ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/man/man1/rtrace.1
Revision: 1.7
Committed: Tue Apr 19 01:15:06 2005 UTC (19 years, 1 month ago) by greg
Branch: MAIN
Changes since 1.6: +7 -3 lines
Log Message:
Extensive changes to enable rtrace -oTW option for tracking ray contributions

File Contents

# User Rev Content
1 greg 1.7 .\" RCSid "$Id: rtrace.1,v 1.6 2005/04/14 18:04:12 greg Exp $"
2 greg 1.1 .TH RTRACE 1 10/17/97 RADIANCE
3     .SH NAME
4     rtrace - trace rays in RADIANCE scene
5     .SH SYNOPSIS
6     .B rtrace
7     [
8     .B options
9     ]
10     [
11     .B $EVAR
12     ]
13     [
14     .B @file
15     ]
16     .B octree
17     .br
18     .B "rtrace [ options ] \-defaults"
19     .SH DESCRIPTION
20     .I Rtrace
21     traces rays from the standard input through the RADIANCE scene given by
22     .I octree
23     and sends the results to the standard output.
24     (The octree may be given as the output of a command enclosed in quotes
25     and preceded by a `!'.)\0
26     Input for each ray is:
27    
28     xorg yorg zorg xdir ydir zdir
29    
30     If the direction vector is (0,0,0), a bogus record
31     is printed and the output is flushed if the
32     .I -x
33     value is unset or zero.
34     (See the notes on this option below.)\0
35     This may be useful for programs that run
36     .I rtrace
37     as a separate process.
38     In the second form, the default values
39     for the options (modified by those options present)
40     are printed with a brief explanation.
41     .PP
42     Options may be given on the command line and/or read from the
43     environment and/or read from a file.
44     A command argument beginning with a dollar sign ('$') is immediately
45     replaced by the contents of the given environment variable.
46     A command argument beginning with an at sign ('@') is immediately
47     replaced by the contents of the given file.
48     Most options are followed by one or more arguments, which must be
49     separated from the option and each other by white space.
50     The exceptions to this rule are the boolean options.
51     Normally, the appearance of a boolean option causes a feature to
52     be "toggled", that is switched from off to on or on to off
53     depending on its previous state.
54     Boolean options may also be set
55     explicitly by following them immediately with a '+' or '-', meaning
56     on or off, respectively.
57     Synonyms for '+' are any of the characters "yYtT1", and synonyms
58     for '-' are any of the characters "nNfF0".
59     All other characters will generate an error.
60     .TP 10n
61     .BI -f io
62     Format input according to the character
63     .I i
64     and output according to the character
65     .I o.
66     .I Rtrace
67     understands the following input and output formats: 'a' for
68     ascii, 'f' for single-precision floating point,
69     and 'd' for double-precision floating point.
70     In addition to these three choices, the character 'c' may be used
71     to denote 4-byte floating point (Radiance) color format
72     for the output of values only
73     .I (\-ov
74     option, below).
75     If the output character is missing, the input format is used.
76     .IP
77     Note that there is no space between this option and its argument.
78     .TP
79     .BI -o spec
80     Produce output fields according to
81     .I spec.
82     Characters are interpreted as follows:
83     .IP
84     o origin (input)
85     .IP
86     d direction (normalized)
87     .IP
88     v value (radiance)
89     .IP
90     w weight
91     .IP
92 greg 1.7 W contribution
93     .IP
94 greg 1.1 l effective length of ray
95     .IP
96     L first intersection distance
97     .IP
98 greg 1.2 c local (u,v) coordinates
99     .IP
100 greg 1.1 p point of intersection
101     .IP
102     n normal at intersection (perturbed)
103     .IP
104     N normal at intersection (unperturbed)
105     .IP
106     s surface name
107     .IP
108     m modifier name
109     .IP
110 greg 1.6 M material name
111     .IP
112 greg 1.1 If the letter 't' appears in
113     .I spec,
114     then the fields following will be printed for every ray traced,
115     not just the final result.
116 greg 1.7 If the capital letter 'T' is given instead of 't', then all rays will
117     be reported, including shadow testing rays to light sources.
118 greg 1.1 Spawned rays are indented one tab for each level.
119     .IP
120     Note that there is no space between this option and its argument.
121     .TP
122 greg 1.6 .BI -te \ mod
123 greg 1.1 Append
124 greg 1.6 .I mod
125 greg 1.1 to the trace exclude list,
126     so that it will not be reported by the trace option
127     .I (\-o*t*).
128     Any ray striking an object having
129 greg 1.6 .I mod
130 greg 1.1 as its modifier will not be reported to the standard output with
131     the rest of the rays being traced.
132 greg 1.7 This option has no effect unless either the 't' or 'T'
133     option has been given as part of the output specifier.
134 greg 1.6 Any number of excluded modifiers may be given, but each
135 greg 1.1 must appear in a separate option.
136     .TP
137 greg 1.6 .BI -ti \ mod
138 greg 1.1 Add
139 greg 1.6 .I mod
140 greg 1.1 to the trace include list,
141     so that it will be considered during the indirect calculation.
142     The program can use either an include list or an exclude
143     list, but not both.
144     .TP
145     .BI -tE \ file
146     Same as
147     .I \-te,
148 greg 1.6 except read modifiers to be excluded from
149 greg 1.1 .I file.
150     The RAYPATH environment variable determines which directories are
151     searched for this file.
152 greg 1.6 The modifier names are separated by white space in the file.
153 greg 1.1 .TP
154     .BI -tI \ file
155     Same as
156     .I \-ti,
157 greg 1.6 except read modifiers to be included from
158 greg 1.1 .I file.
159     .TP
160     .BR \-i
161     Boolean switch to compute irradiance rather than radiance values.
162     This only affects the final result, substituting a Lambertian
163     surface and multiplying the radiance by pi.
164     Glass and other transparent surfaces are ignored during this stage.
165     Light sources still appear with their original radiance values,
166     though the
167     .I \-dv
168     option (below) may be used to override this.
169     This option is especially useful in
170     conjunction with ximage(1) for computing illuminance at scene points.
171     .TP
172     .BR \-I
173     Boolean switch to compute irradiance rather than radiance,
174     with the input origin and direction interpreted instead
175     as measurement point and orientation.
176     .TP
177     .BR \-h
178     Boolean switch for information header on output.
179     .TP
180     .BI -x \ res
181     Set the x resolution to
182     .I res.
183     The output will be flushed after every
184     .I res
185     input rays.
186     A value of zero means that no output flushing will take place.
187     .TP
188     .BI -y \ res
189     Set the y resolution to
190     .I res.
191     The program will exit after
192     .I res
193     scanlines have been processed, where a scanline is the number of rays
194     given by the
195     .I \-x
196     option, or 1 if
197     .I \-x
198     is zero.
199     A value of zero means the program will not halt until the end
200     of file is reached.
201     .IP
202     If both
203     .I \-x
204     and
205     .I \-y
206     options are given, a resolution string is printed at the beginning
207     of the output.
208     This is mostly useful for recovering image dimensions with
209     .I pvalue(1),
210     and for creating valid Radiance picture files using the color output
211     format.
212     (See the
213     .I \-f
214     option, above.)
215     .TP
216     .BI -dj \ frac
217     Set the direct jittering to
218     .I frac.
219     A value of zero samples each source at specific sample points
220     (see the
221     .I \-ds
222     option below), giving a smoother but somewhat less accurate
223     rendering.
224     A positive value causes rays to be distributed over each
225     source sample according to its size, resulting in more accurate
226     penumbras.
227     This option should never be greater than 1, and may even
228     cause problems (such as speckle) when the value is smaller.
229     A warning about aiming failure will issued if
230     .I frac
231     is too large.
232     .TP
233     .BI -ds \ frac
234     Set the direct sampling ratio to
235     .I frac.
236     A light source will be subdivided until
237     the width of each sample area divided by the distance
238     to the illuminated point is below this ratio.
239     This assures accuracy in regions close to large area sources
240     at a slight computational expense.
241     A value of zero turns source subdivision off, sending at most one
242     shadow ray to each light source.
243     .TP
244     .BI -dt \ frac
245     Set the direct threshold to
246     .I frac.
247     Shadow testing will stop when the potential contribution of at least
248     the next and at most all remaining light sources is less than
249     this fraction of the accumulated value.
250     (See the
251     .I \-dc
252     option below.)
253     The remaining light source contributions are approximated
254     statistically.
255     A value of zero means that all light sources will be tested for shadow.
256     .TP
257     .BI \-dc \ frac
258     Set the direct certainty to
259     .I frac.
260     A value of one guarantees that the absolute accuracy of the direct calculation
261     will be equal to or better than that given in the
262     .I \-dt
263     specification.
264     A value of zero only insures that all shadow lines resulting in a contrast
265     change greater than the
266     .I \-dt
267     specification will be calculated.
268     .TP
269     .BI -dr \ N
270     Set the number of relays for secondary sources to
271     .I N.
272     A value of 0 means that secondary sources will be ignored.
273     A value of 1 means that sources will be made into first generation
274     secondary sources; a value of 2 means that first generation
275     secondary sources will also be made into second generation secondary
276     sources, and so on.
277     .TP
278     .BI -dp \ D
279     Set the secondary source presampling density to D.
280     This is the number of samples per steradian
281     that will be used to determine ahead of time whether or not
282     it is worth following shadow rays through all the reflections and/or
283     transmissions associated with a secondary source path.
284     A value of 0 means that the full secondary source path will always
285     be tested for shadows if it is tested at all.
286     .TP
287     .BR \-dv
288     Boolean switch for light source visibility.
289     With this switch off, sources will be black when viewed directly
290     although they will still participate in the direct calculation.
291     This option is mostly for the program
292     .I mkillum(1)
293     to avoid inappropriate counting of light sources, but it
294     may also be desirable in conjunction with the
295     .I \-i
296     option.
297     .TP
298     .BI -sj \ frac
299     Set the specular sampling jitter to
300     .I frac.
301     This is the degree to which the highlights are sampled
302     for rough specular materials.
303     A value of one means that all highlights will be fully sampled
304     using distributed ray tracing.
305     A value of zero means that no jittering will take place, and all
306     reflections will appear sharp even when they should be diffuse.
307     .TP
308     .BI -st \ frac
309     Set the specular sampling threshold to
310     .I frac.
311     This is the minimum fraction of reflection or transmission, under which
312     no specular sampling is performed.
313     A value of zero means that highlights will always be sampled by
314     tracing reflected or transmitted rays.
315     A value of one means that specular sampling is never used.
316     Highlights from light sources will always be correct, but
317     reflections from other surfaces will be approximated using an
318     ambient value.
319     A sampling threshold between zero and one offers a compromise between image
320     accuracy and rendering time.
321     .TP
322     .BR -bv
323     Boolean switch for back face visibility.
324     With this switch off, back faces of opaque objects will be invisible
325     to all rays.
326     This is dangerous unless the model was constructed such that
327     all surface normals on opaque objects face outward.
328     Although turning off back face visibility does not save much
329     computation time under most circumstances, it may be useful as a
330     tool for scene debugging, or for seeing through one-sided walls from
331     the outside.
332     This option has no effect on transparent or translucent materials.
333     .TP
334     .BI -av " red grn blu"
335     Set the ambient value to a radiance of
336     .I "red grn blu".
337     This is the final value used in place of an
338     indirect light calculation.
339     If the number of ambient bounces is one or greater and the ambient
340     value weight is non-zero (see
341     .I -aw
342     and
343     .I -ab
344     below), this value may be modified by the computed indirect values
345     to improve overall accuracy.
346     .TP
347     .BI -aw \ N
348     Set the relative weight of the ambient value given with the
349     .I -av
350     option to
351     .I N.
352     As new indirect irradiances are computed, they will modify the
353     default ambient value in a moving average, with the specified weight
354     assigned to the initial value given on the command and all other
355     weights set to 1.
356     If a value of 0 is given with this option, then the initial ambient
357     value is never modified.
358     This is the safest value for scenes with large differences in
359     indirect contributions, such as when both indoor and outdoor
360     (daylight) areas are visible.
361     .TP
362     .BI -ab \ N
363     Set the number of ambient bounces to
364     .I N.
365     This is the maximum number of diffuse bounces
366     computed by the indirect calculation.
367     A value of zero implies no indirect calculation.
368     .TP
369     .BI -ar \ res
370     Set the ambient resolution to
371     .I res.
372     This number will determine the maximum density of ambient values
373     used in interpolation.
374     Error will start to increase on surfaces spaced closer than
375     the scene size divided by the ambient resolution.
376     The maximum ambient value density is the scene size times the
377     ambient accuracy (see the
378     .I \-aa
379     option below) divided by the ambient resolution.
380     The scene size can be determined using
381     .I getinfo(1)
382     with the
383     .I \-d
384     option on the input octree.
385     .TP
386     .BI -aa \ acc
387     Set the ambient accuracy to
388     .I acc.
389     This value will approximately equal the error
390     from indirect illuminance interpolation.
391     A value of zero implies no interpolation.
392     .TP
393     .BI -ad \ N
394     Set the number of ambient divisions to
395     .I N.
396     The error in the Monte Carlo calculation of indirect
397     illuminance will be inversely proportional to the square
398     root of this number.
399     A value of zero implies no indirect calculation.
400     .TP
401     .BI -as \ N
402     Set the number of ambient super-samples to
403     .I N.
404     Super-samples are applied only to the ambient divisions which
405     show a significant change.
406     .TP
407     .BI -af \ fname
408     Set the ambient file to
409     .I fname.
410     This is where indirect illuminance will be stored and retrieved.
411     Normally, indirect illuminance values are kept in memory and
412     lost when the program finishes or dies.
413     By using a file, different invocations can share illuminance
414     values, saving time in the computation.
415     The ambient file is in a machine-independent binary format
416     which can be examined with
417     .I lookamb(1).
418     .IP
419     The ambient file may also be used as a means of communication and
420     data sharing between simultaneously executing processes.
421     The same file may be used by multiple processes, possibly running on
422     different machines and accessing the file via the network (ie.
423     .I nfs(4)).
424     The network lock manager
425     .I lockd(8)
426     is used to insure that this information is used consistently.
427     .IP
428     If any calculation parameters are changed or the scene
429     is modified, the old ambient file should be removed so that
430     the calculation can start over from scratch.
431     For convenience, the original ambient parameters are listed in the
432     header of the ambient file.
433     .I Getinfo(1)
434     may be used to print out this information.
435     .TP
436 greg 1.6 .BI -ae \ mod
437 greg 1.1 Append
438 greg 1.6 .I mod
439 greg 1.1 to the ambient exclude list,
440     so that it will not be considered during the indirect calculation.
441     This is a hack for speeding the indirect computation by
442     ignoring certain objects.
443     Any object having
444 greg 1.6 .I mod
445 greg 1.1 as its modifier will get the default ambient
446     level rather than a calculated value.
447 greg 1.6 Any number of excluded modifiers may be given, but each
448 greg 1.1 must appear in a separate option.
449     .TP
450 greg 1.6 .BI -ai \ mod
451 greg 1.1 Add
452 greg 1.6 .I mod
453 greg 1.1 to the ambient include list,
454     so that it will be considered during the indirect calculation.
455     The program can use either an include list or an exclude
456     list, but not both.
457     .TP
458     .BI -aE \ file
459     Same as
460     .I \-ae,
461 greg 1.6 except read modifiers to be excluded from
462 greg 1.1 .I file.
463     The RAYPATH environment variable determines which directories are
464     searched for this file.
465 greg 1.6 The modifier names are separated by white space in the file.
466 greg 1.1 .TP
467     .BI -aI \ file
468     Same as
469     .I \-ai,
470 greg 1.6 except read modifiers to be included from
471 greg 1.1 .I file.
472     .TP
473     .BI -me " rext gext bext"
474     Set the global medium extinction coefficient to the indicated color,
475     in units of 1/distance (distance in world coordinates).
476     Light will be scattered or absorbed over distance according to
477     this value.
478     The ratio of scattering to total scattering plus absorption is set
479     by the albedo parameter, described below.
480     .TP
481     .BI -ma " ralb galb balb"
482     Set the global medium albedo to the given value between 0\00\00
483     and 1\01\01.
484     A zero value means that all light not transmitted by the medium
485     is absorbed.
486     A unitary value means that all light not transmitted by the medium
487     is scattered in some new direction.
488     The isotropy of scattering is determined by the Heyney-Greenstein
489     parameter, described below.
490     .TP
491     .BI \-mg \ gecc
492     Set the medium Heyney-Greenstein eccentricity parameter to
493     .I gecc.
494     This parameter determines how strongly scattering favors the forward
495     direction.
496     A value of 0 indicates perfectly isotropic scattering.
497     As this parameter approaches 1, scattering tends to prefer the
498     forward direction.
499     .TP
500     .BI \-ms \ sampdist
501     Set the medium sampling distance to
502     .I sampdist,
503     in world coordinate units.
504     During source scattering, this will be the average distance between
505     adjacent samples.
506     A value of 0 means that only one sample will be taken per light
507     source within a given scattering volume.
508     .TP
509     .BI -lr \ N
510     Limit reflections to a maximum of
511     .I N.
512     .TP
513     .BI -lw \ frac
514     Limit the weight of each ray to a minimum of
515     .I frac.
516     During ray-tracing, a record is kept of the final contribution
517     a ray would have to the image.
518     If it is less then the specified minimum, the ray is not traced.
519     .TP
520     .BR -ld
521     Boolean switch to limit ray distance.
522     If this option is set, then rays will only be traced as far as the
523     magnitude of each direction vector.
524     Otherwise, vector magnitude is ignored and rays are traced to infinity.
525     .TP
526     .BI -e \ efile
527     Send error messages and progress reports to
528     .I efile
529     instead of the standard error.
530     .TP
531     .BR \-w
532     Boolean switch to suppress warning messages.
533     .TP
534     .BI \-P \ pfile
535     Execute in a persistent mode, using
536     .I pfile
537     as the control file.
538     Persistent execution means that after reaching end-of-file on
539     its input,
540     .I rtrace
541     will fork a child process that will wait for another
542     .I rtrace
543     command with the same
544     .I \-P
545     option to attach to it.
546     (Note that since the rest of the command line options will be those
547     of the original invocation, it is not necessary to give any arguments
548     besides
549     .I \-P
550     for subsequent calls.)
551     Killing the process is achieved with the
552     .I kill(1)
553     command.
554     (The process ID in the first line of
555     .I pfile
556     may be used to identify the waiting
557     .I rtrace
558     process.)
559     This option may be used with the
560     .I \-fr
561     option of
562     .I pinterp(1)
563     to avoid the cost of starting up
564     .I rtrace
565     many times.
566     .TP
567     .BI \-PP \ pfile
568     Execute in continuous-forking persistent mode, using
569     .I pfile
570     as the control file.
571     The difference between this option and the
572     .I \-P
573     option described above is the creation of multiple duplicate
574     processes to handle any number of attaches.
575     This provides a simple and reliable mechanism of memory sharing
576     on most multiprocessing platforms, since the
577     .I fork(2)
578     system call will share memory on a copy-on-write basis.
579     .SH EXAMPLES
580     To compute radiance values for the rays listed in samples.inp:
581     .IP "" .2i
582     rtrace -ov scene.oct < samples.inp > radiance.out
583     .PP
584     To compute illuminance values at locations selected with the 't'
585     command of
586     .I ximage(1):
587     .IP "" .2i
588     ximage scene.pic | rtrace -h -x 1 -i scene.oct | rcalc -e '$1=47.4*$1+120*$2+11.6*$3'
589     .PP
590     To record the object identifier corresponding to each pixel in an image:
591     .IP "" .2i
592     vwrays -fd scene.pic | rtrace -fda `vwrays -d scene.pic` -os scene.oct
593     .PP
594     To compute an image with an unusual view mapping:
595     .IP "" .2i
596     cnt 640 480 | rcalc -e 'xr:640;yr:480' -f unusual_view.cal | rtrace
597     -x 640 -y 480 -fac scene.oct > unusual.pic
598     .SH ENVIRONMENT
599     RAYPATH the directories to check for auxiliary files.
600     .SH FILES
601 greg 1.5 /tmp/rtXXXXXX common header information for picture sequence
602 greg 1.1 .SH DIAGNOSTICS
603     If the program terminates from an input related error, the exit status
604     will be 1.
605     A system related error results in an exit status of 2.
606     If the program receives a signal that is caught, it will exit with a status
607     of 3.
608     In each case, an error message will be printed to the standard error, or
609     to the file designated by the
610     .I \-e
611     option.
612     .SH AUTHOR
613     Greg Ward
614     .SH "SEE ALSO"
615     getinfo(1), lookamb(1), oconv(1), pfilt(1), pinterp(1),
616 greg 1.4 pvalue(1), rpict(1), rvu(1), vwrays(1), ximage(1)