| 1 |
.\" RCSid "$Id$" |
| 2 |
.\"Print with tbl and eqn or neqn with -ms macro package |
| 3 |
.vs 12 |
| 4 |
.nr VS 12 |
| 5 |
.nr PD .5v \" paragraph distance (inter-paragraph spacing) |
| 6 |
.EQ L |
| 7 |
delim $$ |
| 8 |
.EN |
| 9 |
.DA |
| 10 |
.TL |
| 11 |
Behavior of Materials in RADIANCE |
| 12 |
.AU |
| 13 |
Greg Ward |
| 14 |
.br |
| 15 |
Lawrence Berkeley Laboratory |
| 16 |
.NH 1 |
| 17 |
Definitions |
| 18 |
.LP |
| 19 |
This document describes in gory detail how each material type in RADIANCE |
| 20 |
behaves in terms of its parameter values. |
| 21 |
The following variables are given: |
| 22 |
.LP |
| 23 |
.vs 14 |
| 24 |
.nr VS 14 |
| 25 |
.TS |
| 26 |
center; |
| 27 |
l8 l. |
| 28 |
$bold R ( P vec , v hat )$ Value of a ray starting at $P vec$ in direction $v hat$ (in watts/sr/m^2) |
| 29 |
$P vec sub o$ Eye ray origin |
| 30 |
$v hat$ Eye ray direction |
| 31 |
$P vec sub s$ Intersection point of ray with surface |
| 32 |
$n hat$ Unperturbed surface normal at intersection |
| 33 |
$a sub n$ Real argument number $n$ |
| 34 |
$bold C$ Material color, $"{" a sub 1 , a sub 2 , a sub 3 "}"$ |
| 35 |
$bold p$ Material pattern value, $"{" 1, 1, 1 "}"$ if none |
| 36 |
$d vec$ Material texture vector, $[ 0, 0, 0 ]$ if none |
| 37 |
$b vec$ Orientation vector given by the string arguments of anisotropic types |
| 38 |
$n sub 1$ Index of refraction on eye ray side |
| 39 |
$n sub 2$ Index of refraction on opposite side |
| 40 |
$bold A$ Indirect irradiance (in watts/m^2) |
| 41 |
$bold A sub t$ Indirect irradiance from opposite side (in watts/m^2) |
| 42 |
$m hat$ Mirror direction, which can vary with Monte Carlo sampling |
| 43 |
$t sub s$ Specular threshold (set by -st option) |
| 44 |
$bold B sub i$ Radiance of light source sample $i$ (in watts/sr/m^2) |
| 45 |
$q hat sub i$ Direction to source sample $i$ |
| 46 |
$omega sub i$ Solid angle of source sample $i$ (in sr) |
| 47 |
.TE |
| 48 |
.vs 12 |
| 49 |
.nr VS 12 |
| 50 |
.LP |
| 51 |
Variables with an arrow over them are vectors. |
| 52 |
Variables with a circumflex are unit vectors (ie. normalized). |
| 53 |
All variables written in bold represent color values. |
| 54 |
.NH 2 |
| 55 |
Derived Variables |
| 56 |
.LP |
| 57 |
The following values are computed from the variables above: |
| 58 |
.LP |
| 59 |
.vs 14 |
| 60 |
.nr VS 14 |
| 61 |
.TS |
| 62 |
center; |
| 63 |
l8 l. |
| 64 |
$cos sub 1$ Cosine of angle between surface normal and eye ray |
| 65 |
$cos sub 2$ Cosine of angle between surface normal and transmitted direction |
| 66 |
$n hat sub p$ Perturbed surface normal (after texture application) |
| 67 |
$h vec sub i$ Bisecting vector between eye ray and source sample $i$ |
| 68 |
$F sub TE$ Fresnel coefficient for $TE$-polarized light |
| 69 |
$F sub TM$ Fresnel coefficient for $TM$-polarized light |
| 70 |
$F$ Fresnel coefficient for unpolarized light |
| 71 |
.TE |
| 72 |
.vs 12 |
| 73 |
.nr VS 12 |
| 74 |
.LP |
| 75 |
These values are computed as follows: |
| 76 |
.EQ I |
| 77 |
cos sub 1 mark ==~ - v hat cdot n hat sub p |
| 78 |
.EN |
| 79 |
.EQ I |
| 80 |
cos sub 2 lineup ==~ sqrt { 1~-~( n sub 1 / n sub 2 ) |
| 81 |
sup 2 (1~-~cos sub 1 sup 2 )} |
| 82 |
.EN |
| 83 |
.EQ I |
| 84 |
n hat sub p lineup ==~ { n hat ~+~ d vec } over { ||~ n hat ~+~ d vec ~|| } |
| 85 |
.EN |
| 86 |
.EQ I |
| 87 |
h vec sub i lineup ==~ q hat sub i ~-~ v hat |
| 88 |
.EN |
| 89 |
.EQ I |
| 90 |
F sub TE lineup ==~ left [ { n sub 1 cos sub 1 |
| 91 |
~-~ n sub 2 cos sub 2 } over { n sub 1 cos sub 1 |
| 92 |
~+~ n sub 2 cos sub 2 } right ] sup 2 |
| 93 |
.EN |
| 94 |
.EQ I |
| 95 |
F sub TM lineup ==~ left [ {n sub 1 / cos sub 1 |
| 96 |
~-~ n sub 2 / cos sub 2} over {n sub 1 / cos sub 1 |
| 97 |
~+~ n sub 2 / cos sub 2} right ] sup 2 |
| 98 |
.EN |
| 99 |
.EQ I |
| 100 |
F lineup ==~ 1 over 2 F sub TE ~+~ 1 over 2 F sub TM |
| 101 |
.EN |
| 102 |
.NH 2 |
| 103 |
Vector Math |
| 104 |
.LP |
| 105 |
Variables that represent vector values are written with an arrow above |
| 106 |
(eg. $ v vec $). |
| 107 |
Unit vectors (ie. vectors whose lengths are normalized to 1) have a hat |
| 108 |
(eg. $ v hat $). |
| 109 |
Equations containing vectors are implicitly repeated three times, |
| 110 |
once for each component. |
| 111 |
Thus, the equation: |
| 112 |
.EQ I |
| 113 |
v vec ~=~ 2 n hat ~+~ P vec |
| 114 |
.EN |
| 115 |
is equivalent to the three equations: |
| 116 |
.EQ I |
| 117 |
v sub x ~=~ 2 n sub x ~+~ P sub x |
| 118 |
.EN |
| 119 |
.EQ I |
| 120 |
v sub y ~=~ 2 n sub y ~+~ P sub y |
| 121 |
.EN |
| 122 |
.EQ I |
| 123 |
v sub z ~=~ 2 n sub z ~+~ P sub z |
| 124 |
.EN |
| 125 |
There are also cross and dot product operators defined for vectors, as |
| 126 |
well as the vector norm: |
| 127 |
.RS |
| 128 |
.LP |
| 129 |
.UL "Vector Dot Product" |
| 130 |
.EQ I |
| 131 |
a vec cdot b vec ~==~ a sub x b sub x ~+~ a sub y b sub y ~+~ a sub z b sub z |
| 132 |
.EN |
| 133 |
.LP |
| 134 |
.UL "Vector Cross Product" |
| 135 |
.EQ I |
| 136 |
a vec ~ times ~ b vec ~==~ left | matrix { |
| 137 |
ccol { i hat above a sub x above b sub x } |
| 138 |
ccol { j hat above a sub y above b sub y } |
| 139 |
ccol { k hat above a sub z above b sub z } |
| 140 |
} right | |
| 141 |
.EN |
| 142 |
or, written out: |
| 143 |
.EQ I |
| 144 |
a vec ~ times ~ b vec ~=~ [ a sub y b sub z ~-~ a sub z b sub y ,~ |
| 145 |
a sub z b sub x ~-~ a sub x b sub z ,~ a sub x b sub y ~-~ a sub y b sub x ] |
| 146 |
.EN |
| 147 |
.LP |
| 148 |
.UL "Vector Norm" |
| 149 |
.EQ I |
| 150 |
|| v vec || ~==~ sqrt {{v sub x} sup 2 ~+~ {v sub y} sup 2 ~+~ {v sub z} sup 2} |
| 151 |
.EN |
| 152 |
.RE |
| 153 |
.LP |
| 154 |
Values are collected into a vector using square brackets: |
| 155 |
.EQ I |
| 156 |
v vec ~=~ [ v sub x , v sub y , v sub z ] |
| 157 |
.EN |
| 158 |
.NH 2 |
| 159 |
Color Math |
| 160 |
.LP |
| 161 |
Variables that represent color values are written in boldface type. |
| 162 |
Color values may have any number of spectral samples. |
| 163 |
Currently, RADIANCE uses only three such values, referred to generically |
| 164 |
as red, green and blue. |
| 165 |
Whenever a color variable appears in an equation, that equation is |
| 166 |
implicitly repeated once for each spectral sample. |
| 167 |
Thus, the equation: |
| 168 |
.EQ I |
| 169 |
bold C ~=~ bold A^bold B ~+~ d bold F |
| 170 |
.EN |
| 171 |
is shorthand for the set of equations: |
| 172 |
.EQ I |
| 173 |
C sub 1 ~=~ A sub 1 B sub 1 ~+~ d F sub 1 |
| 174 |
.EN |
| 175 |
.EQ I |
| 176 |
C sub 2 ~=~ A sub 2 B sub 2 ~+~ d F sub 2 |
| 177 |
.EN |
| 178 |
.EQ I |
| 179 |
C sub 3 ~=~ A sub 3 B sub 3 ~+~ d F sub 3 |
| 180 |
.EN |
| 181 |
... |
| 182 |
.LP |
| 183 |
And so on for however many spectral samples are used. |
| 184 |
Note that color math is not the same as vector math. |
| 185 |
For example, there is no such thing as |
| 186 |
a dot product for colors. |
| 187 |
.LP |
| 188 |
Curly braces are used to collect values into a single color, like so: |
| 189 |
.EQ I |
| 190 |
bold C ~=~ "{" r, g, b "}" |
| 191 |
.EN |
| 192 |
.sp 2 |
| 193 |
.NH |
| 194 |
Light Sources |
| 195 |
.LP |
| 196 |
Light sources are extremely simple in their behavior when viewed directly. |
| 197 |
Their color in a particular direction is given by the equation: |
| 198 |
.EQ L |
| 199 |
bold R ~=~ bold p^bold C |
| 200 |
.EN |
| 201 |
.LP |
| 202 |
The special light source material types, glow, spotlight, and illum, |
| 203 |
differ only in their affect on the direct calculation, ie. which rays |
| 204 |
are traced to determine shadows. |
| 205 |
These differences are explained in the RADIANCE reference manual, and |
| 206 |
will not be repeated here. |
| 207 |
.sp 2 |
| 208 |
.NH |
| 209 |
Specular Types |
| 210 |
.LP |
| 211 |
Specular material types do not involve special light source testing and |
| 212 |
are thus are simpler to describe than surfaces with a diffuse component. |
| 213 |
The output radiance is usually a function of one or two other ray |
| 214 |
evaluations. |
| 215 |
.NH 2 |
| 216 |
Mirror |
| 217 |
.LP |
| 218 |
The value at a mirror surface is a function of the ray value in |
| 219 |
the mirror direction: |
| 220 |
.EQ L |
| 221 |
bold R ~=~ bold p^bold C^bold R ( P vec sub s ,~ m hat ) |
| 222 |
.EN |
| 223 |
.NH 2 |
| 224 |
Dieletric |
| 225 |
.LP |
| 226 |
The value of a dieletric material is computed from Fresnel's equations: |
| 227 |
.EQ L |
| 228 |
bold R ~=~ bold p^bold C sub t ( 1 - F )^bold R ( P vec sub s ,~ t hat ) ~+~ |
| 229 |
bold C sub t^F^bold R ( P vec sub s ,~ m hat ) |
| 230 |
.EN |
| 231 |
where: |
| 232 |
.EQ I |
| 233 |
bold C sub t ~=~ bold C sup {|| P vec sub s ~-~ P vec sub o ||} |
| 234 |
.EN |
| 235 |
.EQ I |
| 236 |
t hat ~=~ n sub 1 over n sub 2 v hat ~+~ left ( n sub 1 over n sub 2 cos sub 1 |
| 237 |
~-~ cos sub 2 right ) n hat sub p |
| 238 |
.EN |
| 239 |
.LP |
| 240 |
The Hartmann constant is used only to calculate the index of refraction |
| 241 |
for a dielectric, and does not otherwise influence the above equations. |
| 242 |
In particular, transmitted directions are not sampled based on dispersion. |
| 243 |
Dispersion is only modeled in a very crude way when a light source is |
| 244 |
casting a beam towards the eye point. |
| 245 |
We will not endeavor to explain the algorithm here as it is rather |
| 246 |
nasty. |
| 247 |
.LP |
| 248 |
For the material type "interface", the color which is used for $bold C$ |
| 249 |
as well as the indices of refraction $n sub 1$ and $n sub 2$ is determined |
| 250 |
by which direction the ray is headed. |
| 251 |
.NH 2 |
| 252 |
Glass |
| 253 |
.LP |
| 254 |
Glass uses an infinite series solution to the interreflection inside a pane |
| 255 |
of thin glass. |
| 256 |
.EQ L |
| 257 |
bold R ~=~ bold p^bold C sub t^bold R ( P vec sub s ,~ t hat ) |
| 258 |
left [ 1 over 2 {(1 ~-~ F sub TE )} sup 2 over {1 ~-~ F sub TE sup 2 |
| 259 |
bold C sub t sup 2 } ~+~ 1 over 2 {(1 ~-~ F sub TM )} sup 2 |
| 260 |
over {1 ~-~ F sub TM sup 2 bold C sub t sup 2 } right ] ~+~ |
| 261 |
bold R ( P vec sub s ,~ m hat ) left [ 1 over 2 {F sub TE (1 ~+~ |
| 262 |
(1 ~-~ 2 F sub TE ) bold C sub t sup 2 )} over {1 ~-~ F sub TE sup 2 |
| 263 |
bold C sub t sup 2 } ~+~ 1 over 2 {F sub TM (1 ~+~ |
| 264 |
(1 ~-~ 2 F sub TM ) bold C sub t sup 2 )} over {1 ~-~ F sub TM sup 2 |
| 265 |
bold C sub t sup 2 } right ] |
| 266 |
.EN |
| 267 |
where: |
| 268 |
.EQ I |
| 269 |
bold C sub t ~=~ bold C sup {(1/ cos sub 2 )} |
| 270 |
.EN |
| 271 |
.EQ I |
| 272 |
t hat ~=~ v hat~+~2(1^-^n sub 2 ) d vec |
| 273 |
.EN |
| 274 |
.sp 2 |
| 275 |
.NH |
| 276 |
Basic Reflection Model |
| 277 |
.LP |
| 278 |
The basic reflection model used in RADIANCE takes into account both specular |
| 279 |
and diffuse interactions with both sides of a surface. |
| 280 |
Most RADIANCE material types are special cases of this more general formula: |
| 281 |
.EQ L (1) |
| 282 |
bold R ~=~ mark size +3 sum from sources bold B sub i omega sub i |
| 283 |
left { Max(0,~ q hat sub i cdot n hat sub p ) |
| 284 |
left ( bold rho sub d over pi ~+~ bold rho sub si right ) ~+~ |
| 285 |
Max(0,~ - q hat sub i cdot n hat sub p ) |
| 286 |
left ( bold tau sub d over pi ~+~ bold tau sub si right ) right } |
| 287 |
.EN |
| 288 |
.EQ L |
| 289 |
lineup ~~+~~ bold rho sub s bold R ( P vec sub s ,~ m hat ) ~~+~~ |
| 290 |
bold tau sub s bold R ( P vec sub s ,~ t hat ) |
| 291 |
.EN |
| 292 |
.EQ L |
| 293 |
lineup ~~+~~ bold rho sub a over pi bold A ~~+~~ |
| 294 |
bold tau sub a over pi bold A sub t |
| 295 |
.EN |
| 296 |
Note that only one of the transmitted or reflected components in the first |
| 297 |
term of the above equation can be non-zero, depending on whether the given |
| 298 |
light source is in front of or behind the surface. |
| 299 |
The values of the various $ bold rho $ and $ bold tau $ variables will be |
| 300 |
defined differently for each material type, and are given in the following |
| 301 |
sections for plastic, metal and trans. |
| 302 |
.NH 2 |
| 303 |
Plastic |
| 304 |
.LP |
| 305 |
A plastic surface has uncolored highlights and no transmitted component. |
| 306 |
If the surface roughness ($a sub 5$) is zero or the specularity |
| 307 |
($bold r sub s$) is greater than the threshold ($t sub s$) |
| 308 |
then a ray is traced in or near the mirror direction. |
| 309 |
An approximation to the Fresnel reflection coefficient |
| 310 |
($bold r sub s ~approx~ 1 - F$) is used to modify the specularity to account |
| 311 |
for the increase in specular reflection near grazing angles. |
| 312 |
.LP |
| 313 |
The reflection formula for plastic is obtained by adding the following |
| 314 |
definitions to the basic formula given in equation (1): |
| 315 |
.EQ I |
| 316 |
bold rho sub d ~=~ bold p^bold C (1 ~-~ a sub 4 ) |
| 317 |
.EN |
| 318 |
.EQ I |
| 319 |
bold rho sub si ~=~ left {~ lpile {{bold r sub s |
| 320 |
{f sub s ( q hat sub i )} over |
| 321 |
{( q hat sub i cdot n hat sub p ) cos sub 1}} above |
| 322 |
0 } ~~~ lpile { {if~a sub 5 >0} above otherwise } |
| 323 |
.EN |
| 324 |
.EQ I |
| 325 |
bold rho sub s ~=~ left {~ lpile {{bold r sub s} above 0 } ~~~ |
| 326 |
lpile {{if~a sub 5^=^0~or~bold r sub s^>^t sub s} above otherwise } |
| 327 |
.EN |
| 328 |
.EQ I |
| 329 |
bold rho sub a ~=~ left {~ lpile {{ bold p^bold C^(1~-~bold r sub s )} above |
| 330 |
{bold p^bold C}} ~~~ lpile |
| 331 |
{{if~a sub 5^=^0~or~bold r sub s^>^t sub s} above otherwise } |
| 332 |
.EN |
| 333 |
.EQ I |
| 334 |
bold tau sub a ,~ bold tau sub d ,~ bold tau sub si ,~ bold tau sub s ~=~ 0 |
| 335 |
.EN |
| 336 |
.EQ I |
| 337 |
bold r sub s ~=~ a sub 4 |
| 338 |
.EN |
| 339 |
.EQ I |
| 340 |
f sub s ( q hat sub i ) ~=~ e sup{[ ( h vec sub i cdot n hat sub p ) sup 2 |
| 341 |
~-~ || h vec || sup 2 ]/ |
| 342 |
( h vec sub i cdot n hat sub p ) sup 2 / alpha sub i} |
| 343 |
over {4 pi alpha sub i} |
| 344 |
.EN |
| 345 |
.EQ I |
| 346 |
alpha sub i ~=~ a sub 5 sup 2 ~+~ omega sub i over {4 pi} |
| 347 |
.EN |
| 348 |
.LP |
| 349 |
There is one additional caveat to the above formulas. |
| 350 |
If the roughness is greater than zero and the reflected ray, |
| 351 |
$bold R ( P vec sub s ,~ r hat )$, |
| 352 |
intersects a light source, then it is not used in the calculation. |
| 353 |
Using such a ray would constitute double-counting, since the direct |
| 354 |
component has already been included in the source sample summation. |
| 355 |
.NH 2 |
| 356 |
Metal |
| 357 |
.LP |
| 358 |
Metal is identical to plastic, except for the definition of $ bold r sub s $, |
| 359 |
which now includes the color of the material: |
| 360 |
.EQ I |
| 361 |
bold r sub s ~=~ |
| 362 |
"{" a sub 1 a sub 4 ,~ |
| 363 |
a sub 2 a sub 4 ,~ |
| 364 |
a sub 3 a sub 4 "}" |
| 365 |
.EN |
| 366 |
.NH 2 |
| 367 |
Trans |
| 368 |
.LP |
| 369 |
The trans type adds transmitted and colored specular and diffuse components |
| 370 |
to the colored diffuse and uncolored specular components of the plastic type. |
| 371 |
Again, the roughness value and specular threshold determine |
| 372 |
whether or not specular rays will be followed for this material. |
| 373 |
.EQ I |
| 374 |
bold rho sub d ~=~ bold p^bold C^(1 ~-~ a sub 4 ) ( 1 ~-~ a sub 6 ) |
| 375 |
.EN |
| 376 |
.EQ I |
| 377 |
bold rho sub si ~=~ left {~ lpile {{bold r sub s |
| 378 |
{f sub s ( q hat sub i )} over |
| 379 |
{( q hat sub i cdot n hat sub p ) cos sub 1}} above |
| 380 |
0 } ~~~ lpile { {if~a sub 5 >0} above otherwise } |
| 381 |
.EN |
| 382 |
.EQ I |
| 383 |
bold rho sub s ~=~ left {~ lpile {{bold r sub s} above 0 } ~~~ |
| 384 |
lpile {{if~a sub 5^=^0~or~bold r sub s^>^t sub s} above otherwise } |
| 385 |
.EN |
| 386 |
.EQ I |
| 387 |
bold rho sub a ~=~ left {~ lpile {{ bold p^bold C^ |
| 388 |
(1~-~bold r sub s ) (1~-~a sub 6 )} above |
| 389 |
{bold p^bold C^(1~-~a sub 6 )}} ~~~ lpile |
| 390 |
{{if~a sub 5^=^0~or~bold r sub s^>^t sub s} above otherwise } |
| 391 |
.EN |
| 392 |
.EQ I |
| 393 |
bold tau sub d ~=~ a sub 6 (1~-~bold r sub s ) (1~-~a sub 7 )^bold p^bold C |
| 394 |
.EN |
| 395 |
.EQ I |
| 396 |
bold tau sub si ~=~ left {~ lpile {{a sub 6 a sub 7 (1~-~bold r sub s )^ |
| 397 |
bold p^bold C {g sub s ( q hat sub i )} over |
| 398 |
{(- q hat sub i cdot n hat sub p ) cos sub 1}} above |
| 399 |
0 } ~~~ lpile { {if~a sub 5^>^0} above otherwise } |
| 400 |
.EN |
| 401 |
.EQ I |
| 402 |
bold tau sub s ~=~ left {~ lpile {{a sub 6 a sub 7 (1~-~bold r sub s )^ |
| 403 |
bold p^bold C} above 0} ~~~ lpile |
| 404 |
{{if~a sub 5^=^0~or~a sub 6 a sub 7 (1~-~bold r sub s )^>^t sub s} |
| 405 |
above otherwise} |
| 406 |
.EN |
| 407 |
.EQ I |
| 408 |
bold tau sub a ~=~ left {~ lpile {{a sub 6 (1~-~bold r sub s ) (1~-~a sub 7 ) |
| 409 |
^bold p^bold C} above {a sub 6 (1~-~bold r sub s )^bold p^bold C}} ~~~ |
| 410 |
lpile {{if~a sub 5^=^0~or~a sub 6 a sub 7 (1~-~bold r sub s )^>^t sub s} |
| 411 |
above otherwise} |
| 412 |
.EN |
| 413 |
.EQ I |
| 414 |
bold r sub s ~=~ a sub 4 |
| 415 |
.EN |
| 416 |
.EQ I |
| 417 |
f sub s ( q hat sub i ) ~=~ e sup{[ ( h vec sub i cdot n hat sub p ) sup 2 |
| 418 |
~-~ || h vec || sup 2 ]/ |
| 419 |
( h vec sub i cdot n hat sub p ) sup 2 / alpha sub i} |
| 420 |
over {4 pi alpha sub i} |
| 421 |
.EN |
| 422 |
.EQ I |
| 423 |
alpha sub i ~=~ a sub 5 sup 2 ~+~ omega sub i over {4 pi} |
| 424 |
.EN |
| 425 |
.EQ I |
| 426 |
g sub s ( q hat sub i ) ~=~ e sup{( 2 q hat sub i cdot t hat~-~2)/ beta sub i} |
| 427 |
over {pi beta sub i} |
| 428 |
.EN |
| 429 |
.EQ I |
| 430 |
t hat ~=~ {v hat~-~d vec}over{|| v hat~-~d vec ||} |
| 431 |
.EN |
| 432 |
.EQ I |
| 433 |
beta sub i ~=~ a sub 5 sup 2 ~+~ omega sub i over pi |
| 434 |
.EN |
| 435 |
.LP |
| 436 |
The same caveat applies to specular rays generated for trans type as did |
| 437 |
for plastic and metal. |
| 438 |
Namely, if the roughness is greater than zero and the reflected ray, |
| 439 |
$bold R ( P vec sub s ,~ r hat )$, |
| 440 |
or the transmitted ray, |
| 441 |
$bold R ( P vec sub s ,~ t hat )$, |
| 442 |
intersects a light source, then it is not used in the calculation. |
| 443 |
.NH 2 |
| 444 |
Anisotropic Types |
| 445 |
.LP |
| 446 |
The anisotropic reflectance types (plastic2, metal2, trans2) use the |
| 447 |
same formulas as their counterparts with the exception of the |
| 448 |
exponent terms, $f sub s ( q hat sub i )$ and |
| 449 |
$g sub s ( q hat sub i )$. |
| 450 |
These terms now use an additional vector, $b vec$, to |
| 451 |
orient an elliptical highlight. |
| 452 |
(Note also that the argument numbers for the type trans2 have been |
| 453 |
changed so that $a sub 6$ is $a sub 7$ and $a sub 7$ is $a sub 8$.)\0 |
| 454 |
.EQ I |
| 455 |
f sub s ( q hat sub i ) ~=~ |
| 456 |
1 over {4 pi sqrt {alpha sub ix alpha sub iy} } |
| 457 |
exp left [ -^{{( h vec sub i cdot x hat )} sup 2 over{alpha sub ix} |
| 458 |
~+~ {( h vec sub i cdot y hat )} sup 2 over{alpha sub iy}} over |
| 459 |
{( h vec sub i cdot n hat sub p ) sup 2}right ] |
| 460 |
.EN |
| 461 |
.EQ I |
| 462 |
x hat ~=~ y hat~times~n hat sub p |
| 463 |
.EN |
| 464 |
.EQ I |
| 465 |
y hat ~=~ {n hat sub p~times~b vec}over{|| n hat sub p~times~b vec ||} |
| 466 |
.EN |
| 467 |
.EQ I |
| 468 |
alpha sub ix ~=~ a sub 5 sup 2 ~+~ omega sub i over {4 pi} |
| 469 |
.EN |
| 470 |
.EQ I |
| 471 |
alpha sub iy ~=~ a sub 6 sup 2 ~+~ omega sub i over {4 pi} |
| 472 |
.EN |
| 473 |
.EQ I |
| 474 |
g sub s ( q hat sub i ) ~=~ |
| 475 |
1 over {pi sqrt {beta sub ix beta sub iy} } |
| 476 |
exp left [ {{( c vec sub i cdot x hat )} sup 2 over{beta sub ix} |
| 477 |
~+~ {( c vec sub i cdot y hat )} sup 2 over{beta sub iy}} over |
| 478 |
{{( n hat sub p cdot c vec sub i )}sup 2 over |
| 479 |
{|| c vec sub i ||}sup 2 ~-~ 1} |
| 480 |
right ] |
| 481 |
.EN |
| 482 |
.EQ I |
| 483 |
c vec sub i ~=~ q hat sub i~-~t hat |
| 484 |
.EN |
| 485 |
.EQ I |
| 486 |
t hat ~=~ {v hat~-~d vec}over{|| v hat~-~d vec ||} |
| 487 |
.EN |
| 488 |
.EQ I |
| 489 |
beta sub ix ~=~ a sub 5 sup 2 ~+~ omega sub i over pi |
| 490 |
.EN |
| 491 |
.EQ I |
| 492 |
beta sub iy ~=~ a sub 6 sup 2 ~+~ omega sub i over pi |
| 493 |
.EN |
| 494 |
.NH 2 |
| 495 |
BRDF Types |
| 496 |
.LP |
| 497 |
The more general brdf types (plasfunc, plasdata, metfunc, metdata, |
| 498 |
BRTDfunc) use the same basic formula given in equation (1), |
| 499 |
but allow the user to specify $bold rho sub si$ and $bold tau sub si$ as |
| 500 |
either functions or data, instead of using the default |
| 501 |
Gaussian formulas. |
| 502 |
Note that only the exponent terms, $f sub s ( q hat sub i )$ and |
| 503 |
$g sub s ( q hat sub i )$ with the radicals in their denominators |
| 504 |
are replaced, and not the coefficients preceding them. |
| 505 |
It is very important that the user give properly normalized functions (ie. |
| 506 |
functions that integrate to 1 over the hemisphere) to maintain correct |
| 507 |
energy balance. |