, and additional real values are
1316 greg 1.44 set in the evaluation context.
1317 greg 1.41 This function is fed a wavelenth sample
1318     between nmA and nmB as its only argument,
1319     and it returns the corresponding spectral intensity.
1320 greg 1.46 .LP
1321     .UL Specdata
1322     .PP
1323     Specdata is like brightdata and colordata, but with more
1324     than 3 specular samples.
1325     .DS
1326     mod specdata id
1327     3+n+
1328     func datafile
1329     funcfile x1 x2 .. xn transform
1330     0
1331     m A1 A2 .. Am
1332     .DE
1333     The data file must have one more dimension than the coordinate
1334     variable count, as this final dimension corresponds to the covered
1335     spectrum.
1336     The starting and ending wavelengths are specified in "datafile"
1337     as well as the number of spectral samples.
1338     The function "func" will be called with two parameters, the
1339     interpolated spectral value for the current coordinate and the
1340     associated wavelength.
1341     If the spectrum is broken into 12 components, then 12 calls
1342     will be made to "func" for the relevant ray evaluation.
1343     .LP
1344     .UL Specpict
1345     .PP
1346     Specpict is a special case of specdata, where the pattern is
1347     a hyperspectral image stored in the common-exponent file format.
1348     The dimensions of the image data are determined by the picture
1349     just as with the colorpict primitive.
1350     .DS
1351     mod specpict id
1352     5+
1353     func specfile
1354     funcfile u v transform
1355     0
1356     m A1 A2 .. Am
1357     .DE
1358     The function "func" is called with the interpolated pixel value
1359     and the wavelength sample in nanometers, the same as specdata,
1360     with as many calls made as there are components in "specfile".
1361 greg 1.1 .NH 3
1362     Mixtures
1363     .PP
1364     A mixture is a blend of one or more materials or textures and patterns.
1365 greg 1.28 Blended materials should not be light source types or virtual source types.
1366 greg 1.1 The basic types are given below.
1367     .LP
1368     .UL Mixfunc
1369     .PP
1370     A mixfunc mixes two modifiers procedurally.
1371     It is specified as follows:
1372     .DS
1373     mod mixfunc id
1374     4+ foreground background vname funcfile transform
1375     0
1376     n A1 A2 .. An
1377     .DE
1378     Foreground and background are modifier names that must be
1379     defined earlier in the scene description.
1380     If one of these is a material, then
1381     the modifier of the mixfunc must be "void".
1382     (Either the foreground or background modifier may be "void",
1383     which serves as a form of opacity control when used with a material.)\0
1384     Vname is the coefficient defined in funcfile that determines the influence
1385     of foreground.
1386     The background coefficient is always (1-vname).
1387     .LP
1388     .UL Mixdata
1389     .PP
1390     Mixdata combines two modifiers using an auxiliary data file:
1391     .DS
1392     mod mixdata id
1393     5+n+
1394     foreground background func datafile
1395     funcfile x1 x2 .. xn transform
1396     0
1397     m A1 A2 .. Am
1398     .DE
1399     .LP
1400     .UL Mixpict
1401     .PP
1402     Mixpict combines two modifiers based on a picture:
1403     .DS
1404     mod mixpict id
1405     7+
1406     foreground background func pictfile
1407     funcfile u v transform
1408     0
1409     m A1 A2 .. Am
1410     .DE
1411     The mixing coefficient function "func" takes three
1412     arguments, the red, green and blue values
1413     corresponding to the pixel at (u,v).
1414     .LP
1415     .UL Mixtext
1416     .PP
1417     Mixtext uses one modifier for the text foreground, and one for the
1418     background:
1419     .DS
1420     mod mixtext id
1421     4 foreground background fontfile textfile
1422     0
1423     9+
1424     Ox Oy Oz
1425     Rx Ry Rz
1426     Dx Dy Dz
1427     [spacing]
1428     .DE
1429     or:
1430     .DS
1431     mod mixtext id
1432     4+N
1433     foreground background fontfile .
1434     This is a line with N words ...
1435     0
1436     9+
1437     Ox Oy Oz
1438     Rx Ry Rz
1439     Dx Dy Dz
1440     [spacing]
1441     .DE
1442     .NH 2
1443     Auxiliary Files
1444     .PP
1445     Auxiliary files used in textures and patterns
1446     are accessed by the programs during image generation.
1447     These files may be located in the working directory, or in
1448     a library directory.
1449     The environment variable
1450     .I RAYPATH
1451     can be assigned an alternate set of search directories.
1452     Following is a brief description of some common file types.
1453     .NH 3
1454     Function Files
1455     .PP
1456     A function file contains the definitions of variables, functions
1457     and constants used by a primitive.
1458     The transformation that accompanies the file name contains the necessary
1459     rotations, translations and scalings to bring the coordinates of
1460     the function file into agreement with the world coordinates.
1461     The transformation specification is the same as for the
1462     .I xform
1463     command.
1464     An example function file is given below:
1465     .DS
1466     {
1467     This is a comment, enclosed in curly braces.
1468     {Comments can be nested.}
1469     }
1470     { standard expressions use +,-,*,/,^,(,) }
1471     vname = Ny * func(A1) ;
1472     { constants are defined with a colon }
1473     const : sqrt(PI/2) ;
1474     { user-defined functions add to library }
1475     func(x) = 5 + A1*sin(x/3) ;
1476     { functions may be passed and recursive }
1477     rfunc(f,x) = if(x,f(x),f(-x)*rfunc(f,x+1)) ;
1478     { constant functions may also be defined }
1479     cfunc(x) : 10*x / sqrt(x) ;
1480     .DE
1481     Many variables and functions are already defined by the program,
1482     and they are listed in the file
1483     .I rayinit.cal.
1484     The following variables are particularly important:
1485     .DS
1486     Dx, Dy, Dz - incident ray direction
1487 greg 1.4 Nx, Ny, Nz - surface normal at intersection point
1488 greg 1.1 Px, Py, Pz - intersection point
1489 greg 1.4 T - distance from start
1490     Ts - single ray (shadow) distance
1491 greg 1.1 Rdot - cosine between ray and normal
1492     arg(0) - number of real arguments
1493     arg(i) - i'th real argument
1494     .DE
1495 greg 1.4 For mesh objects, the local surface coordinates are available:
1496     .DS
1497     Lu, Lv - local (u,v) coordinates
1498     .DE
1499 greg 1.1 For BRDF types, the following variables are defined as well:
1500     .DS
1501     NxP, NyP, NzP - perturbed surface normal
1502     RdotP - perturbed dot product
1503     CrP, CgP, CbP - perturbed material color
1504     .DE
1505     A unique context is set up for each file so that the same variable
1506     may appear in different function files without conflict.
1507     The variables listed above and any others defined in
1508     rayinit.cal are available globally.
1509     If no file is needed by a given primitive because all the required
1510     variables are global, a period (`.') can be given in
1511     place of the file name.
1512     It is also possible to give an expression instead of a straight
1513 greg 1.13 variable name in a scene file.
1514 greg 1.14 Functions (requiring parameters)
1515 greg 1.1 must be given as names and not as expressions.
1516     .PP
1517     Constant expressions are used as an optimization in function
1518     files.
1519     They are replaced wherever they occur in an expression by their
1520     value.
1521     Constant expressions are evaluated only once, so they must not
1522     contain any variables or values that can change, such as the ray
1523     variables Px and Ny or the primitive argument function arg().
1524     All the math library functions such as sqrt() and cos() have the
1525     constant attribute, so they will be replaced by immediate values
1526     whenever they are given constant arguments.
1527     Thus, the subexpression cos(PI*sqrt(2)) is immediately replaced
1528     by its value, -.266255342, and does not cause any additional overhead
1529     in the calculation.
1530     .PP
1531     It is generally a good idea to define constants and variables before
1532     they are referred to in a function file.
1533     Although evaluation does not take place until later, the interpreter
1534     does variable scoping and constant subexpression evaluation based on
1535     what it has compiled already.
1536     For example, a variable that is defined globally in rayinit.cal then
1537     referenced in the local context of a function file cannot
1538     subsequently be redefined in the same file because the compiler
1539     has already determined the scope of the referenced variable as global.
1540     To avoid such conflicts, one can state the scope of a variable explicitly
1541     by preceding the variable name with a context mark (a back-quote) for
1542     a local variable, or following the name with a context mark for a global
1543     variable.
1544     .NH 3
1545     Data Files
1546     .PP
1547     Data files contain n-dimensional arrays of real numbers used
1548     for interpolation.
1549     Typically, definitions in a function file determine how
1550     to index and use interpolated data values.
1551     The basic data file format is as follows:
1552     .DS
1553     N
1554     beg1 end1 m1
1555     0 0 m2 x2.1 x2.2 x2.3 x2.4 .. x2.m2
1556     ...
1557     begN endN mN
1558     DATA, later dimensions changing faster.
1559     .DE
1560     N is the number of dimensions.
1561     For each dimension, the beginning and ending coordinate
1562     values and the dimension size is given.
1563     Alternatively, individual coordinate values can be given when
1564     the points are not evenly spaced.
1565     These values must either be increasing or decreasing monotonically.
1566     The data is m1*m2*...*mN real numbers in ASCII form.
1567     Comments may appear anywhere in the file, beginning with a pound
1568     sign ('#') and continuing to the end of line.
1569     .NH 3
1570     Font Files
1571     .PP
1572     A font file lists the polygons which make up a character set.
1573     Comments may appear anywhere in the file, beginning with a pound
1574     sign ('#') and continuing to the end of line.
1575     All numbers are decimal integers:
1576     .DS
1577     code n
1578     x0 y0
1579     x1 y1
1580     ...
1581     xn yn
1582     ...
1583     .DE
1584     The ASCII codes can appear in any order.
1585     N is the number of vertices, and the last is automatically
1586     connected to the first.
1587     Separate polygonal sections are joined by coincident sides.
1588     The character coordinate system is a square with lower left corner at
1589     (0,0), lower right at (255,0) and upper right at (255,255).
1590     .NH 2
1591     Generators
1592     .PP
1593     A generator is any program that produces a scene description
1594     as its output.
1595     They usually appear as commands in a scene description file.
1596     An example of a simple generator is
1597     .I genbox.
1598     .I Genbox
1599     takes the arguments of width, height and depth to produce
1600     a parallelepiped description.
1601     .I Genprism
1602     takes a list of 2-dimensional coordinates and extrudes them along a vector to
1603     produce a 3-dimensional prism.
1604     .I Genrev
1605     is a more sophisticated generator
1606     that produces an object of rotation from parametric functions
1607     for radius and axis position.
1608     .I Gensurf
1609     tessellates a surface defined by the
1610     parametric functions x(s,t), y(s,t), and z(s,t).
1611     .I Genworm
1612     links cylinders and spheres along a curve.
1613     .I Gensky
1614     produces a sun and sky distribution corresponding
1615     to a given time and date.
1616     .PP
1617     .I Xform
1618     is a program that transforms a scene description from one
1619     coordinate space to another.
1620     .I Xform
1621     does rotation, translation, scaling, and mirroring.
1622     .NH 1
1623     Image Generation
1624     .PP
1625     Once the scene has been described in three-dimensions, it
1626     is possible to generate a two-dimensional image from a
1627     given perspective.
1628     .PP
1629     The image generating programs use an
1630     .I octree
1631     to efficiently trace rays through the scene.
1632     An octree subdivides space into nested octants which
1633     contain sets of surfaces.
1634     In RADIANCE, an octree is created from a scene description by
1635     .I oconv.
1636     The details of this process are not important,
1637     but the octree will serve as input to the ray-tracing
1638     programs and directs the use of a scene description.
1639     .PP
1640     .I Rview
1641     is ray-tracing program for viewing a scene interactively.
1642     When the user specifies a new perspective,
1643 greg 1.9 .I rview
1644 greg 1.1 quickly displays a rough
1645     image on the terminal, then progressively
1646     increases the resolution as the user looks on.
1647     He can select a particular section of the image to improve,
1648     or move to a different view and start over.
1649     This mode of interaction is useful for debugging scenes
1650     as well as determining the best view for a final image.
1651     .PP
1652     .I Rpict
1653     produces a high-resolution picture of a scene from
1654     a particular perspective.
1655     This program features adaptive sampling, crash
1656     recovery and progress reporting, all of which are important
1657     for time-consuming images.
1658     .PP
1659     A number of filters are available for manipulating picture files.
1660     .I Pfilt
1661     sets the exposure and performs anti-aliasing.
1662     .I Pcompos
1663     composites (cuts and pastes) pictures.
1664     .I Pcond
1665     conditions a picture for a specific display device.
1666     .I Pcomb
1667     performs arbitrary math on one or more pictures.
1668     .I Protate
1669     rotates a picture 90 degrees clockwise.
1670     .I Pflip
1671     flips a picture horizontally, vertically, or both (180 degree rotation).
1672     .I Pvalue
1673     converts a picture to and from simpler formats.
1674     .PP
1675     Pictures may be displayed directly under X11 using the program
1676     .I ximage,
1677     or converted a standard image format.
1678 greg 1.17 .I Ra_bmp
1679     converts to and from Microsoft Bitmap images.
1680 greg 1.1 .I Ra_ppm
1681     converts to and from Poskanzer Portable Pixmap formats.
1682     .I Ra_ps
1683     converts to PostScript color and greyscale formats.
1684     .I Ra_rgbe
1685     converts to and from Radiance uncompressed picture format.
1686     .I Ra_t16
1687     converts to and from Targa 16 and 24-bit image formats.
1688     .I Ra_t8
1689     converts to and from Targa 8-bit image format.
1690     .I Ra_tiff
1691     converts to and from TIFF.
1692     .I Ra_xyze
1693     converts to and from Radiance CIE picture format.
1694     .NH 1
1695     License
1696     .PP
1697 greg 1.4 .DS
1698     The Radiance Software License, Version 1.0
1699    
1700 greg 1.14 Copyright (c) 1990 - 2008 The Regents of the University of California,
1701 greg 1.4 through Lawrence Berkeley National Laboratory. All rights reserved.
1702    
1703     Redistribution and use in source and binary forms, with or without
1704     modification, are permitted provided that the following conditions
1705     are met:
1706    
1707     1. Redistributions of source code must retain the above copyright
1708     notice, this list of conditions and the following disclaimer.
1709    
1710     2. Redistributions in binary form must reproduce the above copyright
1711     notice, this list of conditions and the following disclaimer in
1712     the documentation and/or other materials provided with the
1713     distribution.
1714    
1715     3. The end-user documentation included with the redistribution,
1716     if any, must include the following acknowledgment:
1717     "This product includes Radiance software
1718     (http://radsite.lbl.gov/)
1719     developed by the Lawrence Berkeley National Laboratory
1720     (http://www.lbl.gov/)."
1721     Alternately, this acknowledgment may appear in the software itself,
1722     if and wherever such third-party acknowledgments normally appear.
1723    
1724     4. The names "Radiance," "Lawrence Berkeley National Laboratory"
1725     and "The Regents of the University of California" must
1726     not be used to endorse or promote products derived from this
1727     software without prior written permission. For written
1728     permission, please contact [email protected].
1729    
1730     5. Products derived from this software may not be called "Radiance",
1731     nor may "Radiance" appear in their name, without prior written
1732     permission of Lawrence Berkeley National Laboratory.
1733    
1734     THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
1735     WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
1736     OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
1737     DISCLAIMED. IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR
1738     ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
1739     SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
1740     LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
1741     USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
1742     ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
1743     OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
1744     OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
1745     SUCH DAMAGE.
1746     .DE
1747 greg 1.1 .NH 1
1748     Acknowledgements
1749     .PP
1750     This work was supported by the Assistant Secretary of Conservation
1751     and Renewable Energy, Office of Building Energy Research and
1752     Development, Buildings Equipment Division of the U.S. Department of
1753     Energy under Contract No. DE-AC03-76SF00098.
1754     .PP
1755     Additional work was sponsored by the Swiss federal government
1756     under the Swiss LUMEN Project and was
1757     carried out in the Laboratoire d'Energie Solaire (LESO Group) at
1758     the Ecole Polytechnique Federale de Lausanne (EPFL University)
1759     in Lausanne, Switzerland.
1760     .NH 1
1761     References
1762 greg 1.4 .LP
1763 greg 1.40 Ward, Gregory J., Bruno Bueno, David Geisler-Moroder,
1764     Lars O. Grobe, Jacob C. Jonsson, Eleanor
1765     S. Lee, Taoning Wang, Helen Rose Wilson,
1766     ``Daylight Simulation Workflows Incorporating
1767     Measured Bidirectional Scattering Distribution Functions,''
1768     .I "Energy & Buildings",
1769     Vol. 259, No. 111890, 2022.
1770     .LP
1771 greg 1.36 Wang, Taoning, Gregory Ward, Eleanor Lee,
1772     ``Efficient modeling of optically-complex, non-coplanar
1773     exterior shading: Validation of matrix algebraic methods,''
1774     .I "Energy & Buildings",
1775     vol. 174, pp. 464-83, Sept. 2018.
1776     .LP
1777 greg 1.33 Lee, Eleanor S., David Geisler-Moroder, Gregory Ward,
1778     ``Modeling the direct sun component in buildings using matrix
1779     algebraic approaches: Methods and validation,''
1780     .I Solar Energy,
1781     vol. 160, 15 January 2018, pp 380-395.
1782     .LP
1783 greg 1.29 Ward, G., M. Kurt & N. Bonneel,
1784     ``Reducing Anisotropic BSDF Measurement to Common Practice,''
1785     .I Workshop on Material Appearance Modeling,
1786     2014.
1787     .LP
1788 greg 1.26 McNeil, A., C.J. Jonsson, D. Appelfeld, G. Ward, E.S. Lee,
1789     ``A validation of a ray-tracing tool used to generate
1790     bi-directional scattering distribution functions for
1791     complex fenestration systems,''
1792     .I "Solar Energy",
1793     98, 404-14, November 2013.
1794     .LP
1795 greg 1.22 Ward, G., R. Mistrick, E.S. Lee, A. McNeil, J. Jonsson,
1796     ``Simulating the Daylight Performance of Complex Fenestration Systems
1797 greg 1.23 Using Bidirectional Scattering Distribution Functions within Radiance,''
1798 greg 1.24 .I "Leukos",
1799     7(4),
1800 greg 1.22 April 2011.
1801     .LP
1802 greg 1.10 Cater, K., A. Chalmers, G. Ward,
1803     ``Detail to Attention: Exploiting Visual Tasks for Selective Rendering,''
1804     .I "Eurograhics Symposium on Rendering",
1805     June 2003.
1806     .LP
1807 greg 1.4 Ward, G., Elena Eydelberg-Vileshin,
1808     ``Picture Perfect RGB Rendering Using Spectral Prefiltering and
1809     Sharp Color Primaries,''
1810     13th Eurographics Workshop on Rendering, P. Debevec and
1811     S. Gibson (Editors), June 2002.
1812     .LP
1813     Ward, G. and M. Simmons,
1814     ``The Holodeck Ray Cache: An Interactive Rendering System for Global
1815     Illumination in Nondiffuse Environments,''
1816     .I "ACM Transactions on Graphics,"
1817     18(4):361-98, October 1999.
1818     .LP
1819     Larson, G.W., H. Rushmeier, C. Piatko,
1820     ``A Visibility Matching Tone Reproduction Operator for High Dynamic
1821     Range Scenes,''
1822     .I "IEEE Transactions on Visualization and Computer Graphics",
1823     3(4), 291-306, December 1997.
1824     .LP
1825     Ward, G.,
1826     ``Making Global Illumination User Friendly,''
1827     .I "Sixth Eurographics Workshop on Rendering",
1828     proceedings to be published by Springer-Verlag,
1829     Dublin, Ireland, June 1995.
1830     .LP
1831     Rushmeier, H., G. Ward, C. Piatko, P. Sanders, B. Rust,
1832     ``Comparing Real and Synthetic Images: Some Ideas about Metrics,''
1833     .I "Sixth Eurographics Workshop on Rendering",
1834     proceedings to be published by Springer-Verlag,
1835     Dublin, Ireland, June 1995.
1836 greg 1.1 .LP
1837     Ward, G.,
1838     ``The Radiance Lighting Simulation and Rendering System,''
1839     .I "Computer Graphics",
1840     Orlando, July 1994.
1841     .LP
1842     Rushmeier, H., G. Ward,
1843     ``Energy-Preserving Non-Linear Filters,''
1844     .I "Computer Graphics",
1845     Orlando, July 1994.
1846     .LP
1847     Ward, G.,
1848     ``A Contrast-Based Scalefactor for Luminance Display,''
1849     .I "Graphics Gems IV",
1850     Edited by Paul Heckbert,
1851     Academic Press 1994.
1852     .LP
1853     Ward, G.,
1854     ``Measuring and Modeling Anisotropic Reflection,''
1855     .I "Computer Graphics",
1856     Chicago, July 1992.
1857     .LP
1858     Ward, G., P. Heckbert,
1859     ``Irradiance Gradients,''
1860     .I "Third Annual Eurographics Workshop on Rendering",
1861     to be published by Springer-Verlag, held in Bristol, UK, May 1992.
1862     .LP
1863     Ward, G.,
1864     ``Adaptive Shadow Testing for Ray Tracing,''
1865     .I "Second Annual Eurographics Workshop on Rendering",
1866     to be published by Springer-Verlag, held in Barcelona, SPAIN, May 1991.
1867     .LP
1868     Ward, G.,
1869     ``Visualization,''
1870     .I "Lighting Design and Application",
1871     Vol. 20, No. 6, June 1990.
1872     .LP
1873     Ward, G., F. Rubinstein, R. Clear,
1874     ``A Ray Tracing Solution for Diffuse Interreflection,''
1875     .I "Computer Graphics",
1876     Vol. 22, No. 4, August 1988.
1877     .LP
1878     Ward, G., F. Rubinstein,
1879     ``A New Technique for Computer Simulation of Illuminated Spaces,''
1880     .I "Journal of the Illuminating Engineering Society",
1881     Vol. 17, No. 1, Winter 1988.