ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/materials.1
Revision: 1.3
Committed: Tue Sep 21 18:44:09 2004 UTC (20 years ago) by greg
Branch: MAIN
CVS Tags: rad5R4, rad5R2, rad4R2P2, rad5R0, rad5R1, rad3R7P2, rad3R7P1, rad4R2, rad4R1, rad4R0, rad3R6, rad3R6P1, rad3R8, rad3R9, rad4R2P1, rad5R3, HEAD
Changes since 1.2: +4 -4 lines
Log Message:
Fixed RCS Id and grouping of terms from last change for BRDF

File Contents

# Content
1 .\" RCSid "$Id$"
2 .\"Print with tbl and eqn or neqn with -ms macro package
3 .vs 12
4 .nr VS 12
5 .nr PD .5v \" paragraph distance (inter-paragraph spacing)
6 .EQ L
7 delim $$
8 .EN
9 .DA
10 .TL
11 Behavior of Materials in RADIANCE
12 .AU
13 Greg Ward
14 .br
15 Lawrence Berkeley Laboratory
16 .NH 1
17 Definitions
18 .LP
19 This document describes in gory detail how each material type in RADIANCE
20 behaves in terms of its parameter values.
21 The following variables are given:
22 .LP
23 .vs 14
24 .nr VS 14
25 .TS
26 center;
27 l8 l.
28 $bold R ( P vec , v hat )$ Value of a ray starting at $P vec$ in direction $v hat$ (in watts/sr/m^2)
29 $P vec sub o$ Eye ray origin
30 $v hat$ Eye ray direction
31 $P vec sub s$ Intersection point of ray with surface
32 $n hat$ Unperturbed surface normal at intersection
33 $a sub n$ Real argument number $n$
34 $bold C$ Material color, $"{" a sub 1 , a sub 2 , a sub 3 "}"$
35 $bold p$ Material pattern value, $"{" 1, 1, 1 "}"$ if none
36 $d vec$ Material texture vector, $[ 0, 0, 0 ]$ if none
37 $b vec$ Orientation vector given by the string arguments of anisotropic types
38 $n sub 1$ Index of refraction on eye ray side
39 $n sub 2$ Index of refraction on opposite side
40 $bold A$ Indirect irradiance (in watts/m^2)
41 $bold A sub t$ Indirect irradiance from opposite side (in watts/m^2)
42 $m hat$ Mirror direction, which can vary with Monte Carlo sampling
43 $t sub s$ Specular threshold (set by -st option)
44 $bold B sub i$ Radiance of light source sample $i$ (in watts/sr/m^2)
45 $q hat sub i$ Direction to source sample $i$
46 $omega sub i$ Solid angle of source sample $i$ (in sr)
47 .TE
48 .vs 12
49 .nr VS 12
50 .LP
51 Variables with an arrow over them are vectors.
52 Variables with a circumflex are unit vectors (ie. normalized).
53 All variables written in bold represent color values.
54 .NH 2
55 Derived Variables
56 .LP
57 The following values are computed from the variables above:
58 .LP
59 .vs 14
60 .nr VS 14
61 .TS
62 center;
63 l8 l.
64 $cos sub 1$ Cosine of angle between surface normal and eye ray
65 $cos sub 2$ Cosine of angle between surface normal and transmitted direction
66 $n hat sub p$ Perturbed surface normal (after texture application)
67 $h vec sub i$ Bisecting vector between eye ray and source sample $i$
68 $F sub TE$ Fresnel coefficient for $TE$-polarized light
69 $F sub TM$ Fresnel coefficient for $TM$-polarized light
70 $F$ Fresnel coefficient for unpolarized light
71 .TE
72 .vs 12
73 .nr VS 12
74 .LP
75 These values are computed as follows:
76 .EQ I
77 cos sub 1 mark ==~ - v hat cdot n hat sub p
78 .EN
79 .EQ I
80 cos sub 2 lineup ==~ sqrt { 1~-~( n sub 1 / n sub 2 )
81 sup 2 (1~-~cos sub 1 sup 2 )}
82 .EN
83 .EQ I
84 n hat sub p lineup ==~ { n hat ~+~ d vec } over { ||~ n hat ~+~ d vec ~|| }
85 .EN
86 .EQ I
87 h vec sub i lineup ==~ q hat sub i ~-~ v hat
88 .EN
89 .EQ I
90 F sub TE lineup ==~ left [ { n sub 1 cos sub 1
91 ~-~ n sub 2 cos sub 2 } over { n sub 1 cos sub 1
92 ~+~ n sub 2 cos sub 2 } right ] sup 2
93 .EN
94 .EQ I
95 F sub TM lineup ==~ left [ {n sub 1 / cos sub 1
96 ~-~ n sub 2 / cos sub 2} over {n sub 1 / cos sub 1
97 ~+~ n sub 2 / cos sub 2} right ] sup 2
98 .EN
99 .EQ I
100 F lineup ==~ 1 over 2 F sub TE ~+~ 1 over 2 F sub TM
101 .EN
102 .NH 2
103 Vector Math
104 .LP
105 Variables that represent vector values are written with an arrow above
106 (eg. $ v vec $).
107 Unit vectors (ie. vectors whose lengths are normalized to 1) have a hat
108 (eg. $ v hat $).
109 Equations containing vectors are implicitly repeated three times,
110 once for each component.
111 Thus, the equation:
112 .EQ I
113 v vec ~=~ 2 n hat ~+~ P vec
114 .EN
115 is equivalent to the three equations:
116 .EQ I
117 v sub x ~=~ 2 n sub x ~+~ P sub x
118 .EN
119 .EQ I
120 v sub y ~=~ 2 n sub y ~+~ P sub y
121 .EN
122 .EQ I
123 v sub z ~=~ 2 n sub z ~+~ P sub z
124 .EN
125 There are also cross and dot product operators defined for vectors, as
126 well as the vector norm:
127 .RS
128 .LP
129 .UL "Vector Dot Product"
130 .EQ I
131 a vec cdot b vec ~==~ a sub x b sub x ~+~ a sub y b sub y ~+~ a sub z b sub z
132 .EN
133 .LP
134 .UL "Vector Cross Product"
135 .EQ I
136 a vec ~ times ~ b vec ~==~ left | matrix {
137 ccol { i hat above a sub x above b sub x }
138 ccol { j hat above a sub y above b sub y }
139 ccol { k hat above a sub z above b sub z }
140 } right |
141 .EN
142 or, written out:
143 .EQ I
144 a vec ~ times ~ b vec ~=~ [ a sub y b sub z ~-~ a sub z b sub y ,~
145 a sub z b sub x ~-~ a sub x b sub z ,~ a sub x b sub y ~-~ a sub y b sub x ]
146 .EN
147 .LP
148 .UL "Vector Norm"
149 .EQ I
150 || v vec || ~==~ sqrt {{v sub x} sup 2 ~+~ {v sub y} sup 2 ~+~ {v sub z} sup 2}
151 .EN
152 .RE
153 .LP
154 Values are collected into a vector using square brackets:
155 .EQ I
156 v vec ~=~ [ v sub x , v sub y , v sub z ]
157 .EN
158 .NH 2
159 Color Math
160 .LP
161 Variables that represent color values are written in boldface type.
162 Color values may have any number of spectral samples.
163 Currently, RADIANCE uses only three such values, referred to generically
164 as red, green and blue.
165 Whenever a color variable appears in an equation, that equation is
166 implicitly repeated once for each spectral sample.
167 Thus, the equation:
168 .EQ I
169 bold C ~=~ bold A^bold B ~+~ d bold F
170 .EN
171 is shorthand for the set of equations:
172 .EQ I
173 C sub 1 ~=~ A sub 1 B sub 1 ~+~ d F sub 1
174 .EN
175 .EQ I
176 C sub 2 ~=~ A sub 2 B sub 2 ~+~ d F sub 2
177 .EN
178 .EQ I
179 C sub 3 ~=~ A sub 3 B sub 3 ~+~ d F sub 3
180 .EN
181 ...
182 .LP
183 And so on for however many spectral samples are used.
184 Note that color math is not the same as vector math.
185 For example, there is no such thing as
186 a dot product for colors.
187 .LP
188 Curly braces are used to collect values into a single color, like so:
189 .EQ I
190 bold C ~=~ "{" r, g, b "}"
191 .EN
192 .sp 2
193 .NH
194 Light Sources
195 .LP
196 Light sources are extremely simple in their behavior when viewed directly.
197 Their color in a particular direction is given by the equation:
198 .EQ L
199 bold R ~=~ bold p^bold C
200 .EN
201 .LP
202 The special light source material types, glow, spotlight, and illum,
203 differ only in their affect on the direct calculation, ie. which rays
204 are traced to determine shadows.
205 These differences are explained in the RADIANCE reference manual, and
206 will not be repeated here.
207 .sp 2
208 .NH
209 Specular Types
210 .LP
211 Specular material types do not involve special light source testing and
212 are thus are simpler to describe than surfaces with a diffuse component.
213 The output radiance is usually a function of one or two other ray
214 evaluations.
215 .NH 2
216 Mirror
217 .LP
218 The value at a mirror surface is a function of the ray value in
219 the mirror direction:
220 .EQ L
221 bold R ~=~ bold p^bold C^bold R ( P vec sub s ,~ m hat )
222 .EN
223 .NH 2
224 Dieletric
225 .LP
226 The value of a dieletric material is computed from Fresnel's equations:
227 .EQ L
228 bold R ~=~ bold p^bold C sub t ( 1 - F )^bold R ( P vec sub s ,~ t hat ) ~+~
229 bold C sub t^F^bold R ( P vec sub s ,~ m hat )
230 .EN
231 where:
232 .EQ I
233 bold C sub t ~=~ bold C sup {|| P vec sub s ~-~ P vec sub o ||}
234 .EN
235 .EQ I
236 t hat ~=~ n sub 1 over n sub 2 v hat ~+~ left ( n sub 1 over n sub 2 cos sub 1
237 ~-~ cos sub 2 right ) n hat sub p
238 .EN
239 .LP
240 The Hartmann constant is used only to calculate the index of refraction
241 for a dielectric, and does not otherwise influence the above equations.
242 In particular, transmitted directions are not sampled based on dispersion.
243 Dispersion is only modeled in a very crude way when a light source is
244 casting a beam towards the eye point.
245 We will not endeavor to explain the algorithm here as it is rather
246 nasty.
247 .LP
248 For the material type "interface", the color which is used for $bold C$
249 as well as the indices of refraction $n sub 1$ and $n sub 2$ is determined
250 by which direction the ray is headed.
251 .NH 2
252 Glass
253 .LP
254 Glass uses an infinite series solution to the interreflection inside a pane
255 of thin glass.
256 .EQ L
257 bold R ~=~ bold p^bold C sub t^bold R ( P vec sub s ,~ t hat )
258 left [ 1 over 2 {(1 ~-~ F sub TE )} sup 2 over {1 ~-~ F sub TE sup 2
259 bold C sub t sup 2 } ~+~ 1 over 2 {(1 ~-~ F sub TM )} sup 2
260 over {1 ~-~ F sub TM sup 2 bold C sub t sup 2 } right ] ~+~
261 bold R ( P vec sub s ,~ m hat ) left [ 1 over 2 {F sub TE (1 ~+~
262 (1 ~-~ 2 F sub TE ) bold C sub t sup 2 )} over {1 ~-~ F sub TE sup 2
263 bold C sub t sup 2 } ~+~ 1 over 2 {F sub TM (1 ~+~
264 (1 ~-~ 2 F sub TM ) bold C sub t sup 2 )} over {1 ~-~ F sub TM sup 2
265 bold C sub t sup 2 } right ]
266 .EN
267 where:
268 .EQ I
269 bold C sub t ~=~ bold C sup {(1/ cos sub 2 )}
270 .EN
271 .EQ I
272 t hat ~=~ v hat~+~2(1^-^n sub 2 ) d vec
273 .EN
274 .sp 2
275 .NH
276 Basic Reflection Model
277 .LP
278 The basic reflection model used in RADIANCE takes into account both specular
279 and diffuse interactions with both sides of a surface.
280 Most RADIANCE material types are special cases of this more general formula:
281 .EQ L (1)
282 bold R ~=~ mark size +3 sum from sources bold B sub i omega sub i
283 left { Max(0,~ q hat sub i cdot n hat sub p )
284 left ( bold rho sub d over pi ~+~ bold rho sub si right ) ~+~
285 Max(0,~ - q hat sub i cdot n hat sub p )
286 left ( bold tau sub d over pi ~+~ bold tau sub si right ) right }
287 .EN
288 .EQ L
289 lineup ~~+~~ bold rho sub s bold R ( P vec sub s ,~ m hat ) ~~+~~
290 bold tau sub s bold R ( P vec sub s ,~ t hat )
291 .EN
292 .EQ L
293 lineup ~~+~~ bold rho sub a over pi bold A ~~+~~
294 bold tau sub a over pi bold A sub t
295 .EN
296 Note that only one of the transmitted or reflected components in the first
297 term of the above equation can be non-zero, depending on whether the given
298 light source is in front of or behind the surface.
299 The values of the various $ bold rho $ and $ bold tau $ variables will be
300 defined differently for each material type, and are given in the following
301 sections for plastic, metal and trans.
302 .NH 2
303 Plastic
304 .LP
305 A plastic surface has uncolored highlights and no transmitted component.
306 If the surface roughness ($a sub 5$) is zero or the specularity
307 ($bold r sub s$) is greater than the threshold ($t sub s$)
308 then a ray is traced in or near the mirror direction.
309 An approximation to the Fresnel reflection coefficient
310 ($bold r sub s ~approx~ 1 - F$) is used to modify the specularity to account
311 for the increase in specular reflection near grazing angles.
312 .LP
313 The reflection formula for plastic is obtained by adding the following
314 definitions to the basic formula given in equation (1):
315 .EQ I
316 bold rho sub d ~=~ bold p^bold C (1 ~-~ a sub 4 )
317 .EN
318 .EQ I
319 bold rho sub si ~=~ left {~ lpile {{bold r sub s
320 {f sub s ( q hat sub i )} over
321 {( q hat sub i cdot n hat sub p ) cos sub 1}} above
322 0 } ~~~ lpile { {if~a sub 5 >0} above otherwise }
323 .EN
324 .EQ I
325 bold rho sub s ~=~ left {~ lpile {{bold r sub s} above 0 } ~~~
326 lpile {{if~a sub 5^=^0~or~bold r sub s^>^t sub s} above otherwise }
327 .EN
328 .EQ I
329 bold rho sub a ~=~ left {~ lpile {{ bold p^bold C^(1~-~bold r sub s )} above
330 {bold p^bold C}} ~~~ lpile
331 {{if~a sub 5^=^0~or~bold r sub s^>^t sub s} above otherwise }
332 .EN
333 .EQ I
334 bold tau sub a ,~ bold tau sub d ,~ bold tau sub si ,~ bold tau sub s ~=~ 0
335 .EN
336 .EQ I
337 bold r sub s ~=~ a sub 4
338 .EN
339 .EQ I
340 f sub s ( q hat sub i ) ~=~ e sup{[ ( h vec sub i cdot n hat sub p ) sup 2
341 ~-~ || h vec || sup 2 ]/
342 ( h vec sub i cdot n hat sub p ) sup 2 / alpha sub i}
343 over {4 pi alpha sub i}
344 .EN
345 .EQ I
346 alpha sub i ~=~ a sub 5 sup 2 ~+~ omega sub i over {4 pi}
347 .EN
348 .LP
349 There is one additional caveat to the above formulas.
350 If the roughness is greater than zero and the reflected ray,
351 $bold R ( P vec sub s ,~ r hat )$,
352 intersects a light source, then it is not used in the calculation.
353 Using such a ray would constitute double-counting, since the direct
354 component has already been included in the source sample summation.
355 .NH 2
356 Metal
357 .LP
358 Metal is identical to plastic, except for the definition of $ bold r sub s $,
359 which now includes the color of the material:
360 .EQ I
361 bold r sub s ~=~
362 "{" a sub 1 a sub 4 ,~
363 a sub 2 a sub 4 ,~
364 a sub 3 a sub 4 "}"
365 .EN
366 .NH 2
367 Trans
368 .LP
369 The trans type adds transmitted and colored specular and diffuse components
370 to the colored diffuse and uncolored specular components of the plastic type.
371 Again, the roughness value and specular threshold determine
372 whether or not specular rays will be followed for this material.
373 .EQ I
374 bold rho sub d ~=~ bold p^bold C^(1 ~-~ a sub 4 ) ( 1 ~-~ a sub 6 )
375 .EN
376 .EQ I
377 bold rho sub si ~=~ left {~ lpile {{bold r sub s
378 {f sub s ( q hat sub i )} over
379 {( q hat sub i cdot n hat sub p ) cos sub 1}} above
380 0 } ~~~ lpile { {if~a sub 5 >0} above otherwise }
381 .EN
382 .EQ I
383 bold rho sub s ~=~ left {~ lpile {{bold r sub s} above 0 } ~~~
384 lpile {{if~a sub 5^=^0~or~bold r sub s^>^t sub s} above otherwise }
385 .EN
386 .EQ I
387 bold rho sub a ~=~ left {~ lpile {{ bold p^bold C^
388 (1~-~bold r sub s ) (1~-~a sub 6 )} above
389 {bold p^bold C^(1~-~a sub 6 )}} ~~~ lpile
390 {{if~a sub 5^=^0~or~bold r sub s^>^t sub s} above otherwise }
391 .EN
392 .EQ I
393 bold tau sub d ~=~ a sub 6 (1~-~bold r sub s ) (1~-~a sub 7 )^bold p^bold C
394 .EN
395 .EQ I
396 bold tau sub si ~=~ left {~ lpile {{a sub 6 a sub 7 (1~-~bold r sub s )^
397 bold p^bold C {g sub s ( q hat sub i )} over
398 {(- q hat sub i cdot n hat sub p ) cos sub 1}} above
399 0 } ~~~ lpile { {if~a sub 5^>^0} above otherwise }
400 .EN
401 .EQ I
402 bold tau sub s ~=~ left {~ lpile {{a sub 6 a sub 7 (1~-~bold r sub s )^
403 bold p^bold C} above 0} ~~~ lpile
404 {{if~a sub 5^=^0~or~a sub 6 a sub 7 (1~-~bold r sub s )^>^t sub s}
405 above otherwise}
406 .EN
407 .EQ I
408 bold tau sub a ~=~ left {~ lpile {{a sub 6 (1~-~bold r sub s ) (1~-~a sub 7 )
409 ^bold p^bold C} above {a sub 6 (1~-~bold r sub s )^bold p^bold C}} ~~~
410 lpile {{if~a sub 5^=^0~or~a sub 6 a sub 7 (1~-~bold r sub s )^>^t sub s}
411 above otherwise}
412 .EN
413 .EQ I
414 bold r sub s ~=~ a sub 4
415 .EN
416 .EQ I
417 f sub s ( q hat sub i ) ~=~ e sup{[ ( h vec sub i cdot n hat sub p ) sup 2
418 ~-~ || h vec || sup 2 ]/
419 ( h vec sub i cdot n hat sub p ) sup 2 / alpha sub i}
420 over {4 pi alpha sub i}
421 .EN
422 .EQ I
423 alpha sub i ~=~ a sub 5 sup 2 ~+~ omega sub i over {4 pi}
424 .EN
425 .EQ I
426 g sub s ( q hat sub i ) ~=~ e sup{( 2 q hat sub i cdot t hat~-~2)/ beta sub i}
427 over {pi beta sub i}
428 .EN
429 .EQ I
430 t hat ~=~ {v hat~-~d vec}over{|| v hat~-~d vec ||}
431 .EN
432 .EQ I
433 beta sub i ~=~ a sub 5 sup 2 ~+~ omega sub i over pi
434 .EN
435 .LP
436 The same caveat applies to specular rays generated for trans type as did
437 for plastic and metal.
438 Namely, if the roughness is greater than zero and the reflected ray,
439 $bold R ( P vec sub s ,~ r hat )$,
440 or the transmitted ray,
441 $bold R ( P vec sub s ,~ t hat )$,
442 intersects a light source, then it is not used in the calculation.
443 .NH 2
444 Anisotropic Types
445 .LP
446 The anisotropic reflectance types (plastic2, metal2, trans2) use the
447 same formulas as their counterparts with the exception of the
448 exponent terms, $f sub s ( q hat sub i )$ and
449 $g sub s ( q hat sub i )$.
450 These terms now use an additional vector, $b vec$, to
451 orient an elliptical highlight.
452 (Note also that the argument numbers for the type trans2 have been
453 changed so that $a sub 6$ is $a sub 7$ and $a sub 7$ is $a sub 8$.)\0
454 .EQ I
455 f sub s ( q hat sub i ) ~=~
456 1 over {4 pi sqrt {alpha sub ix alpha sub iy} }
457 exp left [ -^{{( h vec sub i cdot x hat )} sup 2 over{alpha sub ix}
458 ~+~ {( h vec sub i cdot y hat )} sup 2 over{alpha sub iy}} over
459 {( h vec sub i cdot n hat sub p ) sup 2}right ]
460 .EN
461 .EQ I
462 x hat ~=~ y hat~times~n hat sub p
463 .EN
464 .EQ I
465 y hat ~=~ {n hat sub p~times~b vec}over{|| n hat sub p~times~b vec ||}
466 .EN
467 .EQ I
468 alpha sub ix ~=~ a sub 5 sup 2 ~+~ omega sub i over {4 pi}
469 .EN
470 .EQ I
471 alpha sub iy ~=~ a sub 6 sup 2 ~+~ omega sub i over {4 pi}
472 .EN
473 .EQ I
474 g sub s ( q hat sub i ) ~=~
475 1 over {pi sqrt {beta sub ix beta sub iy} }
476 exp left [ {{( c vec sub i cdot x hat )} sup 2 over{beta sub ix}
477 ~+~ {( c vec sub i cdot y hat )} sup 2 over{beta sub iy}} over
478 {{( n hat sub p cdot c vec sub i )}sup 2 over
479 {|| c vec sub i ||}sup 2 ~-~ 1}
480 right ]
481 .EN
482 .EQ I
483 c vec sub i ~=~ q hat sub i~-~t hat
484 .EN
485 .EQ I
486 t hat ~=~ {v hat~-~d vec}over{|| v hat~-~d vec ||}
487 .EN
488 .EQ I
489 beta sub ix ~=~ a sub 5 sup 2 ~+~ omega sub i over pi
490 .EN
491 .EQ I
492 beta sub iy ~=~ a sub 6 sup 2 ~+~ omega sub i over pi
493 .EN
494 .NH 2
495 BRDF Types
496 .LP
497 The more general brdf types (plasfunc, plasdata, metfunc, metdata,
498 BRTDfunc) use the same basic formula given in equation (1),
499 but allow the user to specify $bold rho sub si$ and $bold tau sub si$ as
500 either functions or data, instead of using the default
501 Gaussian formulas.
502 Note that only the exponent terms, $f sub s ( q hat sub i )$ and
503 $g sub s ( q hat sub i )$ with the radicals in their denominators
504 are replaced, and not the coefficients preceding them.
505 It is very important that the user give properly normalized functions (ie.
506 functions that integrate to 1 over the hemisphere) to maintain correct
507 energy balance.