ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/man/man1/rtrace.1
Revision: 1.6
Committed: Thu Apr 14 18:04:12 2005 UTC (19 years, 1 month ago) by greg
Branch: MAIN
Changes since 1.5: +21 -19 lines
Log Message:
Added -oM option to rtrace to output material

File Contents

# User Rev Content
1 greg 1.6 .\" RCSid "$Id: rtrace.1,v 1.5 2005/02/16 05:40:07 greg Exp $"
2 greg 1.1 .TH RTRACE 1 10/17/97 RADIANCE
3     .SH NAME
4     rtrace - trace rays in RADIANCE scene
5     .SH SYNOPSIS
6     .B rtrace
7     [
8     .B options
9     ]
10     [
11     .B $EVAR
12     ]
13     [
14     .B @file
15     ]
16     .B octree
17     .br
18     .B "rtrace [ options ] \-defaults"
19     .SH DESCRIPTION
20     .I Rtrace
21     traces rays from the standard input through the RADIANCE scene given by
22     .I octree
23     and sends the results to the standard output.
24     (The octree may be given as the output of a command enclosed in quotes
25     and preceded by a `!'.)\0
26     Input for each ray is:
27    
28     xorg yorg zorg xdir ydir zdir
29    
30     If the direction vector is (0,0,0), a bogus record
31     is printed and the output is flushed if the
32     .I -x
33     value is unset or zero.
34     (See the notes on this option below.)\0
35     This may be useful for programs that run
36     .I rtrace
37     as a separate process.
38     In the second form, the default values
39     for the options (modified by those options present)
40     are printed with a brief explanation.
41     .PP
42     Options may be given on the command line and/or read from the
43     environment and/or read from a file.
44     A command argument beginning with a dollar sign ('$') is immediately
45     replaced by the contents of the given environment variable.
46     A command argument beginning with an at sign ('@') is immediately
47     replaced by the contents of the given file.
48     Most options are followed by one or more arguments, which must be
49     separated from the option and each other by white space.
50     The exceptions to this rule are the boolean options.
51     Normally, the appearance of a boolean option causes a feature to
52     be "toggled", that is switched from off to on or on to off
53     depending on its previous state.
54     Boolean options may also be set
55     explicitly by following them immediately with a '+' or '-', meaning
56     on or off, respectively.
57     Synonyms for '+' are any of the characters "yYtT1", and synonyms
58     for '-' are any of the characters "nNfF0".
59     All other characters will generate an error.
60     .TP 10n
61     .BI -f io
62     Format input according to the character
63     .I i
64     and output according to the character
65     .I o.
66     .I Rtrace
67     understands the following input and output formats: 'a' for
68     ascii, 'f' for single-precision floating point,
69     and 'd' for double-precision floating point.
70     In addition to these three choices, the character 'c' may be used
71     to denote 4-byte floating point (Radiance) color format
72     for the output of values only
73     .I (\-ov
74     option, below).
75     If the output character is missing, the input format is used.
76     .IP
77     Note that there is no space between this option and its argument.
78     .TP
79     .BI -o spec
80     Produce output fields according to
81     .I spec.
82     Characters are interpreted as follows:
83     .IP
84     o origin (input)
85     .IP
86     d direction (normalized)
87     .IP
88     v value (radiance)
89     .IP
90     w weight
91     .IP
92     l effective length of ray
93     .IP
94     L first intersection distance
95     .IP
96 greg 1.2 c local (u,v) coordinates
97     .IP
98 greg 1.1 p point of intersection
99     .IP
100     n normal at intersection (perturbed)
101     .IP
102     N normal at intersection (unperturbed)
103     .IP
104     s surface name
105     .IP
106     m modifier name
107     .IP
108 greg 1.6 M material name
109     .IP
110 greg 1.1 If the letter 't' appears in
111     .I spec,
112     then the fields following will be printed for every ray traced,
113     not just the final result.
114     Spawned rays are indented one tab for each level.
115     .IP
116     Note that there is no space between this option and its argument.
117     .TP
118 greg 1.6 .BI -te \ mod
119 greg 1.1 Append
120 greg 1.6 .I mod
121 greg 1.1 to the trace exclude list,
122     so that it will not be reported by the trace option
123     .I (\-o*t*).
124     Any ray striking an object having
125 greg 1.6 .I mod
126 greg 1.1 as its modifier will not be reported to the standard output with
127     the rest of the rays being traced.
128     This option has no effect unless the 't' option has been given as
129     part of the output specifier.
130 greg 1.6 Any number of excluded modifiers may be given, but each
131 greg 1.1 must appear in a separate option.
132     .TP
133 greg 1.6 .BI -ti \ mod
134 greg 1.1 Add
135 greg 1.6 .I mod
136 greg 1.1 to the trace include list,
137     so that it will be considered during the indirect calculation.
138     The program can use either an include list or an exclude
139     list, but not both.
140     .TP
141     .BI -tE \ file
142     Same as
143     .I \-te,
144 greg 1.6 except read modifiers to be excluded from
145 greg 1.1 .I file.
146     The RAYPATH environment variable determines which directories are
147     searched for this file.
148 greg 1.6 The modifier names are separated by white space in the file.
149 greg 1.1 .TP
150     .BI -tI \ file
151     Same as
152     .I \-ti,
153 greg 1.6 except read modifiers to be included from
154 greg 1.1 .I file.
155     .TP
156     .BR \-i
157     Boolean switch to compute irradiance rather than radiance values.
158     This only affects the final result, substituting a Lambertian
159     surface and multiplying the radiance by pi.
160     Glass and other transparent surfaces are ignored during this stage.
161     Light sources still appear with their original radiance values,
162     though the
163     .I \-dv
164     option (below) may be used to override this.
165     This option is especially useful in
166     conjunction with ximage(1) for computing illuminance at scene points.
167     .TP
168     .BR \-I
169     Boolean switch to compute irradiance rather than radiance,
170     with the input origin and direction interpreted instead
171     as measurement point and orientation.
172     .TP
173     .BR \-h
174     Boolean switch for information header on output.
175     .TP
176     .BI -x \ res
177     Set the x resolution to
178     .I res.
179     The output will be flushed after every
180     .I res
181     input rays.
182     A value of zero means that no output flushing will take place.
183     .TP
184     .BI -y \ res
185     Set the y resolution to
186     .I res.
187     The program will exit after
188     .I res
189     scanlines have been processed, where a scanline is the number of rays
190     given by the
191     .I \-x
192     option, or 1 if
193     .I \-x
194     is zero.
195     A value of zero means the program will not halt until the end
196     of file is reached.
197     .IP
198     If both
199     .I \-x
200     and
201     .I \-y
202     options are given, a resolution string is printed at the beginning
203     of the output.
204     This is mostly useful for recovering image dimensions with
205     .I pvalue(1),
206     and for creating valid Radiance picture files using the color output
207     format.
208     (See the
209     .I \-f
210     option, above.)
211     .TP
212     .BI -dj \ frac
213     Set the direct jittering to
214     .I frac.
215     A value of zero samples each source at specific sample points
216     (see the
217     .I \-ds
218     option below), giving a smoother but somewhat less accurate
219     rendering.
220     A positive value causes rays to be distributed over each
221     source sample according to its size, resulting in more accurate
222     penumbras.
223     This option should never be greater than 1, and may even
224     cause problems (such as speckle) when the value is smaller.
225     A warning about aiming failure will issued if
226     .I frac
227     is too large.
228     .TP
229     .BI -ds \ frac
230     Set the direct sampling ratio to
231     .I frac.
232     A light source will be subdivided until
233     the width of each sample area divided by the distance
234     to the illuminated point is below this ratio.
235     This assures accuracy in regions close to large area sources
236     at a slight computational expense.
237     A value of zero turns source subdivision off, sending at most one
238     shadow ray to each light source.
239     .TP
240     .BI -dt \ frac
241     Set the direct threshold to
242     .I frac.
243     Shadow testing will stop when the potential contribution of at least
244     the next and at most all remaining light sources is less than
245     this fraction of the accumulated value.
246     (See the
247     .I \-dc
248     option below.)
249     The remaining light source contributions are approximated
250     statistically.
251     A value of zero means that all light sources will be tested for shadow.
252     .TP
253     .BI \-dc \ frac
254     Set the direct certainty to
255     .I frac.
256     A value of one guarantees that the absolute accuracy of the direct calculation
257     will be equal to or better than that given in the
258     .I \-dt
259     specification.
260     A value of zero only insures that all shadow lines resulting in a contrast
261     change greater than the
262     .I \-dt
263     specification will be calculated.
264     .TP
265     .BI -dr \ N
266     Set the number of relays for secondary sources to
267     .I N.
268     A value of 0 means that secondary sources will be ignored.
269     A value of 1 means that sources will be made into first generation
270     secondary sources; a value of 2 means that first generation
271     secondary sources will also be made into second generation secondary
272     sources, and so on.
273     .TP
274     .BI -dp \ D
275     Set the secondary source presampling density to D.
276     This is the number of samples per steradian
277     that will be used to determine ahead of time whether or not
278     it is worth following shadow rays through all the reflections and/or
279     transmissions associated with a secondary source path.
280     A value of 0 means that the full secondary source path will always
281     be tested for shadows if it is tested at all.
282     .TP
283     .BR \-dv
284     Boolean switch for light source visibility.
285     With this switch off, sources will be black when viewed directly
286     although they will still participate in the direct calculation.
287     This option is mostly for the program
288     .I mkillum(1)
289     to avoid inappropriate counting of light sources, but it
290     may also be desirable in conjunction with the
291     .I \-i
292     option.
293     .TP
294     .BI -sj \ frac
295     Set the specular sampling jitter to
296     .I frac.
297     This is the degree to which the highlights are sampled
298     for rough specular materials.
299     A value of one means that all highlights will be fully sampled
300     using distributed ray tracing.
301     A value of zero means that no jittering will take place, and all
302     reflections will appear sharp even when they should be diffuse.
303     .TP
304     .BI -st \ frac
305     Set the specular sampling threshold to
306     .I frac.
307     This is the minimum fraction of reflection or transmission, under which
308     no specular sampling is performed.
309     A value of zero means that highlights will always be sampled by
310     tracing reflected or transmitted rays.
311     A value of one means that specular sampling is never used.
312     Highlights from light sources will always be correct, but
313     reflections from other surfaces will be approximated using an
314     ambient value.
315     A sampling threshold between zero and one offers a compromise between image
316     accuracy and rendering time.
317     .TP
318     .BR -bv
319     Boolean switch for back face visibility.
320     With this switch off, back faces of opaque objects will be invisible
321     to all rays.
322     This is dangerous unless the model was constructed such that
323     all surface normals on opaque objects face outward.
324     Although turning off back face visibility does not save much
325     computation time under most circumstances, it may be useful as a
326     tool for scene debugging, or for seeing through one-sided walls from
327     the outside.
328     This option has no effect on transparent or translucent materials.
329     .TP
330     .BI -av " red grn blu"
331     Set the ambient value to a radiance of
332     .I "red grn blu".
333     This is the final value used in place of an
334     indirect light calculation.
335     If the number of ambient bounces is one or greater and the ambient
336     value weight is non-zero (see
337     .I -aw
338     and
339     .I -ab
340     below), this value may be modified by the computed indirect values
341     to improve overall accuracy.
342     .TP
343     .BI -aw \ N
344     Set the relative weight of the ambient value given with the
345     .I -av
346     option to
347     .I N.
348     As new indirect irradiances are computed, they will modify the
349     default ambient value in a moving average, with the specified weight
350     assigned to the initial value given on the command and all other
351     weights set to 1.
352     If a value of 0 is given with this option, then the initial ambient
353     value is never modified.
354     This is the safest value for scenes with large differences in
355     indirect contributions, such as when both indoor and outdoor
356     (daylight) areas are visible.
357     .TP
358     .BI -ab \ N
359     Set the number of ambient bounces to
360     .I N.
361     This is the maximum number of diffuse bounces
362     computed by the indirect calculation.
363     A value of zero implies no indirect calculation.
364     .TP
365     .BI -ar \ res
366     Set the ambient resolution to
367     .I res.
368     This number will determine the maximum density of ambient values
369     used in interpolation.
370     Error will start to increase on surfaces spaced closer than
371     the scene size divided by the ambient resolution.
372     The maximum ambient value density is the scene size times the
373     ambient accuracy (see the
374     .I \-aa
375     option below) divided by the ambient resolution.
376     The scene size can be determined using
377     .I getinfo(1)
378     with the
379     .I \-d
380     option on the input octree.
381     .TP
382     .BI -aa \ acc
383     Set the ambient accuracy to
384     .I acc.
385     This value will approximately equal the error
386     from indirect illuminance interpolation.
387     A value of zero implies no interpolation.
388     .TP
389     .BI -ad \ N
390     Set the number of ambient divisions to
391     .I N.
392     The error in the Monte Carlo calculation of indirect
393     illuminance will be inversely proportional to the square
394     root of this number.
395     A value of zero implies no indirect calculation.
396     .TP
397     .BI -as \ N
398     Set the number of ambient super-samples to
399     .I N.
400     Super-samples are applied only to the ambient divisions which
401     show a significant change.
402     .TP
403     .BI -af \ fname
404     Set the ambient file to
405     .I fname.
406     This is where indirect illuminance will be stored and retrieved.
407     Normally, indirect illuminance values are kept in memory and
408     lost when the program finishes or dies.
409     By using a file, different invocations can share illuminance
410     values, saving time in the computation.
411     The ambient file is in a machine-independent binary format
412     which can be examined with
413     .I lookamb(1).
414     .IP
415     The ambient file may also be used as a means of communication and
416     data sharing between simultaneously executing processes.
417     The same file may be used by multiple processes, possibly running on
418     different machines and accessing the file via the network (ie.
419     .I nfs(4)).
420     The network lock manager
421     .I lockd(8)
422     is used to insure that this information is used consistently.
423     .IP
424     If any calculation parameters are changed or the scene
425     is modified, the old ambient file should be removed so that
426     the calculation can start over from scratch.
427     For convenience, the original ambient parameters are listed in the
428     header of the ambient file.
429     .I Getinfo(1)
430     may be used to print out this information.
431     .TP
432 greg 1.6 .BI -ae \ mod
433 greg 1.1 Append
434 greg 1.6 .I mod
435 greg 1.1 to the ambient exclude list,
436     so that it will not be considered during the indirect calculation.
437     This is a hack for speeding the indirect computation by
438     ignoring certain objects.
439     Any object having
440 greg 1.6 .I mod
441 greg 1.1 as its modifier will get the default ambient
442     level rather than a calculated value.
443 greg 1.6 Any number of excluded modifiers may be given, but each
444 greg 1.1 must appear in a separate option.
445     .TP
446 greg 1.6 .BI -ai \ mod
447 greg 1.1 Add
448 greg 1.6 .I mod
449 greg 1.1 to the ambient include list,
450     so that it will be considered during the indirect calculation.
451     The program can use either an include list or an exclude
452     list, but not both.
453     .TP
454     .BI -aE \ file
455     Same as
456     .I \-ae,
457 greg 1.6 except read modifiers to be excluded from
458 greg 1.1 .I file.
459     The RAYPATH environment variable determines which directories are
460     searched for this file.
461 greg 1.6 The modifier names are separated by white space in the file.
462 greg 1.1 .TP
463     .BI -aI \ file
464     Same as
465     .I \-ai,
466 greg 1.6 except read modifiers to be included from
467 greg 1.1 .I file.
468     .TP
469     .BI -me " rext gext bext"
470     Set the global medium extinction coefficient to the indicated color,
471     in units of 1/distance (distance in world coordinates).
472     Light will be scattered or absorbed over distance according to
473     this value.
474     The ratio of scattering to total scattering plus absorption is set
475     by the albedo parameter, described below.
476     .TP
477     .BI -ma " ralb galb balb"
478     Set the global medium albedo to the given value between 0\00\00
479     and 1\01\01.
480     A zero value means that all light not transmitted by the medium
481     is absorbed.
482     A unitary value means that all light not transmitted by the medium
483     is scattered in some new direction.
484     The isotropy of scattering is determined by the Heyney-Greenstein
485     parameter, described below.
486     .TP
487     .BI \-mg \ gecc
488     Set the medium Heyney-Greenstein eccentricity parameter to
489     .I gecc.
490     This parameter determines how strongly scattering favors the forward
491     direction.
492     A value of 0 indicates perfectly isotropic scattering.
493     As this parameter approaches 1, scattering tends to prefer the
494     forward direction.
495     .TP
496     .BI \-ms \ sampdist
497     Set the medium sampling distance to
498     .I sampdist,
499     in world coordinate units.
500     During source scattering, this will be the average distance between
501     adjacent samples.
502     A value of 0 means that only one sample will be taken per light
503     source within a given scattering volume.
504     .TP
505     .BI -lr \ N
506     Limit reflections to a maximum of
507     .I N.
508     .TP
509     .BI -lw \ frac
510     Limit the weight of each ray to a minimum of
511     .I frac.
512     During ray-tracing, a record is kept of the final contribution
513     a ray would have to the image.
514     If it is less then the specified minimum, the ray is not traced.
515     .TP
516     .BR -ld
517     Boolean switch to limit ray distance.
518     If this option is set, then rays will only be traced as far as the
519     magnitude of each direction vector.
520     Otherwise, vector magnitude is ignored and rays are traced to infinity.
521     .TP
522     .BI -e \ efile
523     Send error messages and progress reports to
524     .I efile
525     instead of the standard error.
526     .TP
527     .BR \-w
528     Boolean switch to suppress warning messages.
529     .TP
530     .BI \-P \ pfile
531     Execute in a persistent mode, using
532     .I pfile
533     as the control file.
534     Persistent execution means that after reaching end-of-file on
535     its input,
536     .I rtrace
537     will fork a child process that will wait for another
538     .I rtrace
539     command with the same
540     .I \-P
541     option to attach to it.
542     (Note that since the rest of the command line options will be those
543     of the original invocation, it is not necessary to give any arguments
544     besides
545     .I \-P
546     for subsequent calls.)
547     Killing the process is achieved with the
548     .I kill(1)
549     command.
550     (The process ID in the first line of
551     .I pfile
552     may be used to identify the waiting
553     .I rtrace
554     process.)
555     This option may be used with the
556     .I \-fr
557     option of
558     .I pinterp(1)
559     to avoid the cost of starting up
560     .I rtrace
561     many times.
562     .TP
563     .BI \-PP \ pfile
564     Execute in continuous-forking persistent mode, using
565     .I pfile
566     as the control file.
567     The difference between this option and the
568     .I \-P
569     option described above is the creation of multiple duplicate
570     processes to handle any number of attaches.
571     This provides a simple and reliable mechanism of memory sharing
572     on most multiprocessing platforms, since the
573     .I fork(2)
574     system call will share memory on a copy-on-write basis.
575     .SH EXAMPLES
576     To compute radiance values for the rays listed in samples.inp:
577     .IP "" .2i
578     rtrace -ov scene.oct < samples.inp > radiance.out
579     .PP
580     To compute illuminance values at locations selected with the 't'
581     command of
582     .I ximage(1):
583     .IP "" .2i
584     ximage scene.pic | rtrace -h -x 1 -i scene.oct | rcalc -e '$1=47.4*$1+120*$2+11.6*$3'
585     .PP
586     To record the object identifier corresponding to each pixel in an image:
587     .IP "" .2i
588     vwrays -fd scene.pic | rtrace -fda `vwrays -d scene.pic` -os scene.oct
589     .PP
590     To compute an image with an unusual view mapping:
591     .IP "" .2i
592     cnt 640 480 | rcalc -e 'xr:640;yr:480' -f unusual_view.cal | rtrace
593     -x 640 -y 480 -fac scene.oct > unusual.pic
594     .SH ENVIRONMENT
595     RAYPATH the directories to check for auxiliary files.
596     .SH FILES
597 greg 1.5 /tmp/rtXXXXXX common header information for picture sequence
598 greg 1.1 .SH DIAGNOSTICS
599     If the program terminates from an input related error, the exit status
600     will be 1.
601     A system related error results in an exit status of 2.
602     If the program receives a signal that is caught, it will exit with a status
603     of 3.
604     In each case, an error message will be printed to the standard error, or
605     to the file designated by the
606     .I \-e
607     option.
608     .SH AUTHOR
609     Greg Ward
610     .SH "SEE ALSO"
611     getinfo(1), lookamb(1), oconv(1), pfilt(1), pinterp(1),
612 greg 1.4 pvalue(1), rpict(1), rvu(1), vwrays(1), ximage(1)