ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/ray.1
Revision: 1.30
Committed: Sun Jul 10 23:41:37 2016 UTC (8 years, 10 months ago) by greg
Branch: MAIN
Changes since 1.29: +18 -3 lines
Log Message:
Added missing definition of ashik2 material type

File Contents

# User Rev Content
1 greg 1.30 .\" RCSid "$Id: ray.1,v 1.29 2016/05/25 18:52:45 greg Exp $"
2 greg 1.1 .\" Print using the -ms macro package
3 greg 1.30 .DA 07/10/2016
4 greg 1.1 .LP
5 greg 1.30 .tl """Copyright \(co 2016 Regents, University of California
6 greg 1.1 .sp 2
7     .TL
8     The
9     .so ../src/rt/VERSION
10     .br
11     Synthetic Imaging System
12     .AU
13 greg 1.9 Building Technologies Department
14 greg 1.1 .br
15     Lawrence Berkeley Laboratory
16     .br
17 greg 1.4 1 Cyclotron Rd., MS 90-3111
18 greg 1.1 .br
19     Berkeley, CA 94720
20     .NH 1
21     Introduction
22     .PP
23     RADIANCE was developed as a research tool
24     for predicting the distribution of visible radiation in
25     illuminated spaces.
26     It takes as input a three-dimensional geometric model of
27     the physical environment, and produces a map of
28     spectral radiance values in a color image.
29     The technique of ray-tracing follows light backwards
30     from the image plane to the source(s).
31     Because it can produce realistic images from a simple description,
32     RADIANCE has a wide range of applications in graphic arts,
33     lighting design, computer-aided engineering and architecture.
34     .KF
35     .sp 25
36     .ce
37     .B "Figure 1."
38     .sp
39     .KE
40     .PP
41     The diagram in Figure 1 shows the flow between programs (boxes) and
42     data (ovals).
43     The central program is
44     .I rpict,
45     which produces a picture from a scene description.
46     .I Rview
47     is a variation of
48     .I rpict
49     that computes and displays images interactively.
50 greg 1.4 Other programs (not shown) connect many of these elements together,
51     such as the executive programs
52     .I rad
53     and
54     .I ranimate,
55     the interactive rendering program
56     .I rholo,
57     and the animation program
58     .I ranimove.
59     The program
60     .I obj2mesh
61     acts as both a converter and scene compiler, converting a Wavefront .OBJ
62     file into a compiled mesh octree for efficient rendering.
63 greg 1.1 .PP
64     A scene description file lists the surfaces and materials
65 greg 1.4 that make up a specific environment.
66     The current surface types are spheres, polygons, cones, and cylinders.
67     There is also a composite surface type, called mesh, and a pseudosurface
68     type, called instance, which facilitates very complex geometries.
69     Surfaces can be made from materials such as plastic, metal, and glass.
70     Light sources can be distant disks as well as local spheres, disks
71     and polygons.
72 greg 1.1 .PP
73     From a three-dimensional scene description and a specified view,
74     .I rpict
75     produces a two-dimensional image.
76     A picture file is a compressed binary representation of the
77     pixels in the image.
78     This picture can be scaled in size and
79     brightness, anti-aliased, and sent to a graphics output device.
80     .PP
81     A header in each picture file lists the program(s) and
82     parameters that produced it.
83     This is useful for identifying a picture
84     without having to display it.
85     The information can be read by the program
86     .I getinfo.
87     .NH 1
88     Scene Description
89     .PP
90     A scene description file represents a
91     three-dimensional physical environment
92     in Cartesian (rectilinear) world coordinates.
93     It is stored as ASCII text, with the following basic format:
94     .DS
95     # comment
96    
97     modifier type identifier
98 greg 1.4 n S1 S2 "S 3" .. Sn
99 greg 1.1 0
100     m R1 R2 R3 .. Rm
101    
102     modifier alias identifier reference
103    
104     ! command
105    
106     ...
107     .DE
108     .PP
109     A comment line begins with a pound sign, `#'.
110     .PP
111     The scene description
112     .I primitives
113     all have the same general format, and can
114     be either surfaces or modifiers.
115     A primitive has a modifier, a type, and an identifier.
116     A modifier is either the identifier of a
117     .I "previously defined"
118     primitive, or "void"\(dg.
119     .FS
120     \(dgThe most recent definition of a modifier is the one used,
121     and later definitions do not cause relinking of loaded
122     primitives.
123     Thus, the same identifier may be used repeatedly, and each new
124     definition will apply to the primitives following it.
125     .FE
126 greg 1.4 An identifier can be any string (i.e., any sequence of non-white characters).
127 greg 1.1 The
128     .I arguments
129     associated with a primitive can be strings or real numbers.
130     The first integer following the identifier is the number
131     of string arguments, and it is followed by the arguments themselves
132 greg 1.4 (separated by white space or enclosed in quotes).
133 greg 1.1 The next integer is the number of integer arguments, and is followed
134     by the integer arguments.
135     (There are currently no primitives that use them, however.)
136     The next integer is the real argument count, and it is followed
137     by the real arguments.
138     .PP
139     An alias gets its type and arguments from a previously defined primitive.
140     This is useful when the same material is used with a different
141     modifier, or as a convenient naming mechanism.
142 greg 1.2 The reserved modifier name "inherit" may be used to specificy that
143     an alias will inherit its modifier from the original.
144 greg 1.1 Surfaces cannot be aliased.
145     .PP
146     A line beginning with an exclamation point, `!',
147     is interpreted as a command.
148     It is executed by the shell, and its output is read as input to
149     the program.
150     The command must not try to read from its standard input, or
151     confusion will result.
152     A command may be continued over multiple lines using a backslash, `\\',
153     to escape the newline.
154     .PP
155 greg 1.4 White space is generally ignored, except as a separator.
156 greg 1.1 The exception is the newline character after a command or comment.
157     Commands, comments and primitives may appear in any combination, so long
158     as they are not intermingled.
159     .NH 2
160     Primitive Types
161     .PP
162     Primitives can be surfaces, materials, textures or patterns.
163 greg 1.4 Modifiers can be materials, mixtures, textures or patterns.
164 greg 1.1 Simple surfaces must have one material in their modifier list.
165     .NH 3
166     Surfaces
167     .PP
168     A scene description will consist mostly of surfaces.
169     The basic types are given below.
170     .LP
171     .UL Source
172     .PP
173     A source is not really a surface, but a solid angle.
174     It is used for specifying light sources that are very distant.
175     The direction to the center of the source and the number of degrees
176     subtended by its disk are given as follows:
177     .DS
178     mod source id
179     0
180     0
181     4 xdir ydir zdir angle
182     .DE
183     .LP
184     .UL Sphere
185     .PP
186     A sphere is given by its center and radius:
187     .DS
188     mod sphere id
189     0
190     0
191     4 xcent ycent zcent radius
192     .DE
193     .LP
194     .UL Bubble
195     .PP
196     A bubble is simply a sphere whose surface normal points inward.
197     .LP
198     .UL Polygon
199     .PP
200     A polygon is given by a list of three-dimensional vertices,
201     which are ordered counter-clockwise as viewed from
202     the front side (into the surface normal).
203     The last vertex is automatically connected to the first.
204     Holes are represented in polygons as interior vertices connected to
205     the outer perimeter by coincident edges (seams).
206     .DS
207     mod polygon id
208     0
209     0
210     3n
211     x1 y1 z1
212     x2 y2 z2
213     ...
214     xn yn zn
215     .DE
216     .LP
217     .UL Cone
218     .PP
219     A cone is a megaphone-shaped object.
220     It is truncated by two planes perpendicular to its axis,
221     and one of its ends may come to a point.
222     It is given as two axis endpoints, and the starting
223     and ending radii:
224     .DS
225     mod cone id
226     0
227     0
228     8
229     x0 y0 z0
230     x1 y1 z1
231     r0 r1
232     .DE
233     .LP
234     .UL Cup
235     .PP
236 greg 1.4 A cup is an inverted cone (i.e., has an inward surface normal).
237 greg 1.1 .LP
238     .UL Cylinder
239     .PP
240     A cylinder is like a cone, but its starting and ending radii are
241     equal.
242     .DS
243     mod cylinder id
244     0
245     0
246     7
247     x0 y0 z0
248     x1 y1 z1
249     rad
250     .DE
251     .LP
252     .UL Tube
253     .PP
254     A tube is an inverted cylinder.
255     .LP
256     .UL Ring
257     .PP
258     A ring is a circular disk given by its center, surface
259     normal, and inner and outer radii:
260     .DS
261     mod ring id
262     0
263     0
264     8
265     xcent ycent zcent
266     xdir ydir zdir
267     r0 r1
268     .DE
269     .LP
270     .UL Mesh
271     .PP
272     A mesh is a compound surface, made up of many triangles and
273     an octree data structure to accelerate ray intersection.
274     It is typically converted from a Wavefront .OBJ file using the
275 greg 1.4 .I obj2mesh
276     program.
277 greg 1.1 .DS
278     mod mesh id
279     1+ meshfile transform
280     0
281     0
282     .DE
283 greg 1.3 If the modifier is "void", then surfaces will use the modifiers given
284     in the original mesh description.
285     Otherwise, the modifier specified is used in their place.
286 greg 1.1 The transform moves the mesh to the desired location in the scene.
287     Multiple instances using the same meshfile take little extra memory,
288     and the compiled mesh itself takes much less space than individual
289     polygons would.
290     In the case of an unsmoothed mesh, using the mesh primitive reduces
291     memory requirements by a factor of 30 relative to individual triangles.
292     If a mesh has smoothed surfaces, we save a factor of 50 or more,
293     permitting very detailed geometries that would otherwise exhaust the
294     available memory.
295     In addition, the mesh primitive can have associated (u,v) coordinates
296     for pattern and texture mapping.
297 greg 1.4 These are made available to function files via the Lu and Lv variables.
298 greg 1.1 .LP
299     .UL Instance
300     .PP
301     An instance is a compound surface, given by the contents of an
302     octree file (created by oconv).
303     .DS
304     mod instance id
305     1+ octree transform
306     0
307     0
308     .DE
309     If the modifier is "void", then surfaces will use the modifiers given
310     in the original description.
311     Otherwise, the modifier specified is used in their place.
312     The transform moves the octree to the desired location in the scene.
313     Multiple instances using the same octree take little extra memory,
314     hence very complex descriptions can be rendered using this primitive.
315     .PP
316     There are a number of important limitations to be aware of when using
317     instances.
318     First, the scene description used to generate the octree must stand on
319     its own, without referring to modifiers in the parent description.
320     This is necessary for oconv to create the octree.
321     Second, light sources in the octree will not be incorporated correctly
322     in the calculation, and they are not recommended.
323     Finally, there is no advantage (other than convenience) to
324     using a single instance of an octree, or an octree containing only a
325     few surfaces.
326     An xform command on the subordinate description is prefered in such cases.
327     .NH 3
328     Materials
329     .PP
330     A material defines the way light interacts with a surface.
331     The basic types are given below.
332     .LP
333     .UL Light
334     .PP
335 greg 1.4 Light is the basic material for self-luminous surfaces (i.e., light
336 greg 1.1 sources).
337     In addition to the source surface type, spheres, discs (rings with zero
338     inner radius), cylinders (provided they are long enough), and
339     polygons can act as light sources.
340     Polygons work best when they are rectangular.
341     Cones cannot be used at this time.
342     A pattern may be used to specify a light output distribution.
343     Light is defined simply as a RGB radiance value (watts/steradian/m2):
344     .DS
345     mod light id
346     0
347     0
348     3 red green blue
349     .DE
350     .LP
351     .UL Illum
352     .PP
353     Illum is used for secondary light sources with broad distributions.
354     A secondary light source is treated like any other
355     light source, except when viewed directly.
356     It then acts like it is made of a different material (indicated by
357     the string argument), or becomes invisible (if no string argument is given,
358     or the argument is "void").
359     Secondary sources are useful when modeling windows or
360     brightly illuminated surfaces.
361     .DS
362     mod illum id
363     1 material
364     0
365     3 red green blue
366     .DE
367     .LP
368     .UL Glow
369     .PP
370     Glow is used for surfaces that are self-luminous, but limited
371     in their effect.
372     In addition to the radiance value, a maximum radius for
373     shadow testing is given:
374     .DS
375     mod glow id
376     0
377     0
378     4 red green blue maxrad
379     .DE
380     If maxrad is zero, then the surface will never be tested
381     for shadow, although it may participate in an interreflection calculation.
382     If maxrad is negative, then the surface will never contribute to scene
383     illumination.
384     Glow sources will never illuminate objects on the other side of an
385     illum surface.
386     This provides a convenient way to illuminate local light fixture
387     geometry without overlighting nearby objects.
388     .LP
389     .UL Spotlight
390     .PP
391     Spotlight is used for self-luminous surfaces having directed output.
392     As well as radiance, the full cone angle (in degrees)
393     and orientation (output direction) vector are given.
394     The length of the orientation vector is the distance
395 greg 1.4 of the effective focus behind the source center (i.e., the focal length).
396 greg 1.1 .DS
397     mod spotlight id
398     0
399     0
400     7 red green blue angle xdir ydir zdir
401     .DE
402     .LP
403     .UL Mirror
404     .PP
405 greg 1.9 Mirror is used for planar surfaces that produce virtual
406 greg 1.1 source reflections.
407     This material should be used sparingly, as it may cause the light
408     source calculation to blow up if it is applied to many small surfaces.
409     This material is only supported for flat surfaces such as polygons
410     and rings.
411     The arguments are simply the RGB reflectance values, which should be
412     between 0 and 1.
413     An optional string argument may be used like the illum type to specify a
414     different material to be used for shading non-source rays.
415     If this alternate material is given as "void", then the mirror surface
416     will be invisible.
417     This is only appropriate if the surface hides other (more detailed)
418     geometry with the same overall reflectance.
419     .DS
420     mod mirror id
421     1 material
422     0
423     3 red green blue
424     .DE
425     .LP
426     .UL Prism1
427     .PP
428     The prism1 material is for general light redirection from prismatic
429 greg 1.9 glazings, generating virtual light sources.
430 greg 1.4 It can only be used to modify a planar surface (i.e., a polygon or disk)
431 greg 1.1 and should not result in either light concentration or scattering.
432     The new direction of the ray can be on either side of the material,
433     and the definitions must have the correct bidirectional properties
434 greg 1.9 to work properly with virtual light sources.
435 greg 1.1 The arguments give the coefficient for the redirected light
436     and its direction.
437     .DS
438     mod prism1 id
439     5+ coef dx dy dz funcfile transform
440     0
441     n A1 A2 .. An
442     .DE
443     The new direction variables
444     .I "dx, dy"
445     and
446     .I dz
447     need not produce a normalized vector.
448     For convenience, the variables
449     .I "DxA, DyA"
450     and
451     .I DzA
452     are defined as the normalized direction to the target light source.
453     See section 2.2.1 on function files for further information.
454     .LP
455     .UL Prism2
456     .PP
457     The material prism2 is identical to prism1 except that
458     it provides for two ray redirections rather than one.
459     .DS
460     mod prism2 id
461     9+ coef1 dx1 dy1 dz1 coef2 dx2 dy2 dz2 funcfile transform
462     0
463     n A1 A2 .. An
464     .DE
465     .LP
466     .UL Mist
467     .PP
468     Mist is a virtual material used to delineate a volume
469     of participating atmosphere.
470     A list of important light sources may be given, along with an
471     extinction coefficient, scattering albedo and scattering eccentricity
472     parameter.
473     The light sources named by the string argument list
474     will be tested for scattering within the volume.
475     Sources are identified by name, and virtual light sources may be indicated
476     by giving the relaying object followed by '>' followed by the source, i.e:
477     .DS
478     3 source1 mirror1>source10 mirror2>mirror1>source3
479     .DE
480     Normally, only one source is given per mist material, and there is an
481     upper limit of 32 to the total number of active scattering sources.
482     The extinction coefficient, if given, is added to the global
483     coefficient set on the command line.
484     Extinction is in units of 1/distance (distance based on the world coordinates),
485     and indicates the proportional loss of radiance over one unit distance.
486     The scattering albedo, if present, will override the global setting within
487     the volume.
488     An albedo of 0\00\00 means a perfectly absorbing medium, and an albedo of
489     1\01\01\0 means
490     a perfectly scattering medium (no absorption).
491     The scattering eccentricity parameter will likewise override the global
492     setting if it is present.
493     Scattering eccentricity indicates how much scattered light favors the
494 greg 1.15 forward direction, as fit by the Henyey-Greenstein function:
495 greg 1.1 .DS
496     P(theta) = (1 - g*g) / (1 + g*g - 2*g*cos(theta))^1.5
497     .DE
498     A perfectly isotropic scattering medium has a g parameter of 0, and
499     a highly directional material has a g parameter close to 1.
500     Fits to the g parameter may be found along with typical extinction
501     coefficients and scattering albedos for various atmospheres and
502     cloud types in USGS meteorological tables.
503     (A pattern will be applied to the extinction values.)\0
504     .DS
505     mod mist id
506     N src1 src2 .. srcN
507     0
508     0|3|6|7 [ rext gext bext [ ralb galb balb [ g ] ] ]
509     .DE
510     There are two usual uses of the mist type.
511     One is to surround a beam from a spotlight or laser so that it is
512     visible during rendering.
513     For this application, it is important to use a cone (or cylinder) that
514     is long enough and wide enough to contain the important visible portion.
515     Light source photometry and intervening objects will have the desired
516     effect, and crossing beams will result in additive scattering.
517     For this application, it is best to leave off the real arguments, and
518     use the global rendering parameters to control the atmosphere.
519     The second application is to model clouds or other localized media.
520     Complex boundary geometry may be used to give shape to a uniform medium,
521     so long as the boundary encloses a proper volume.
522     Alternatively, a pattern may be used to set the line integral value
523     through the cloud for a ray entering or exiting a point in a given
524     direction.
525     For this application, it is best if cloud volumes do not overlap each other,
526     and opaque objects contained within them may not be illuminated correctly
527     unless the line integrals consider enclosed geometry.
528     .LP
529     .UL Plastic
530     .PP
531     Plastic is a material with uncolored highlights.
532     It is given by its RGB reflectance, its fraction of specularity,
533     and its roughness value.
534     Roughness is specified as the rms slope of surface facets.
535     A value of 0 corresponds to a perfectly smooth surface, and
536     a value of 1 would be a very rough surface.
537     Specularity fractions greater than 0.1 and
538     roughness values greater than 0.2 are not very
539     realistic.
540     (A pattern modifying plastic will affect the material color.)
541     .DS
542     mod plastic id
543     0
544     0
545     5 red green blue spec rough
546     .DE
547     .LP
548     .UL Metal
549     .PP
550     Metal is similar to plastic, but specular highlights
551     are modified by the material color.
552     Specularity of metals is usually .9 or greater.
553     As for plastic, roughness values above .2 are uncommon.
554     .LP
555     .UL Trans
556     .PP
557     Trans is a translucent material, similar to plastic.
558     The transmissivity is the fraction of penetrating light that
559     travels all the way through the material.
560     The transmitted specular component is the fraction of transmitted
561     light that is not diffusely scattered.
562     Transmitted and diffusely reflected light is modified by the material color.
563     Translucent objects are infinitely thin.
564     .DS
565     mod trans id
566     0
567     0
568     7 red green blue spec rough trans tspec
569     .DE
570     .LP
571     .UL Plastic2
572     .PP
573     Plastic2 is similar to plastic, but with anisotropic
574     roughness.
575     This means that highlights in the surface will appear elliptical rather
576     than round.
577     The orientation of the anisotropy is determined by the unnormalized
578     direction vector
579     .I "ux uy uz".
580     These three expressions (separated by white space) are evaluated in
581     the context of the function file
582     .I funcfile.
583 greg 1.4 If no function file is required (i.e., no special variables or
584 greg 1.1 functions are required), a period (`.') may be given in its
585     place.
586     (See the discussion of Function Files in the Auxiliary Files section).
587     The
588     .I urough
589     value defines the roughness along the
590     .B u
591     vector given projected onto the surface.
592     The
593     .I vrough
594     value defines the roughness perpendicular to this vector.
595     Note that the highlight will be narrower in the direction of the
596     smaller roughness value.
597     Roughness values of zero are not allowed for efficiency reasons
598     since the behavior would be the same as regular plastic in that
599     case.
600     .DS
601     mod plastic2 id
602     4+ ux uy uz funcfile transform
603     0
604     6 red green blue spec urough vrough
605     .DE
606     .LP
607     .UL Metal2
608     .PP
609     Metal2 is the same as plastic2, except that the highlights are
610     modified by the material color.
611     .LP
612     .UL Trans2
613     .PP
614     Trans2 is the anisotropic version of trans.
615     The string arguments are the same as for plastic2, and the real
616     arguments are the same as for trans but with an additional roughness
617     value.
618     .DS
619     mod trans2 id
620     4+ ux uy uz funcfile transform
621     0
622     8 red green blue spec urough vrough trans tspec
623     .DE
624     .LP
625 greg 1.30 .UL Ashik2
626     .PP
627     Ashik2 is the anisotropic reflectance model by Ashikhmin & Shirley.
628     The string arguments are the same as for plastic2, but the real
629     arguments have additional flexibility to specify the specular color.
630     Also, rather than roughness, specular power is used, which has no
631     physical meaning other than larger numbers are equivalent to a smoother
632     surface.
633     .DS
634     mod ashik2 id
635     4+ ux uy uz funcfile transform
636     0
637     8 dred dgrn dblu sred sgrn sblu u-power v-power
638     .DE
639     .LP
640 greg 1.1 .UL Dielectric
641     .PP
642     A dielectric material is transparent, and it refracts light
643     as well as reflecting it.
644     Its behavior is determined by the index of refraction and
645     transmission coefficient in each wavelength band per unit length.
646     Common glass has a index of refraction (n) around 1.5,
647     and a transmission coefficient of roughly 0.92 over an inch.
648     An additional number, the Hartmann constant, describes how
649     the index of refraction changes as a function of wavelength.
650     It is usually zero.
651     (A pattern modifies only the refracted value.)
652     .DS
653     mod dielectric id
654     0
655     0
656     5 rtn gtn btn n hc
657     .DE
658     .LP
659     .UL Interface
660     .PP
661     An interface is a boundary between two dielectrics.
662     The first transmission coefficient and refractive index are for the inside;
663     the second ones are for the outside.
664     Ordinary dielectrics are surrounded by a vacuum (1 1 1 1).
665     .DS
666     mod interface id
667     0
668     0
669     8 rtn1 gtn1 btn1 n1 rtn2 gtn2 btn2 n2
670     .DE
671     .LP
672     .UL Glass
673     .PP
674     Glass is similar to dielectric, but it is optimized for thin glass
675     surfaces (n = 1.52).
676     One transmitted ray and one reflected ray is produced.
677     By using a single surface is in place of two, internal reflections
678     are avoided.
679     The surface orientation is irrelevant, as it is for plastic,
680     metal, and trans.
681     The only specification required is the transmissivity at normal
682     incidence.
683     (Transmissivity is the amount of light not absorbed in one traversal
684     of the material.
685     Transmittance -- the value usually measured -- is the total light
686     transmitted through the pane including multiple reflections.)\0
687     To compute transmissivity (tn) from transmittance (Tn) use:
688     .DS
689     tn = (sqrt(.8402528435+.0072522239*Tn*Tn)-.9166530661)/.0036261119/Tn
690     .DE
691     Standard 88% transmittance glass has a transmissivity of 0.96.
692     (A pattern modifying glass will affect the transmissivity.)
693     If a fourth real argument is given, it is interpreted as the index of
694     refraction to use instead of 1.52.
695     .DS
696     mod glass id
697     0
698     0
699     3 rtn gtn btn
700     .DE
701     .LP
702     .UL Plasfunc
703     .PP
704     Plasfunc in used for the procedural definition of plastic-like
705     materials with arbitrary bidirectional reflectance distribution
706     functions (BRDF's).
707     The arguments to this material include the color and specularity,
708     as well as the function defining the specular distribution and the
709     auxiliary file where it may be found.
710     .DS
711     mod plasfunc id
712     2+ refl funcfile transform
713     0
714     4+ red green blue spec A5 ..
715     .DE
716     The function
717     .I refl
718     takes four arguments, the x, y and z
719     direction towards the incident light, and the solid angle
720     subtended by the source.
721     The solid angle is provided to facilitate averaging, and is usually
722     ignored.
723     The
724     .I refl
725     function should integrate to 1 over
726     the projected hemisphere to maintain energy balance.
727     At least four real arguments must be given, and these are made
728     available along with any additional values to the reflectance
729     function.
730     Currently, only the contribution from direct light sources is
731     considered in the specular calculation.
732     As in most material types, the surface normal is always
733     altered to face the incoming ray.
734     .LP
735     .UL Metfunc
736     .PP
737     Metfunc is identical to plasfunc and takes the same arguments, but
738     the specular component is multiplied also by the material color.
739     .LP
740     .UL Transfunc
741     .PP
742     Transfunc is similar to plasfunc but with an arbitrary bidirectional
743     transmittance distribution as well as a reflectance distribution.
744     Both reflectance and transmittance are specified with the same function.
745     .DS
746     mod transfunc id
747     2+ brtd funcfile transform
748     0
749     6+ red green blue rspec trans tspec A7 ..
750     .DE
751     Where
752     .I trans
753     is the total light transmitted and
754     .I tspec
755     is the non-Lambertian fraction of transmitted light.
756     The function
757     .I brtd
758     should integrate to 1 over each projected hemisphere.
759     .LP
760     .UL BRTDfunc
761     .PP
762     The material BRTDfunc gives the maximum flexibility over surface
763     reflectance and transmittance, providing for spectrally-dependent
764     specular rays and reflectance and transmittance distribution functions.
765     .DS
766     mod BRTDfunc id
767     10+ rrefl grefl brefl
768     rtrns gtrns btrns
769     rbrtd gbrtd bbrtd
770     funcfile transform
771     0
772     9+ rfdif gfdif bfdif
773     rbdif gbdif bbdif
774     rtdif gtdif btdif
775     A10 ..
776     .DE
777     The variables
778     .I "rrefl, grefl"
779     and
780     .I brefl
781     specify the color coefficients for
782     the ideal specular (mirror) reflection of the surface.
783     The variables
784     .I "rtrns, gtrns"
785     and
786     .I btrns
787     specify the color coefficients for the ideal specular transmission.
788     The functions
789     .I "rbrtd, gbrtd"
790     and
791     .I bbrtd
792     take the direction to the incident light (and its solid angle)
793     and compute the color coefficients for the directional diffuse part of
794     reflection and transmission.
795     As a special case, three identical values of '0' may be given in place of
796     these function names to indicate no directional diffuse component.
797     .PP
798     Unlike most other material types, the surface normal is not altered to
799     face the incoming ray.
800     Thus, functions and variables must pay attention to the orientation of
801     the surface and make adjustments appropriately.
802     However, the special variables for the perturbed dot product and surface
803     normal,
804     .I "RdotP, NxP, NyP"
805     and
806     .I NzP
807     are reoriented as if the ray hit the front surface for convenience.
808     .PP
809     A diffuse reflection component may be given for the front side with
810     .I "rfdif, gfdif"
811     and
812     .I bfdif
813     for the front side of the surface or
814     .I "rbdif, gbdif"
815     and
816     .I bbdif
817     for the back side.
818     The diffuse transmittance (must be the same for both sides by physical law)
819     is given by
820     .I "rtdif, gtdif"
821     and
822     .I btdif.
823     A pattern will modify these diffuse scattering values,
824     and will be available through the special variables
825     .I "CrP, CgP"
826     and
827     .I CbP.
828     .PP
829     Care must be taken when using this material type to produce a physically
830     valid reflection model.
831     The reflectance functions should be bidirectional, and under no circumstances
832     should the sum of reflected diffuse, transmitted diffuse, reflected specular,
833     transmitted specular and the integrated directional diffuse component be
834     greater than one.
835     .LP
836     .UL Plasdata
837     .PP
838     Plasdata is used for arbitrary BRDF's that are most conveniently
839     given as interpolated data.
840     The arguments to this material are the data file and coordinate index
841     functions, as well as a function to optionally modify the data
842     values.
843     .DS
844     mod plasdata id
845     3+n+
846     func datafile
847     funcfile x1 x2 .. xn transform
848     0
849     4+ red green blue spec A5 ..
850     .DE
851     The coordinate indices
852     .I "(x1, x2,"
853     etc.) are themselves functions of
854     the x, y and z direction to the incident light, plus the solid angle
855     subtended by the light source (usually ignored).
856     The data function
857     .I (func)
858     takes five variables, the
859     interpolated value from the n-dimensional data file, followed by the
860     x, y and z direction to the incident light and the solid angle of the source.
861     The light source direction and size may of course be ignored by the function.
862     .LP
863     .UL Metdata
864     .PP
865     As metfunc is to plasfunc, metdata is to plasdata.
866     Metdata takes the same arguments as plasdata, but the specular
867     component is modified by the given material color.
868     .LP
869     .UL Transdata
870     .PP
871     Transdata is like plasdata but the specification includes transmittance
872     as well as reflectance.
873     The parameters are as follows.
874     .DS
875     mod transdata id
876     3+n+
877     func datafile
878     funcfile x1 x2 .. xn transform
879     0
880     6+ red green blue rspec trans tspec A7 ..
881     .DE
882     .LP
883 greg 1.18 .UL BSDF
884     .PP
885     The BSDF material type loads an XML (eXtensible Markup Language)
886     file describing a bidirectional scattering distribution function.
887     Real arguments to this material may define additional
888     diffuse components that augment the BSDF data.
889 greg 1.19 String arguments are used to define thickness for proxied
890     surfaces and the "up" orientation for the material.
891 greg 1.18 .DS
892     mod BSDF id
893     6+ thick BSDFfile ux uy uz funcfile transform
894     0
895     0|3|6|9
896     rfdif gfdif bfdif
897     rbdif gbdif bbdif
898     rtdif gtdif btdif
899     .DE
900 greg 1.19 The first string argument is a "thickness" parameter that may be used
901     to hide detail geometry being proxied by an aggregate BSDF material.
902     If a view or shadow ray hits a BSDF proxy with non-zero thickness,
903     it will pass directly through as if the surface were not there.
904 greg 1.18 Similar to the illum type, this permits direct viewing and
905     shadow testing of complex geometry.
906 greg 1.19 The BSDF is used when a scattered (indirect) ray hits the surface,
907     and any transmitted sample rays will be offset by the thickness amount
908     to avoid the hidden geometry and gather samples from the other side.
909     In this manner, BSDF surfaces can improve the results for indirect
910     scattering from complex systems without sacrificing appearance or
911     shadow accuracy.
912     If the BSDF has transmission and back-side reflection data,
913     a parallel BSDF surface may be
914     placed slightly less than the given thickness away from the front surface
915     to enclose the complex geometry on both sides.
916 greg 1.20 The sign of the thickness is important, as it indicates whether the
917 greg 1.21 proxied geometry is behind the BSDF surface (when thickness is positive)
918 greg 1.20 or in front (when thickness is negative).
919 greg 1.18 .LP
920     The second string argument is the name of the BSDF file, which is
921     found in the usual auxiliary locations.
922     The following three string parameters name variables for an "up" vector,
923     which together with the surface normal, define the
924     local coordinate system that orients the BSDF.
925     These variables, along with the thickness, are defined in a function
926     file given as the next string argument.
927     An optional transform is used to scale the thickness and reorient the up vector.
928     .LP
929     If no real arguments are given, the BSDF is used by itself to determine
930     reflection and transmission.
931     If there are at least 3 real arguments, the first triplet is an
932     additional diffuse reflectance for the front side.
933     At least 6 real arguments adds diffuse reflectance to the rear side of the surface.
934     If there are 9 real arguments, the final triplet will be taken as an additional
935     diffuse transmittance.
936     All diffuse components as well as the non-diffuse transmission are
937     modified by patterns applied to this material.
938     The non-diffuse reflection from either side are unaffected.
939     Textures perturb the effective surface normal in the usual way.
940     .LP
941     The surface normal of this type is not altered to face the incoming ray,
942     so the front and back BSDF reflections may differ.
943     (Transmission is identical front-to-back by physical law.)\0
944     If back visibility is turned off during rendering and there is no
945     transmission or back-side reflection, only then the surface will be
946     invisible from behind.
947     Unlike other data-driven material types, the BSDF type is fully
948     supported and all parts of the distribution are properly sampled.
949     .LP
950 greg 1.1 .UL Antimatter
951     .PP
952     Antimatter is a material that can "subtract" volumes from other volumes.
953     A ray passing into an antimatter object becomes blind to all the specified
954     modifiers:
955     .DS
956     mod antimatter id
957     N mod1 mod2 .. modN
958     0
959     0
960     .DE
961     The first modifier will also be used to shade the area leaving the
962     antimatter volume and entering the regular volume.
963     If mod1 is void, the antimatter volume is completely invisible.
964     Antimatter does not work properly with the material type "trans",
965     and multiple antimatter surfaces should be disjoint.
966     The viewpoint must be outside all volumes concerned for a correct
967     rendering.
968     .NH 3
969     Textures
970     .PP
971     A texture is a perturbation of the surface normal, and
972     is given by either a function or data.
973     .LP
974     .UL Texfunc
975     .PP
976     A texfunc uses an auxiliary function file
977     to specify a procedural texture:
978     .DS
979     mod texfunc id
980     4+ xpert ypert zpert funcfile transform
981     0
982     n A1 A2 .. An
983     .DE
984     .LP
985     .UL Texdata
986     .PP
987     A texdata texture uses three data files to get the surface
988     normal perturbations.
989     The variables
990     .I xfunc,
991     .I yfunc
992     and
993     .I zfunc
994     take three arguments
995     each from the interpolated values in
996     .I xdfname,
997     .I ydfname
998     and
999     .I zdfname.
1000     .DS
1001     mod texdata id
1002     8+ xfunc yfunc zfunc xdfname ydfname zdfname vfname x0 x1 .. xf
1003     0
1004     n A1 A2 .. An
1005     .DE
1006     .NH 3
1007     Patterns
1008     .PP
1009     Patterns are used to modify the reflectance of materials.
1010     The basic types are given below.
1011     .LP
1012     .UL Colorfunc
1013     .PP
1014     A colorfunc is a procedurally defined color pattern.
1015     It is specified as follows:
1016     .DS
1017     mod colorfunc id
1018     4+ red green blue funcfile transform
1019     0
1020     n A1 A2 .. An
1021     .DE
1022     .LP
1023     .UL Brightfunc
1024     .PP
1025     A brightfunc is the same as a colorfunc, except it is monochromatic.
1026     .DS
1027     mod brightfunc id
1028     2+ refl funcfile transform
1029     0
1030     n A1 A2 .. An
1031     .DE
1032     .LP
1033     .UL Colordata
1034     .PP
1035     Colordata uses an interpolated data map to modify a material's color.
1036     The map is n-dimensional, and is stored in three
1037     auxiliary files, one for each color.
1038     The coordinates used to look up and interpolate the data are
1039     defined in another auxiliary file.
1040     The interpolated data values are modified by functions of
1041     one or three variables.
1042     If the functions are of one variable, then they are passed the
1043     corresponding color component (red or green or blue).
1044     If the functions are of three variables, then they are passed the
1045     original red, green, and blue values as parameters.
1046     .DS
1047     mod colordata id
1048     7+n+
1049     rfunc gfunc bfunc rdatafile gdatafile bdatafile
1050     funcfile x1 x2 .. xn transform
1051     0
1052     m A1 A2 .. Am
1053     .DE
1054     .LP
1055     .UL Brightdata
1056     .PP
1057     Brightdata is like colordata, except monochromatic.
1058     .DS
1059     mod brightdata id
1060     3+n+
1061     func datafile
1062     funcfile x1 x2 .. xn transform
1063     0
1064     m A1 A2 .. Am
1065     .DE
1066     .LP
1067     .UL Colorpict
1068     .PP
1069     Colorpict is a special case of colordata, where the pattern is
1070     a two-dimensional image stored in the RADIANCE picture format.
1071     The dimensions of the image data are determined by the picture
1072     such that the smaller dimension is always 1, and the other
1073     is the ratio between the larger and the smaller.
1074     For example, a 500x338 picture would have coordinates (u,v)
1075     in the rectangle between (0,0) and (1.48,1).
1076     .DS
1077     mod colorpict id
1078     7+
1079     rfunc gfunc bfunc pictfile
1080     funcfile u v transform
1081     0
1082     m A1 A2 .. Am
1083     .DE
1084     .LP
1085     .UL Colortext
1086     .PP
1087     Colortext is dichromatic writing in a polygonal font.
1088     The font is defined in an auxiliary file, such as
1089     .I helvet.fnt.
1090     The text itself is also specified in a separate file, or
1091     can be part of the material arguments.
1092     The character size, orientation, aspect ratio and slant is
1093     determined by right and down motion vectors.
1094     The upper left origin for the text block as well as
1095     the foreground and background colors
1096     must also be given.
1097     .DS
1098     mod colortext id
1099     2 fontfile textfile
1100     0
1101     15+
1102     Ox Oy Oz
1103     Rx Ry Rz
1104     Dx Dy Dz
1105     rfore gfore bfore
1106     rback gback bback
1107     [spacing]
1108     .DE
1109     or:
1110     .DS
1111     mod colortext id
1112     2+N fontfile . This is a line with N words ...
1113     0
1114     15+
1115     Ox Oy Oz
1116     Rx Ry Rz
1117     Dx Dy Dz
1118     rfore gfore bfore
1119     rback gback bback
1120     [spacing]
1121     .DE
1122     .LP
1123     .UL Brighttext
1124     .PP
1125     Brighttext is like colortext, but the writing is monochromatic.
1126     .DS
1127     mod brighttext id
1128     2 fontfile textfile
1129     0
1130     11+
1131     Ox Oy Oz
1132     Rx Ry Rz
1133     Dx Dy Dz
1134     foreground background
1135     [spacing]
1136     .DE
1137     or:
1138     .DS
1139     mod brighttext id
1140     2+N fontfile . This is a line with N words ...
1141     0
1142     11+
1143     Ox Oy Oz
1144     Rx Ry Rz
1145     Dx Dy Dz
1146     foreground background
1147     [spacing]
1148     .DE
1149     .LP
1150     By default, a uniform spacing algorithm is used that guarantees
1151     every character will appear in a precisely determined position.
1152     Unfortunately, such a scheme results in rather unattractive and difficult to
1153     read text with most fonts.
1154     The optional
1155     .I spacing
1156     value defines the distance between characters for proportional spacing.
1157     A positive value selects a spacing algorithm that preserves right margins and
1158     indentation, but does not provide the ultimate in proportionally spaced text.
1159     A negative value insures that characters are properly spaced, but the
1160     placement of words then varies unpredictably.
1161     The choice depends on the relative importance of spacing versus formatting.
1162     When presenting a section of formatted text, a positive spacing value is
1163     usually preferred.
1164     A single line of text will often be accompanied by a negative spacing value.
1165     A section of text meant to depict a picture, perhaps using a special purpose
1166     font such as hexbit4x1.fnt, calls for uniform spacing.
1167     Reasonable magnitudes for proportional spacing are
1168     between 0.1 (for tightly spaced characters) and 0.3 (for wide spacing).
1169     .NH 3
1170     Mixtures
1171     .PP
1172     A mixture is a blend of one or more materials or textures and patterns.
1173 greg 1.28 Blended materials should not be light source types or virtual source types.
1174 greg 1.1 The basic types are given below.
1175     .LP
1176     .UL Mixfunc
1177     .PP
1178     A mixfunc mixes two modifiers procedurally.
1179     It is specified as follows:
1180     .DS
1181     mod mixfunc id
1182     4+ foreground background vname funcfile transform
1183     0
1184     n A1 A2 .. An
1185     .DE
1186     Foreground and background are modifier names that must be
1187     defined earlier in the scene description.
1188     If one of these is a material, then
1189     the modifier of the mixfunc must be "void".
1190     (Either the foreground or background modifier may be "void",
1191     which serves as a form of opacity control when used with a material.)\0
1192     Vname is the coefficient defined in funcfile that determines the influence
1193     of foreground.
1194     The background coefficient is always (1-vname).
1195     .LP
1196     .UL Mixdata
1197     .PP
1198     Mixdata combines two modifiers using an auxiliary data file:
1199     .DS
1200     mod mixdata id
1201     5+n+
1202     foreground background func datafile
1203     funcfile x1 x2 .. xn transform
1204     0
1205     m A1 A2 .. Am
1206     .DE
1207     .LP
1208     .UL Mixpict
1209     .PP
1210     Mixpict combines two modifiers based on a picture:
1211     .DS
1212     mod mixpict id
1213     7+
1214     foreground background func pictfile
1215     funcfile u v transform
1216     0
1217     m A1 A2 .. Am
1218     .DE
1219     The mixing coefficient function "func" takes three
1220     arguments, the red, green and blue values
1221     corresponding to the pixel at (u,v).
1222     .LP
1223     .UL Mixtext
1224     .PP
1225     Mixtext uses one modifier for the text foreground, and one for the
1226     background:
1227     .DS
1228     mod mixtext id
1229     4 foreground background fontfile textfile
1230     0
1231     9+
1232     Ox Oy Oz
1233     Rx Ry Rz
1234     Dx Dy Dz
1235     [spacing]
1236     .DE
1237     or:
1238     .DS
1239     mod mixtext id
1240     4+N
1241     foreground background fontfile .
1242     This is a line with N words ...
1243     0
1244     9+
1245     Ox Oy Oz
1246     Rx Ry Rz
1247     Dx Dy Dz
1248     [spacing]
1249     .DE
1250     .NH 2
1251     Auxiliary Files
1252     .PP
1253     Auxiliary files used in textures and patterns
1254     are accessed by the programs during image generation.
1255     These files may be located in the working directory, or in
1256     a library directory.
1257     The environment variable
1258     .I RAYPATH
1259     can be assigned an alternate set of search directories.
1260     Following is a brief description of some common file types.
1261     .NH 3
1262     Function Files
1263     .PP
1264     A function file contains the definitions of variables, functions
1265     and constants used by a primitive.
1266     The transformation that accompanies the file name contains the necessary
1267     rotations, translations and scalings to bring the coordinates of
1268     the function file into agreement with the world coordinates.
1269     The transformation specification is the same as for the
1270     .I xform
1271     command.
1272     An example function file is given below:
1273     .DS
1274     {
1275     This is a comment, enclosed in curly braces.
1276     {Comments can be nested.}
1277     }
1278     { standard expressions use +,-,*,/,^,(,) }
1279     vname = Ny * func(A1) ;
1280     { constants are defined with a colon }
1281     const : sqrt(PI/2) ;
1282     { user-defined functions add to library }
1283     func(x) = 5 + A1*sin(x/3) ;
1284     { functions may be passed and recursive }
1285     rfunc(f,x) = if(x,f(x),f(-x)*rfunc(f,x+1)) ;
1286     { constant functions may also be defined }
1287     cfunc(x) : 10*x / sqrt(x) ;
1288     .DE
1289     Many variables and functions are already defined by the program,
1290     and they are listed in the file
1291     .I rayinit.cal.
1292     The following variables are particularly important:
1293     .DS
1294     Dx, Dy, Dz - incident ray direction
1295 greg 1.4 Nx, Ny, Nz - surface normal at intersection point
1296 greg 1.1 Px, Py, Pz - intersection point
1297 greg 1.4 T - distance from start
1298     Ts - single ray (shadow) distance
1299 greg 1.1 Rdot - cosine between ray and normal
1300     arg(0) - number of real arguments
1301     arg(i) - i'th real argument
1302     .DE
1303 greg 1.4 For mesh objects, the local surface coordinates are available:
1304     .DS
1305     Lu, Lv - local (u,v) coordinates
1306     .DE
1307 greg 1.1 For BRDF types, the following variables are defined as well:
1308     .DS
1309     NxP, NyP, NzP - perturbed surface normal
1310     RdotP - perturbed dot product
1311     CrP, CgP, CbP - perturbed material color
1312     .DE
1313     A unique context is set up for each file so that the same variable
1314     may appear in different function files without conflict.
1315     The variables listed above and any others defined in
1316     rayinit.cal are available globally.
1317     If no file is needed by a given primitive because all the required
1318     variables are global, a period (`.') can be given in
1319     place of the file name.
1320     It is also possible to give an expression instead of a straight
1321 greg 1.13 variable name in a scene file.
1322 greg 1.14 Functions (requiring parameters)
1323 greg 1.1 must be given as names and not as expressions.
1324     .PP
1325     Constant expressions are used as an optimization in function
1326     files.
1327     They are replaced wherever they occur in an expression by their
1328     value.
1329     Constant expressions are evaluated only once, so they must not
1330     contain any variables or values that can change, such as the ray
1331     variables Px and Ny or the primitive argument function arg().
1332     All the math library functions such as sqrt() and cos() have the
1333     constant attribute, so they will be replaced by immediate values
1334     whenever they are given constant arguments.
1335     Thus, the subexpression cos(PI*sqrt(2)) is immediately replaced
1336     by its value, -.266255342, and does not cause any additional overhead
1337     in the calculation.
1338     .PP
1339     It is generally a good idea to define constants and variables before
1340     they are referred to in a function file.
1341     Although evaluation does not take place until later, the interpreter
1342     does variable scoping and constant subexpression evaluation based on
1343     what it has compiled already.
1344     For example, a variable that is defined globally in rayinit.cal then
1345     referenced in the local context of a function file cannot
1346     subsequently be redefined in the same file because the compiler
1347     has already determined the scope of the referenced variable as global.
1348     To avoid such conflicts, one can state the scope of a variable explicitly
1349     by preceding the variable name with a context mark (a back-quote) for
1350     a local variable, or following the name with a context mark for a global
1351     variable.
1352     .NH 3
1353     Data Files
1354     .PP
1355     Data files contain n-dimensional arrays of real numbers used
1356     for interpolation.
1357     Typically, definitions in a function file determine how
1358     to index and use interpolated data values.
1359     The basic data file format is as follows:
1360     .DS
1361     N
1362     beg1 end1 m1
1363     0 0 m2 x2.1 x2.2 x2.3 x2.4 .. x2.m2
1364     ...
1365     begN endN mN
1366     DATA, later dimensions changing faster.
1367     .DE
1368     N is the number of dimensions.
1369     For each dimension, the beginning and ending coordinate
1370     values and the dimension size is given.
1371     Alternatively, individual coordinate values can be given when
1372     the points are not evenly spaced.
1373     These values must either be increasing or decreasing monotonically.
1374     The data is m1*m2*...*mN real numbers in ASCII form.
1375     Comments may appear anywhere in the file, beginning with a pound
1376     sign ('#') and continuing to the end of line.
1377     .NH 3
1378     Font Files
1379     .PP
1380     A font file lists the polygons which make up a character set.
1381     Comments may appear anywhere in the file, beginning with a pound
1382     sign ('#') and continuing to the end of line.
1383     All numbers are decimal integers:
1384     .DS
1385     code n
1386     x0 y0
1387     x1 y1
1388     ...
1389     xn yn
1390     ...
1391     .DE
1392     The ASCII codes can appear in any order.
1393     N is the number of vertices, and the last is automatically
1394     connected to the first.
1395     Separate polygonal sections are joined by coincident sides.
1396     The character coordinate system is a square with lower left corner at
1397     (0,0), lower right at (255,0) and upper right at (255,255).
1398     .NH 2
1399     Generators
1400     .PP
1401     A generator is any program that produces a scene description
1402     as its output.
1403     They usually appear as commands in a scene description file.
1404     An example of a simple generator is
1405     .I genbox.
1406     .I Genbox
1407     takes the arguments of width, height and depth to produce
1408     a parallelepiped description.
1409     .I Genprism
1410     takes a list of 2-dimensional coordinates and extrudes them along a vector to
1411     produce a 3-dimensional prism.
1412     .I Genrev
1413     is a more sophisticated generator
1414     that produces an object of rotation from parametric functions
1415     for radius and axis position.
1416     .I Gensurf
1417     tessellates a surface defined by the
1418     parametric functions x(s,t), y(s,t), and z(s,t).
1419     .I Genworm
1420     links cylinders and spheres along a curve.
1421     .I Gensky
1422     produces a sun and sky distribution corresponding
1423     to a given time and date.
1424     .PP
1425     .I Xform
1426     is a program that transforms a scene description from one
1427     coordinate space to another.
1428     .I Xform
1429     does rotation, translation, scaling, and mirroring.
1430     .NH 1
1431     Image Generation
1432     .PP
1433     Once the scene has been described in three-dimensions, it
1434     is possible to generate a two-dimensional image from a
1435     given perspective.
1436     .PP
1437     The image generating programs use an
1438     .I octree
1439     to efficiently trace rays through the scene.
1440     An octree subdivides space into nested octants which
1441     contain sets of surfaces.
1442     In RADIANCE, an octree is created from a scene description by
1443     .I oconv.
1444     The details of this process are not important,
1445     but the octree will serve as input to the ray-tracing
1446     programs and directs the use of a scene description.
1447     .PP
1448     .I Rview
1449     is ray-tracing program for viewing a scene interactively.
1450     When the user specifies a new perspective,
1451 greg 1.9 .I rview
1452 greg 1.1 quickly displays a rough
1453     image on the terminal, then progressively
1454     increases the resolution as the user looks on.
1455     He can select a particular section of the image to improve,
1456     or move to a different view and start over.
1457     This mode of interaction is useful for debugging scenes
1458     as well as determining the best view for a final image.
1459     .PP
1460     .I Rpict
1461     produces a high-resolution picture of a scene from
1462     a particular perspective.
1463     This program features adaptive sampling, crash
1464     recovery and progress reporting, all of which are important
1465     for time-consuming images.
1466     .PP
1467     A number of filters are available for manipulating picture files.
1468     .I Pfilt
1469     sets the exposure and performs anti-aliasing.
1470     .I Pcompos
1471     composites (cuts and pastes) pictures.
1472     .I Pcond
1473     conditions a picture for a specific display device.
1474     .I Pcomb
1475     performs arbitrary math on one or more pictures.
1476     .I Protate
1477     rotates a picture 90 degrees clockwise.
1478     .I Pflip
1479     flips a picture horizontally, vertically, or both (180 degree rotation).
1480     .I Pvalue
1481     converts a picture to and from simpler formats.
1482     .PP
1483     Pictures may be displayed directly under X11 using the program
1484     .I ximage,
1485     or converted a standard image format.
1486 greg 1.17 .I Ra_bmp
1487     converts to and from Microsoft Bitmap images.
1488 greg 1.1 .I Ra_ppm
1489     converts to and from Poskanzer Portable Pixmap formats.
1490     .I Ra_ps
1491     converts to PostScript color and greyscale formats.
1492     .I Ra_rgbe
1493     converts to and from Radiance uncompressed picture format.
1494     .I Ra_t16
1495     converts to and from Targa 16 and 24-bit image formats.
1496     .I Ra_t8
1497     converts to and from Targa 8-bit image format.
1498     .I Ra_tiff
1499     converts to and from TIFF.
1500     .I Ra_xyze
1501     converts to and from Radiance CIE picture format.
1502     .NH 1
1503     License
1504     .PP
1505 greg 1.4 .DS
1506     The Radiance Software License, Version 1.0
1507    
1508 greg 1.14 Copyright (c) 1990 - 2008 The Regents of the University of California,
1509 greg 1.4 through Lawrence Berkeley National Laboratory. All rights reserved.
1510    
1511     Redistribution and use in source and binary forms, with or without
1512     modification, are permitted provided that the following conditions
1513     are met:
1514    
1515     1. Redistributions of source code must retain the above copyright
1516     notice, this list of conditions and the following disclaimer.
1517    
1518     2. Redistributions in binary form must reproduce the above copyright
1519     notice, this list of conditions and the following disclaimer in
1520     the documentation and/or other materials provided with the
1521     distribution.
1522    
1523     3. The end-user documentation included with the redistribution,
1524     if any, must include the following acknowledgment:
1525     "This product includes Radiance software
1526     (http://radsite.lbl.gov/)
1527     developed by the Lawrence Berkeley National Laboratory
1528     (http://www.lbl.gov/)."
1529     Alternately, this acknowledgment may appear in the software itself,
1530     if and wherever such third-party acknowledgments normally appear.
1531    
1532     4. The names "Radiance," "Lawrence Berkeley National Laboratory"
1533     and "The Regents of the University of California" must
1534     not be used to endorse or promote products derived from this
1535     software without prior written permission. For written
1536     permission, please contact [email protected].
1537    
1538     5. Products derived from this software may not be called "Radiance",
1539     nor may "Radiance" appear in their name, without prior written
1540     permission of Lawrence Berkeley National Laboratory.
1541    
1542     THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
1543     WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
1544     OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
1545     DISCLAIMED. IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR
1546     ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
1547     SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
1548     LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
1549     USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
1550     ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
1551     OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
1552     OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
1553     SUCH DAMAGE.
1554     .DE
1555 greg 1.1 .NH 1
1556     Acknowledgements
1557     .PP
1558     This work was supported by the Assistant Secretary of Conservation
1559     and Renewable Energy, Office of Building Energy Research and
1560     Development, Buildings Equipment Division of the U.S. Department of
1561     Energy under Contract No. DE-AC03-76SF00098.
1562     .PP
1563     Additional work was sponsored by the Swiss federal government
1564     under the Swiss LUMEN Project and was
1565     carried out in the Laboratoire d'Energie Solaire (LESO Group) at
1566     the Ecole Polytechnique Federale de Lausanne (EPFL University)
1567     in Lausanne, Switzerland.
1568     .NH 1
1569     References
1570 greg 1.4 .LP
1571 greg 1.29 Ward, G., M. Kurt & N. Bonneel,
1572     ``Reducing Anisotropic BSDF Measurement to Common Practice,''
1573     .I Workshop on Material Appearance Modeling,
1574     2014.
1575     .LP
1576 greg 1.26 McNeil, A., C.J. Jonsson, D. Appelfeld, G. Ward, E.S. Lee,
1577     ``A validation of a ray-tracing tool used to generate
1578     bi-directional scattering distribution functions for
1579     complex fenestration systems,''
1580     .I "Solar Energy",
1581     98, 404-14, November 2013.
1582     .LP
1583 greg 1.22 Ward, G., R. Mistrick, E.S. Lee, A. McNeil, J. Jonsson,
1584     ``Simulating the Daylight Performance of Complex Fenestration Systems
1585 greg 1.23 Using Bidirectional Scattering Distribution Functions within Radiance,''
1586 greg 1.24 .I "Leukos",
1587     7(4),
1588 greg 1.22 April 2011.
1589     .LP
1590 greg 1.10 Cater, K., A. Chalmers, G. Ward,
1591     ``Detail to Attention: Exploiting Visual Tasks for Selective Rendering,''
1592     .I "Eurograhics Symposium on Rendering",
1593     June 2003.
1594     .LP
1595 greg 1.4 Ward, G., Elena Eydelberg-Vileshin,
1596     ``Picture Perfect RGB Rendering Using Spectral Prefiltering and
1597     Sharp Color Primaries,''
1598     13th Eurographics Workshop on Rendering, P. Debevec and
1599     S. Gibson (Editors), June 2002.
1600     .LP
1601     Ward, G. and M. Simmons,
1602     ``The Holodeck Ray Cache: An Interactive Rendering System for Global
1603     Illumination in Nondiffuse Environments,''
1604     .I "ACM Transactions on Graphics,"
1605     18(4):361-98, October 1999.
1606     .LP
1607     Larson, G.W., H. Rushmeier, C. Piatko,
1608     ``A Visibility Matching Tone Reproduction Operator for High Dynamic
1609     Range Scenes,''
1610     .I "IEEE Transactions on Visualization and Computer Graphics",
1611     3(4), 291-306, December 1997.
1612     .LP
1613     Ward, G.,
1614     ``Making Global Illumination User Friendly,''
1615     .I "Sixth Eurographics Workshop on Rendering",
1616     proceedings to be published by Springer-Verlag,
1617     Dublin, Ireland, June 1995.
1618     .LP
1619     Rushmeier, H., G. Ward, C. Piatko, P. Sanders, B. Rust,
1620     ``Comparing Real and Synthetic Images: Some Ideas about Metrics,''
1621     .I "Sixth Eurographics Workshop on Rendering",
1622     proceedings to be published by Springer-Verlag,
1623     Dublin, Ireland, June 1995.
1624 greg 1.1 .LP
1625     Ward, G.,
1626     ``The Radiance Lighting Simulation and Rendering System,''
1627     .I "Computer Graphics",
1628     Orlando, July 1994.
1629     .LP
1630     Rushmeier, H., G. Ward,
1631     ``Energy-Preserving Non-Linear Filters,''
1632     .I "Computer Graphics",
1633     Orlando, July 1994.
1634     .LP
1635     Ward, G.,
1636     ``A Contrast-Based Scalefactor for Luminance Display,''
1637     .I "Graphics Gems IV",
1638     Edited by Paul Heckbert,
1639     Academic Press 1994.
1640     .LP
1641     Ward, G.,
1642     ``Measuring and Modeling Anisotropic Reflection,''
1643     .I "Computer Graphics",
1644     Chicago, July 1992.
1645     .LP
1646     Ward, G., P. Heckbert,
1647     ``Irradiance Gradients,''
1648     .I "Third Annual Eurographics Workshop on Rendering",
1649     to be published by Springer-Verlag, held in Bristol, UK, May 1992.
1650     .LP
1651     Ward, G.,
1652     ``Adaptive Shadow Testing for Ray Tracing,''
1653     .I "Second Annual Eurographics Workshop on Rendering",
1654     to be published by Springer-Verlag, held in Barcelona, SPAIN, May 1991.
1655     .LP
1656     Ward, G.,
1657     ``Visualization,''
1658     .I "Lighting Design and Application",
1659     Vol. 20, No. 6, June 1990.
1660     .LP
1661     Ward, G., F. Rubinstein, R. Clear,
1662     ``A Ray Tracing Solution for Diffuse Interreflection,''
1663     .I "Computer Graphics",
1664     Vol. 22, No. 4, August 1988.
1665     .LP
1666     Ward, G., F. Rubinstein,
1667     ``A New Technique for Computer Simulation of Illuminated Spaces,''
1668     .I "Journal of the Illuminating Engineering Society",
1669     Vol. 17, No. 1, Winter 1988.