| 1 |
.\" RCSid "$Id$"
|
| 2 |
.\"Print with tbl and eqn or neqn with -ms macro package
|
| 3 |
.vs 12
|
| 4 |
.nr VS 12
|
| 5 |
.nr PD .5v \" paragraph distance (inter-paragraph spacing)
|
| 6 |
.EQ L
|
| 7 |
delim $$
|
| 8 |
.EN
|
| 9 |
.DA
|
| 10 |
.TL
|
| 11 |
Behavior of Materials in RADIANCE
|
| 12 |
.AU
|
| 13 |
Greg Ward
|
| 14 |
.br
|
| 15 |
Lawrence Berkeley Laboratory
|
| 16 |
.NH 1
|
| 17 |
Definitions
|
| 18 |
.LP
|
| 19 |
This document describes in gory detail how each material type in RADIANCE
|
| 20 |
behaves in terms of its parameter values.
|
| 21 |
The following variables are given:
|
| 22 |
.LP
|
| 23 |
.vs 14
|
| 24 |
.nr VS 14
|
| 25 |
.TS
|
| 26 |
center;
|
| 27 |
l8 l.
|
| 28 |
$bold R ( P vec , v hat )$ Value of a ray starting at $P vec$ in direction $v hat$ (in watts/sr/m^2)
|
| 29 |
$P vec sub o$ Eye ray origin
|
| 30 |
$v hat$ Eye ray direction
|
| 31 |
$P vec sub s$ Intersection point of ray with surface
|
| 32 |
$n hat$ Unperturbed surface normal at intersection
|
| 33 |
$a sub n$ Real argument number $n$
|
| 34 |
$bold C$ Material color, $"{" a sub 1 , a sub 2 , a sub 3 "}"$
|
| 35 |
$bold p$ Material pattern value, $"{" 1, 1, 1 "}"$ if none
|
| 36 |
$d vec$ Material texture vector, $[ 0, 0, 0 ]$ if none
|
| 37 |
$b vec$ Orientation vector given by the string arguments of anisotropic types
|
| 38 |
$n sub 1$ Index of refraction on eye ray side
|
| 39 |
$n sub 2$ Index of refraction on opposite side
|
| 40 |
$bold A$ Indirect irradiance (in watts/m^2)
|
| 41 |
$bold A sub t$ Indirect irradiance from opposite side (in watts/m^2)
|
| 42 |
$m hat$ Mirror direction, which can vary with Monte Carlo sampling
|
| 43 |
$t sub s$ Specular threshold (set by -st option)
|
| 44 |
$bold B sub i$ Radiance of light source sample $i$ (in watts/sr/m^2)
|
| 45 |
$q hat sub i$ Direction to source sample $i$
|
| 46 |
$omega sub i$ Solid angle of source sample $i$ (in sr)
|
| 47 |
.TE
|
| 48 |
.vs 12
|
| 49 |
.nr VS 12
|
| 50 |
.LP
|
| 51 |
Variables with an arrow over them are vectors.
|
| 52 |
Variables with a circumflex are unit vectors (ie. normalized).
|
| 53 |
All variables written in bold represent color values.
|
| 54 |
.NH 2
|
| 55 |
Derived Variables
|
| 56 |
.LP
|
| 57 |
The following values are computed from the variables above:
|
| 58 |
.LP
|
| 59 |
.vs 14
|
| 60 |
.nr VS 14
|
| 61 |
.TS
|
| 62 |
center;
|
| 63 |
l8 l.
|
| 64 |
$cos sub 1$ Cosine of angle between surface normal and eye ray
|
| 65 |
$cos sub 2$ Cosine of angle between surface normal and transmitted direction
|
| 66 |
$n hat sub p$ Perturbed surface normal (after texture application)
|
| 67 |
$h vec sub i$ Bisecting vector between eye ray and source sample $i$
|
| 68 |
$F sub TE$ Fresnel coefficient for $TE$-polarized light
|
| 69 |
$F sub TM$ Fresnel coefficient for $TM$-polarized light
|
| 70 |
$F$ Fresnel coefficient for unpolarized light
|
| 71 |
.TE
|
| 72 |
.vs 12
|
| 73 |
.nr VS 12
|
| 74 |
.LP
|
| 75 |
These values are computed as follows:
|
| 76 |
.EQ I
|
| 77 |
cos sub 1 mark ==~ - v hat cdot n hat sub p
|
| 78 |
.EN
|
| 79 |
.EQ I
|
| 80 |
cos sub 2 lineup ==~ sqrt { 1~-~( n sub 1 / n sub 2 )
|
| 81 |
sup 2 (1~-~cos sub 1 sup 2 )}
|
| 82 |
.EN
|
| 83 |
.EQ I
|
| 84 |
n hat sub p lineup ==~ { n hat ~+~ d vec } over { ||~ n hat ~+~ d vec ~|| }
|
| 85 |
.EN
|
| 86 |
.EQ I
|
| 87 |
h vec sub i lineup ==~ q hat sub i ~-~ v hat
|
| 88 |
.EN
|
| 89 |
.EQ I
|
| 90 |
F sub TE lineup ==~ left [ { n sub 1 cos sub 1
|
| 91 |
~-~ n sub 2 cos sub 2 } over { n sub 1 cos sub 1
|
| 92 |
~+~ n sub 2 cos sub 2 } right ] sup 2
|
| 93 |
.EN
|
| 94 |
.EQ I
|
| 95 |
F sub TM lineup ==~ left [ {n sub 1 / cos sub 1
|
| 96 |
~-~ n sub 2 / cos sub 2} over {n sub 1 / cos sub 1
|
| 97 |
~+~ n sub 2 / cos sub 2} right ] sup 2
|
| 98 |
.EN
|
| 99 |
.EQ I
|
| 100 |
F lineup ==~ 1 over 2 F sub TE ~+~ 1 over 2 F sub TM
|
| 101 |
.EN
|
| 102 |
.NH 2
|
| 103 |
Vector Math
|
| 104 |
.LP
|
| 105 |
Variables that represent vector values are written with an arrow above
|
| 106 |
(eg. $ v vec $).
|
| 107 |
Unit vectors (ie. vectors whose lengths are normalized to 1) have a hat
|
| 108 |
(eg. $ v hat $).
|
| 109 |
Equations containing vectors are implicitly repeated three times,
|
| 110 |
once for each component.
|
| 111 |
Thus, the equation:
|
| 112 |
.EQ I
|
| 113 |
v vec ~=~ 2 n hat ~+~ P vec
|
| 114 |
.EN
|
| 115 |
is equivalent to the three equations:
|
| 116 |
.EQ I
|
| 117 |
v sub x ~=~ 2 n sub x ~+~ P sub x
|
| 118 |
.EN
|
| 119 |
.EQ I
|
| 120 |
v sub y ~=~ 2 n sub y ~+~ P sub y
|
| 121 |
.EN
|
| 122 |
.EQ I
|
| 123 |
v sub z ~=~ 2 n sub z ~+~ P sub z
|
| 124 |
.EN
|
| 125 |
There are also cross and dot product operators defined for vectors, as
|
| 126 |
well as the vector norm:
|
| 127 |
.RS
|
| 128 |
.LP
|
| 129 |
.UL "Vector Dot Product"
|
| 130 |
.EQ I
|
| 131 |
a vec cdot b vec ~==~ a sub x b sub x ~+~ a sub y b sub y ~+~ a sub z b sub z
|
| 132 |
.EN
|
| 133 |
.LP
|
| 134 |
.UL "Vector Cross Product"
|
| 135 |
.EQ I
|
| 136 |
a vec ~ times ~ b vec ~==~ left | matrix {
|
| 137 |
ccol { i hat above a sub x above b sub x }
|
| 138 |
ccol { j hat above a sub y above b sub y }
|
| 139 |
ccol { k hat above a sub z above b sub z }
|
| 140 |
} right |
|
| 141 |
.EN
|
| 142 |
or, written out:
|
| 143 |
.EQ I
|
| 144 |
a vec ~ times ~ b vec ~=~ [ a sub y b sub z ~-~ a sub z b sub y ,~
|
| 145 |
a sub z b sub x ~-~ a sub x b sub z ,~ a sub x b sub y ~-~ a sub y b sub x ]
|
| 146 |
.EN
|
| 147 |
.LP
|
| 148 |
.UL "Vector Norm"
|
| 149 |
.EQ I
|
| 150 |
|| v vec || ~==~ sqrt {{v sub x} sup 2 ~+~ {v sub y} sup 2 ~+~ {v sub z} sup 2}
|
| 151 |
.EN
|
| 152 |
.RE
|
| 153 |
.LP
|
| 154 |
Values are collected into a vector using square brackets:
|
| 155 |
.EQ I
|
| 156 |
v vec ~=~ [ v sub x , v sub y , v sub z ]
|
| 157 |
.EN
|
| 158 |
.NH 2
|
| 159 |
Color Math
|
| 160 |
.LP
|
| 161 |
Variables that represent color values are written in boldface type.
|
| 162 |
Color values may have any number of spectral samples.
|
| 163 |
Currently, RADIANCE uses only three such values, referred to generically
|
| 164 |
as red, green and blue.
|
| 165 |
Whenever a color variable appears in an equation, that equation is
|
| 166 |
implicitly repeated once for each spectral sample.
|
| 167 |
Thus, the equation:
|
| 168 |
.EQ I
|
| 169 |
bold C ~=~ bold A^bold B ~+~ d bold F
|
| 170 |
.EN
|
| 171 |
is shorthand for the set of equations:
|
| 172 |
.EQ I
|
| 173 |
C sub 1 ~=~ A sub 1 B sub 1 ~+~ d F sub 1
|
| 174 |
.EN
|
| 175 |
.EQ I
|
| 176 |
C sub 2 ~=~ A sub 2 B sub 2 ~+~ d F sub 2
|
| 177 |
.EN
|
| 178 |
.EQ I
|
| 179 |
C sub 3 ~=~ A sub 3 B sub 3 ~+~ d F sub 3
|
| 180 |
.EN
|
| 181 |
...
|
| 182 |
.LP
|
| 183 |
And so on for however many spectral samples are used.
|
| 184 |
Note that color math is not the same as vector math.
|
| 185 |
For example, there is no such thing as
|
| 186 |
a dot product for colors.
|
| 187 |
.LP
|
| 188 |
Curly braces are used to collect values into a single color, like so:
|
| 189 |
.EQ I
|
| 190 |
bold C ~=~ "{" r, g, b "}"
|
| 191 |
.EN
|
| 192 |
.sp 2
|
| 193 |
.NH
|
| 194 |
Light Sources
|
| 195 |
.LP
|
| 196 |
Light sources are extremely simple in their behavior when viewed directly.
|
| 197 |
Their color in a particular direction is given by the equation:
|
| 198 |
.EQ L
|
| 199 |
bold R ~=~ bold p^bold C
|
| 200 |
.EN
|
| 201 |
.LP
|
| 202 |
The special light source material types, glow, spotlight, and illum,
|
| 203 |
differ only in their affect on the direct calculation, ie. which rays
|
| 204 |
are traced to determine shadows.
|
| 205 |
These differences are explained in the RADIANCE reference manual, and
|
| 206 |
will not be repeated here.
|
| 207 |
.sp 2
|
| 208 |
.NH
|
| 209 |
Specular Types
|
| 210 |
.LP
|
| 211 |
Specular material types do not involve special light source testing and
|
| 212 |
are thus are simpler to describe than surfaces with a diffuse component.
|
| 213 |
The output radiance is usually a function of one or two other ray
|
| 214 |
evaluations.
|
| 215 |
.NH 2
|
| 216 |
Mirror
|
| 217 |
.LP
|
| 218 |
The value at a mirror surface is a function of the ray value in
|
| 219 |
the mirror direction:
|
| 220 |
.EQ L
|
| 221 |
bold R ~=~ bold p^bold C^bold R ( P vec sub s ,~ m hat )
|
| 222 |
.EN
|
| 223 |
.NH 2
|
| 224 |
Dieletric
|
| 225 |
.LP
|
| 226 |
The value of a dieletric material is computed from Fresnel's equations:
|
| 227 |
.EQ L
|
| 228 |
bold R ~=~ bold p^bold C sub t ( 1 - F )^bold R ( P vec sub s ,~ t hat ) ~+~
|
| 229 |
bold C sub t^F^bold R ( P vec sub s ,~ m hat )
|
| 230 |
.EN
|
| 231 |
where:
|
| 232 |
.EQ I
|
| 233 |
bold C sub t ~=~ bold C sup {|| P vec sub s ~-~ P vec sub o ||}
|
| 234 |
.EN
|
| 235 |
.EQ I
|
| 236 |
t hat ~=~ n sub 1 over n sub 2 v hat ~+~ left ( n sub 1 over n sub 2 cos sub 1
|
| 237 |
~-~ cos sub 2 right ) n hat sub p
|
| 238 |
.EN
|
| 239 |
.LP
|
| 240 |
The Hartmann constant is used only to calculate the index of refraction
|
| 241 |
for a dielectric, and does not otherwise influence the above equations.
|
| 242 |
In particular, transmitted directions are not sampled based on dispersion.
|
| 243 |
Dispersion is only modeled in a very crude way when a light source is
|
| 244 |
casting a beam towards the eye point.
|
| 245 |
We will not endeavor to explain the algorithm here as it is rather
|
| 246 |
nasty.
|
| 247 |
.LP
|
| 248 |
For the material type "interface", the color which is used for $bold C$
|
| 249 |
as well as the indices of refraction $n sub 1$ and $n sub 2$ is determined
|
| 250 |
by which direction the ray is headed.
|
| 251 |
.NH 2
|
| 252 |
Glass
|
| 253 |
.LP
|
| 254 |
Glass uses an infinite series solution to the interreflection inside a pane
|
| 255 |
of thin glass.
|
| 256 |
.EQ L
|
| 257 |
bold R ~=~ bold p^bold C sub t^bold R ( P vec sub s ,~ t hat )
|
| 258 |
left [ 1 over 2 {(1 ~-~ F sub TE )} sup 2 over {1 ~-~ F sub TE sup 2
|
| 259 |
bold C sub t sup 2 } ~+~ 1 over 2 {(1 ~-~ F sub TM )} sup 2
|
| 260 |
over {1 ~-~ F sub TM sup 2 bold C sub t sup 2 } right ] ~+~
|
| 261 |
bold R ( P vec sub s ,~ m hat ) left [ 1 over 2 {F sub TE (1 ~+~
|
| 262 |
(1 ~-~ 2 F sub TE ) bold C sub t sup 2 )} over {1 ~-~ F sub TE sup 2
|
| 263 |
bold C sub t sup 2 } ~+~ 1 over 2 {F sub TM (1 ~+~
|
| 264 |
(1 ~-~ 2 F sub TM ) bold C sub t sup 2 )} over {1 ~-~ F sub TM sup 2
|
| 265 |
bold C sub t sup 2 } right ]
|
| 266 |
.EN
|
| 267 |
where:
|
| 268 |
.EQ I
|
| 269 |
bold C sub t ~=~ bold C sup {(1/ cos sub 2 )}
|
| 270 |
.EN
|
| 271 |
.EQ I
|
| 272 |
t hat ~=~ v hat~+~2(1^-^n sub 2 ) d vec
|
| 273 |
.EN
|
| 274 |
.sp 2
|
| 275 |
.NH
|
| 276 |
Basic Reflection Model
|
| 277 |
.LP
|
| 278 |
The basic reflection model used in RADIANCE takes into account both specular
|
| 279 |
and diffuse interactions with both sides of a surface.
|
| 280 |
Most RADIANCE material types are special cases of this more general formula:
|
| 281 |
.EQ L (1)
|
| 282 |
bold R ~=~ mark size +3 sum from sources bold B sub i omega sub i
|
| 283 |
left { Max(0,~ q hat sub i cdot n hat sub p )
|
| 284 |
left ( bold rho sub d over pi ~+~ bold rho sub si right ) ~+~
|
| 285 |
Max(0,~ - q hat sub i cdot n hat sub p )
|
| 286 |
left ( bold tau sub d over pi ~+~ bold tau sub si right ) right }
|
| 287 |
.EN
|
| 288 |
.EQ L
|
| 289 |
lineup ~~+~~ bold rho sub s bold R ( P vec sub s ,~ m hat ) ~~+~~
|
| 290 |
bold tau sub s bold R ( P vec sub s ,~ t hat )
|
| 291 |
.EN
|
| 292 |
.EQ L
|
| 293 |
lineup ~~+~~ bold rho sub a over pi bold A ~~+~~
|
| 294 |
bold tau sub a over pi bold A sub t
|
| 295 |
.EN
|
| 296 |
Note that only one of the transmitted or reflected components in the first
|
| 297 |
term of the above equation can be non-zero, depending on whether the given
|
| 298 |
light source is in front of or behind the surface.
|
| 299 |
The values of the various $ bold rho $ and $ bold tau $ variables will be
|
| 300 |
defined differently for each material type, and are given in the following
|
| 301 |
sections for plastic, metal and trans.
|
| 302 |
.NH 2
|
| 303 |
Plastic
|
| 304 |
.LP
|
| 305 |
A plastic surface has uncolored highlights and no transmitted component.
|
| 306 |
If the surface roughness ($a sub 5$) is zero or the specularity
|
| 307 |
($bold r sub s$) is greater than the threshold ($t sub s$)
|
| 308 |
then a ray is traced in or near the mirror direction.
|
| 309 |
An approximation to the Fresnel reflection coefficient
|
| 310 |
($bold r sub s ~approx~ 1 - F$) is used to modify the specularity to account
|
| 311 |
for the increase in specular reflection near grazing angles.
|
| 312 |
.LP
|
| 313 |
The reflection formula for plastic is obtained by adding the following
|
| 314 |
definitions to the basic formula given in equation (1):
|
| 315 |
.EQ I
|
| 316 |
bold rho sub d ~=~ bold p^bold C (1 ~-~ a sub 4 )
|
| 317 |
.EN
|
| 318 |
.EQ I
|
| 319 |
bold rho sub si ~=~ left {~ lpile {{bold r sub s
|
| 320 |
{f sub s ( q hat sub i )} over
|
| 321 |
{( q hat sub i cdot n hat sub p ) cos sub 1}} above
|
| 322 |
0 } ~~~ lpile { {if~a sub 5 >0} above otherwise }
|
| 323 |
.EN
|
| 324 |
.EQ I
|
| 325 |
bold rho sub s ~=~ left {~ lpile {{bold r sub s} above 0 } ~~~
|
| 326 |
lpile {{if~a sub 5^=^0~or~bold r sub s^>^t sub s} above otherwise }
|
| 327 |
.EN
|
| 328 |
.EQ I
|
| 329 |
bold rho sub a ~=~ left {~ lpile {{ bold p^bold C^(1~-~bold r sub s )} above
|
| 330 |
{bold p^bold C}} ~~~ lpile
|
| 331 |
{{if~a sub 5^=^0~or~bold r sub s^>^t sub s} above otherwise }
|
| 332 |
.EN
|
| 333 |
.EQ I
|
| 334 |
bold tau sub a ,~ bold tau sub d ,~ bold tau sub si ,~ bold tau sub s ~=~ 0
|
| 335 |
.EN
|
| 336 |
.EQ I
|
| 337 |
bold r sub s ~=~ a sub 4
|
| 338 |
.EN
|
| 339 |
.EQ I
|
| 340 |
f sub s ( q hat sub i ) ~=~ e sup{[ ( h vec sub i cdot n hat sub p ) sup 2
|
| 341 |
~-~ || h vec || sup 2 ]/
|
| 342 |
( h vec sub i cdot n hat sub p ) sup 2 / alpha sub i}
|
| 343 |
over {4 pi alpha sub i}
|
| 344 |
.EN
|
| 345 |
.EQ I
|
| 346 |
alpha sub i ~=~ a sub 5 sup 2 ~+~ omega sub i over {4 pi}
|
| 347 |
.EN
|
| 348 |
.LP
|
| 349 |
There is one additional caveat to the above formulas.
|
| 350 |
If the roughness is greater than zero and the reflected ray,
|
| 351 |
$bold R ( P vec sub s ,~ r hat )$,
|
| 352 |
intersects a light source, then it is not used in the calculation.
|
| 353 |
Using such a ray would constitute double-counting, since the direct
|
| 354 |
component has already been included in the source sample summation.
|
| 355 |
.NH 2
|
| 356 |
Metal
|
| 357 |
.LP
|
| 358 |
Metal is identical to plastic, except for the definition of $ bold r sub s $,
|
| 359 |
which now includes the color of the material:
|
| 360 |
.EQ I
|
| 361 |
bold r sub s ~=~
|
| 362 |
"{" a sub 1 a sub 4 ,~
|
| 363 |
a sub 2 a sub 4 ,~
|
| 364 |
a sub 3 a sub 4 "}"
|
| 365 |
.EN
|
| 366 |
.NH 2
|
| 367 |
Trans
|
| 368 |
.LP
|
| 369 |
The trans type adds transmitted and colored specular and diffuse components
|
| 370 |
to the colored diffuse and uncolored specular components of the plastic type.
|
| 371 |
Again, the roughness value and specular threshold determine
|
| 372 |
whether or not specular rays will be followed for this material.
|
| 373 |
.EQ I
|
| 374 |
bold rho sub d ~=~ bold p^bold C^(1 ~-~ a sub 4 ) ( 1 ~-~ a sub 6 )
|
| 375 |
.EN
|
| 376 |
.EQ I
|
| 377 |
bold rho sub si ~=~ left {~ lpile {{bold r sub s
|
| 378 |
{f sub s ( q hat sub i )} over
|
| 379 |
{( q hat sub i cdot n hat sub p ) cos sub 1}} above
|
| 380 |
0 } ~~~ lpile { {if~a sub 5 >0} above otherwise }
|
| 381 |
.EN
|
| 382 |
.EQ I
|
| 383 |
bold rho sub s ~=~ left {~ lpile {{bold r sub s} above 0 } ~~~
|
| 384 |
lpile {{if~a sub 5^=^0~or~bold r sub s^>^t sub s} above otherwise }
|
| 385 |
.EN
|
| 386 |
.EQ I
|
| 387 |
bold rho sub a ~=~ left {~ lpile {{ bold p^bold C^
|
| 388 |
(1~-~bold r sub s ) (1~-~a sub 6 )} above
|
| 389 |
{bold p^bold C^(1~-~a sub 6 )}} ~~~ lpile
|
| 390 |
{{if~a sub 5^=^0~or~bold r sub s^>^t sub s} above otherwise }
|
| 391 |
.EN
|
| 392 |
.EQ I
|
| 393 |
bold tau sub d ~=~ a sub 6 (1~-~bold r sub s ) (1~-~a sub 7 )^bold p^bold C
|
| 394 |
.EN
|
| 395 |
.EQ I
|
| 396 |
bold tau sub si ~=~ left {~ lpile {{a sub 6 a sub 7 (1~-~bold r sub s )^
|
| 397 |
bold p^bold C {g sub s ( q hat sub i )} over
|
| 398 |
{(- q hat sub i cdot n hat sub p ) cos sub 1}} above
|
| 399 |
0 } ~~~ lpile { {if~a sub 5^>^0} above otherwise }
|
| 400 |
.EN
|
| 401 |
.EQ I
|
| 402 |
bold tau sub s ~=~ left {~ lpile {{a sub 6 a sub 7 (1~-~bold r sub s )^
|
| 403 |
bold p^bold C} above 0} ~~~ lpile
|
| 404 |
{{if~a sub 5^=^0~or~a sub 6 a sub 7 (1~-~bold r sub s )^>^t sub s}
|
| 405 |
above otherwise}
|
| 406 |
.EN
|
| 407 |
.EQ I
|
| 408 |
bold tau sub a ~=~ left {~ lpile {{a sub 6 (1~-~bold r sub s ) (1~-~a sub 7 )
|
| 409 |
^bold p^bold C} above {a sub 6 (1~-~bold r sub s )^bold p^bold C}} ~~~
|
| 410 |
lpile {{if~a sub 5^=^0~or~a sub 6 a sub 7 (1~-~bold r sub s )^>^t sub s}
|
| 411 |
above otherwise}
|
| 412 |
.EN
|
| 413 |
.EQ I
|
| 414 |
bold r sub s ~=~ a sub 4
|
| 415 |
.EN
|
| 416 |
.EQ I
|
| 417 |
f sub s ( q hat sub i ) ~=~ e sup{[ ( h vec sub i cdot n hat sub p ) sup 2
|
| 418 |
~-~ || h vec || sup 2 ]/
|
| 419 |
( h vec sub i cdot n hat sub p ) sup 2 / alpha sub i}
|
| 420 |
over {4 pi alpha sub i}
|
| 421 |
.EN
|
| 422 |
.EQ I
|
| 423 |
alpha sub i ~=~ a sub 5 sup 2 ~+~ omega sub i over {4 pi}
|
| 424 |
.EN
|
| 425 |
.EQ I
|
| 426 |
g sub s ( q hat sub i ) ~=~ e sup{( 2 q hat sub i cdot t hat~-~2)/ beta sub i}
|
| 427 |
over {pi beta sub i}
|
| 428 |
.EN
|
| 429 |
.EQ I
|
| 430 |
t hat ~=~ {v hat~-~d vec}over{|| v hat~-~d vec ||}
|
| 431 |
.EN
|
| 432 |
.EQ I
|
| 433 |
beta sub i ~=~ a sub 5 sup 2 ~+~ omega sub i over pi
|
| 434 |
.EN
|
| 435 |
.LP
|
| 436 |
The same caveat applies to specular rays generated for trans type as did
|
| 437 |
for plastic and metal.
|
| 438 |
Namely, if the roughness is greater than zero and the reflected ray,
|
| 439 |
$bold R ( P vec sub s ,~ r hat )$,
|
| 440 |
or the transmitted ray,
|
| 441 |
$bold R ( P vec sub s ,~ t hat )$,
|
| 442 |
intersects a light source, then it is not used in the calculation.
|
| 443 |
.NH 2
|
| 444 |
Anisotropic Types
|
| 445 |
.LP
|
| 446 |
The anisotropic reflectance types (plastic2, metal2, trans2) use the
|
| 447 |
same formulas as their counterparts with the exception of the
|
| 448 |
exponent terms, $f sub s ( q hat sub i )$ and
|
| 449 |
$g sub s ( q hat sub i )$.
|
| 450 |
These terms now use an additional vector, $b vec$, to
|
| 451 |
orient an elliptical highlight.
|
| 452 |
(Note also that the argument numbers for the type trans2 have been
|
| 453 |
changed so that $a sub 6$ is $a sub 7$ and $a sub 7$ is $a sub 8$.)\0
|
| 454 |
.EQ I
|
| 455 |
f sub s ( q hat sub i ) ~=~
|
| 456 |
1 over {4 pi sqrt {alpha sub ix alpha sub iy} }
|
| 457 |
exp left [ -^{{( h vec sub i cdot x hat )} sup 2 over{alpha sub ix}
|
| 458 |
~+~ {( h vec sub i cdot y hat )} sup 2 over{alpha sub iy}} over
|
| 459 |
{( h vec sub i cdot n hat sub p ) sup 2}right ]
|
| 460 |
.EN
|
| 461 |
.EQ I
|
| 462 |
x hat ~=~ y hat~times~n hat sub p
|
| 463 |
.EN
|
| 464 |
.EQ I
|
| 465 |
y hat ~=~ {n hat sub p~times~b vec}over{|| n hat sub p~times~b vec ||}
|
| 466 |
.EN
|
| 467 |
.EQ I
|
| 468 |
alpha sub ix ~=~ a sub 5 sup 2 ~+~ omega sub i over {4 pi}
|
| 469 |
.EN
|
| 470 |
.EQ I
|
| 471 |
alpha sub iy ~=~ a sub 6 sup 2 ~+~ omega sub i over {4 pi}
|
| 472 |
.EN
|
| 473 |
.EQ I
|
| 474 |
g sub s ( q hat sub i ) ~=~
|
| 475 |
1 over {pi sqrt {beta sub ix beta sub iy} }
|
| 476 |
exp left [ {{( c vec sub i cdot x hat )} sup 2 over{beta sub ix}
|
| 477 |
~+~ {( c vec sub i cdot y hat )} sup 2 over{beta sub iy}} over
|
| 478 |
{{( n hat sub p cdot c vec sub i )}sup 2 over
|
| 479 |
{|| c vec sub i ||}sup 2 ~-~ 1}
|
| 480 |
right ]
|
| 481 |
.EN
|
| 482 |
.EQ I
|
| 483 |
c vec sub i ~=~ q hat sub i~-~t hat
|
| 484 |
.EN
|
| 485 |
.EQ I
|
| 486 |
t hat ~=~ {v hat~-~d vec}over{|| v hat~-~d vec ||}
|
| 487 |
.EN
|
| 488 |
.EQ I
|
| 489 |
beta sub ix ~=~ a sub 5 sup 2 ~+~ omega sub i over pi
|
| 490 |
.EN
|
| 491 |
.EQ I
|
| 492 |
beta sub iy ~=~ a sub 6 sup 2 ~+~ omega sub i over pi
|
| 493 |
.EN
|
| 494 |
.NH 2
|
| 495 |
BRDF Types
|
| 496 |
.LP
|
| 497 |
The more general brdf types (plasfunc, plasdata, metfunc, metdata,
|
| 498 |
BRTDfunc) use the same basic formula given in equation (1),
|
| 499 |
but allow the user to specify $bold rho sub si$ and $bold tau sub si$ as
|
| 500 |
either functions or data, instead of using the default
|
| 501 |
Gaussian formulas.
|
| 502 |
Note that only the exponent terms, $f sub s ( q hat sub i )$ and
|
| 503 |
$g sub s ( q hat sub i )$ with the radicals in their denominators
|
| 504 |
are replaced, and not the coefficients preceding them.
|
| 505 |
It is very important that the user give properly normalized functions (ie.
|
| 506 |
functions that integrate to 1 over the hemisphere) to maintain correct
|
| 507 |
energy balance.
|