ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/man/man1/rtrace.1
Revision: 1.41
Committed: Tue Apr 22 17:12:25 2025 UTC (13 days, 10 hours ago) by greg
Branch: MAIN
Changes since 1.40: +11 -2 lines
Log Message:
feat(rpict,rtrace,rvu,rxpict,rxtrace,rxpiece): Added -e expr and -f file.cal options

File Contents

# User Rev Content
1 greg 1.41 .\" RCSid "$Id: rtrace.1,v 1.40 2023/12/12 16:31:45 greg Exp $"
2 greg 1.1 .TH RTRACE 1 10/17/97 RADIANCE
3     .SH NAME
4     rtrace - trace rays in RADIANCE scene
5     .SH SYNOPSIS
6     .B rtrace
7     [
8     .B options
9     ]
10     [
11     .B $EVAR
12     ]
13     [
14     .B @file
15     ]
16     .B octree
17     .br
18     .B "rtrace [ options ] \-defaults"
19 greg 1.36 .br
20     .B "rtrace \-features [feat1 ..]"
21 greg 1.1 .SH DESCRIPTION
22     .I Rtrace
23     traces rays from the standard input through the RADIANCE scene given by
24     .I octree
25     and sends the results to the standard output.
26     (The octree may be given as the output of a command enclosed in quotes
27     and preceded by a `!'.)\0
28     Input for each ray is:
29    
30     xorg yorg zorg xdir ydir zdir
31    
32     If the direction vector is (0,0,0), a bogus record
33     is printed and the output is flushed if the
34     .I -x
35 greg 1.24 value is one or zero.
36 greg 1.1 (See the notes on this option below.)\0
37     This may be useful for programs that run
38     .I rtrace
39     as a separate process.
40 greg 1.36 .PP
41     In the second form shown above, the default values
42 greg 1.1 for the options (modified by those options present)
43     are printed with a brief explanation.
44     .PP
45 greg 1.36 In the third form, a list of supported features is sent
46     to the standard output, one per line.
47     If additional arguments follow, they are checked for presence in
48     this list.
49     If a feature includes subfeatures, these may be checked as well by
50     specifying:
51     .nf
52    
53     rtrace -features FeatName=subfeat1,subfeat2
54    
55     .fi
56     If any named feature or subfeature is missing, an error is
57     reported and the program returns an error status.
58     If all of the named features are present, a zero status is returned.
59     .PP
60 greg 1.1 Options may be given on the command line and/or read from the
61     environment and/or read from a file.
62     A command argument beginning with a dollar sign ('$') is immediately
63     replaced by the contents of the given environment variable.
64     A command argument beginning with an at sign ('@') is immediately
65     replaced by the contents of the given file.
66     Most options are followed by one or more arguments, which must be
67     separated from the option and each other by white space.
68     The exceptions to this rule are the boolean options.
69     Normally, the appearance of a boolean option causes a feature to
70     be "toggled", that is switched from off to on or on to off
71     depending on its previous state.
72     Boolean options may also be set
73     explicitly by following them immediately with a '+' or '-', meaning
74     on or off, respectively.
75     Synonyms for '+' are any of the characters "yYtT1", and synonyms
76     for '-' are any of the characters "nNfF0".
77     All other characters will generate an error.
78     .TP 10n
79     .BI -f io
80     Format input according to the character
81     .I i
82     and output according to the character
83     .I o.
84     .I Rtrace
85     understands the following input and output formats: 'a' for
86     ascii, 'f' for single-precision floating point,
87     and 'd' for double-precision floating point.
88     In addition to these three choices, the character 'c' may be used
89 greg 1.33 to denote 4-byte RGBE (Radiance) color format
90     for the output of individual color values only, and the
91     .I \-x
92     and
93     .I \-y
94     options should also be specified to create a valid output picture.
95 greg 1.1 If the output character is missing, the input format is used.
96     .IP
97     Note that there is no space between this option and its argument.
98     .TP
99     .BI -o spec
100     Produce output fields according to
101     .I spec.
102     Characters are interpreted as follows:
103     .IP
104     o origin (input)
105     .IP
106     d direction (normalized)
107     .IP
108     v value (radiance)
109     .IP
110 greg 1.14 V contribution (radiance)
111     .IP
112 greg 1.1 w weight
113     .IP
114 greg 1.10 W color coefficient
115 greg 1.7 .IP
116 greg 1.1 l effective length of ray
117     .IP
118     L first intersection distance
119     .IP
120 greg 1.2 c local (u,v) coordinates
121     .IP
122 greg 1.1 p point of intersection
123     .IP
124     n normal at intersection (perturbed)
125     .IP
126     N normal at intersection (unperturbed)
127     .IP
128     s surface name
129     .IP
130     m modifier name
131     .IP
132 greg 1.6 M material name
133     .IP
134 greg 1.31 r mirrored value contribution
135     .IP
136     x unmirrored value contribution
137     .IP
138     R mirrored ray length
139     .IP
140     X unmirrored ray length
141     .IP
142 greg 1.9 ~ tilde (end of trace marker)
143 greg 1.8 .IP
144 greg 1.1 If the letter 't' appears in
145     .I spec,
146     then the fields following will be printed for every ray traced,
147     not just the final result.
148 greg 1.7 If the capital letter 'T' is given instead of 't', then all rays will
149     be reported, including shadow testing rays to light sources.
150 greg 1.1 Spawned rays are indented one tab for each level.
151 greg 1.9 The tilde marker ('~') is a handy way of differentiating the final ray
152     value from daughter values in a traced ray tree, and usually appears
153     right before the 't' or 'T' output flags.
154 greg 1.8 E.g.,
155 greg 1.9 .I \-ov~TmW
156     will emit a tilde followed by a tab at the end of each trace,
157     which can be easily distinguished even in binary output.
158 greg 1.1 .IP
159     Note that there is no space between this option and its argument.
160     .TP
161 greg 1.6 .BI -te \ mod
162 greg 1.1 Append
163 greg 1.6 .I mod
164 greg 1.1 to the trace exclude list,
165     so that it will not be reported by the trace option
166     .I (\-o*t*).
167     Any ray striking an object having
168 greg 1.6 .I mod
169 greg 1.1 as its modifier will not be reported to the standard output with
170     the rest of the rays being traced.
171 greg 1.7 This option has no effect unless either the 't' or 'T'
172     option has been given as part of the output specifier.
173 greg 1.6 Any number of excluded modifiers may be given, but each
174 greg 1.1 must appear in a separate option.
175     .TP
176 greg 1.6 .BI -ti \ mod
177 greg 1.1 Add
178 greg 1.6 .I mod
179 greg 1.1 to the trace include list,
180 greg 1.8 so that it will be reported by the trace option.
181 greg 1.1 The program can use either an include list or an exclude
182     list, but not both.
183     .TP
184     .BI -tE \ file
185     Same as
186     .I \-te,
187 greg 1.6 except read modifiers to be excluded from
188 greg 1.1 .I file.
189     The RAYPATH environment variable determines which directories are
190     searched for this file.
191 greg 1.6 The modifier names are separated by white space in the file.
192 greg 1.1 .TP
193     .BI -tI \ file
194     Same as
195     .I \-ti,
196 greg 1.6 except read modifiers to be included from
197 greg 1.1 .I file.
198     .TP
199     .BR \-i
200     Boolean switch to compute irradiance rather than radiance values.
201     This only affects the final result, substituting a Lambertian
202     surface and multiplying the radiance by pi.
203     Glass and other transparent surfaces are ignored during this stage.
204     Light sources still appear with their original radiance values,
205     though the
206     .I \-dv
207     option (below) may be used to override this.
208     This option is especially useful in
209 greg 1.35 conjunction with ximage(1) for computing irradiance at scene points.
210 greg 1.1 .TP
211 greg 1.13 .BR \-u
212     Boolean switch to control uncorrelated random sampling.
213 greg 1.12 When "off", a low-discrepancy sequence is used, which reduces
214     variance but can result in a brushed appearance in specular highlights.
215     When "on", pure Monte Carlo sampling is used in all calculations.
216     .TP
217 greg 1.1 .BR \-I
218     Boolean switch to compute irradiance rather than radiance,
219     with the input origin and direction interpreted instead
220     as measurement point and orientation.
221     .TP
222     .BR \-h
223     Boolean switch for information header on output.
224     .TP
225     .BI -x \ res
226     Set the x resolution to
227     .I res.
228     The output will be flushed after every
229     .I res
230 greg 1.21 input rays if
231     .I \-y
232     is set to zero.
233     A value of one means that every ray will be flushed, whatever
234     the setting of
235     .I \-y.
236 greg 1.1 A value of zero means that no output flushing will take place.
237     .TP
238     .BI -y \ res
239     Set the y resolution to
240     .I res.
241     The program will exit after
242     .I res
243     scanlines have been processed, where a scanline is the number of rays
244     given by the
245     .I \-x
246     option, or 1 if
247     .I \-x
248     is zero.
249     A value of zero means the program will not halt until the end
250     of file is reached.
251     .IP
252     If both
253     .I \-x
254     and
255     .I \-y
256     options are given, a resolution string is printed at the beginning
257     of the output.
258     This is mostly useful for recovering image dimensions with
259     .I pvalue(1),
260     and for creating valid Radiance picture files using the color output
261     format.
262     (See the
263 greg 1.41 .I \-f\*
264 greg 1.1 option, above.)
265     .TP
266 greg 1.18 .BI -n \ nproc
267     Execute in parallel on
268     .I nproc
269     local processes.
270 greg 1.19 This option is incompatible with the
271 greg 1.18 .I \-P
272     and
273     .I \-PP,
274 greg 1.19 options.
275 greg 1.18 Multiple processes also do not work properly with ray tree output
276     using any of the
277     .I \-o*t*
278     options.
279     There is no benefit from specifying more processes than there are
280     cores available on the system or the
281     .I \-x
282     setting, which forces a wait at each flush.
283     .TP
284 greg 1.41 .BI -f \ source
285     Load definitions from
286     .I source
287     and assign at global level.
288     .TP
289     .BI -e \ expr
290     Set additional definitions from
291     .I expr.
292     .TP
293 greg 1.1 .BI -dj \ frac
294     Set the direct jittering to
295     .I frac.
296     A value of zero samples each source at specific sample points
297     (see the
298     .I \-ds
299     option below), giving a smoother but somewhat less accurate
300     rendering.
301     A positive value causes rays to be distributed over each
302     source sample according to its size, resulting in more accurate
303     penumbras.
304     This option should never be greater than 1, and may even
305     cause problems (such as speckle) when the value is smaller.
306     A warning about aiming failure will issued if
307     .I frac
308     is too large.
309     .TP
310     .BI -ds \ frac
311     Set the direct sampling ratio to
312     .I frac.
313     A light source will be subdivided until
314     the width of each sample area divided by the distance
315     to the illuminated point is below this ratio.
316     This assures accuracy in regions close to large area sources
317     at a slight computational expense.
318     A value of zero turns source subdivision off, sending at most one
319     shadow ray to each light source.
320     .TP
321     .BI -dt \ frac
322     Set the direct threshold to
323     .I frac.
324     Shadow testing will stop when the potential contribution of at least
325     the next and at most all remaining light sources is less than
326     this fraction of the accumulated value.
327     (See the
328     .I \-dc
329     option below.)
330     The remaining light source contributions are approximated
331     statistically.
332     A value of zero means that all light sources will be tested for shadow.
333     .TP
334     .BI \-dc \ frac
335     Set the direct certainty to
336     .I frac.
337     A value of one guarantees that the absolute accuracy of the direct calculation
338     will be equal to or better than that given in the
339     .I \-dt
340     specification.
341     A value of zero only insures that all shadow lines resulting in a contrast
342     change greater than the
343     .I \-dt
344     specification will be calculated.
345     .TP
346     .BI -dr \ N
347 greg 1.35 Set the number of relays for virtual sources to
348 greg 1.1 .I N.
349 greg 1.35 A value of 0 means that virtual sources will be ignored.
350 greg 1.1 A value of 1 means that sources will be made into first generation
351 greg 1.35 virtual sources; a value of 2 means that first generation
352     virtual sources will also be made into second generation virtual
353 greg 1.1 sources, and so on.
354     .TP
355     .BI -dp \ D
356 greg 1.35 Set the virtual source presampling density to D.
357 greg 1.1 This is the number of samples per steradian
358     that will be used to determine ahead of time whether or not
359     it is worth following shadow rays through all the reflections and/or
360 greg 1.35 transmissions associated with a virtual source path.
361     A value of 0 means that the full virtual source path will always
362 greg 1.1 be tested for shadows if it is tested at all.
363     .TP
364     .BR \-dv
365     Boolean switch for light source visibility.
366     With this switch off, sources will be black when viewed directly
367     although they will still participate in the direct calculation.
368     This option is mostly for the program
369     .I mkillum(1)
370     to avoid inappropriate counting of light sources, but it
371     may also be desirable in conjunction with the
372     .I \-i
373     option.
374     .TP
375 greg 1.22 .BI -ss \ samp
376     Set the specular sampling to
377     .I samp.
378     For values less than 1, this is the degree to which the highlights
379     are sampled for rough specular materials.
380     A value greater than one causes multiple ray samples to be sent
381     to reduce noise at a commmesurate cost.
382 greg 1.1 A value of zero means that no jittering will take place, and all
383     reflections will appear sharp even when they should be diffuse.
384     .TP
385     .BI -st \ frac
386     Set the specular sampling threshold to
387     .I frac.
388     This is the minimum fraction of reflection or transmission, under which
389     no specular sampling is performed.
390     A value of zero means that highlights will always be sampled by
391     tracing reflected or transmitted rays.
392     A value of one means that specular sampling is never used.
393     Highlights from light sources will always be correct, but
394     reflections from other surfaces will be approximated using an
395     ambient value.
396     A sampling threshold between zero and one offers a compromise between image
397     accuracy and rendering time.
398     .TP
399     .BR -bv
400     Boolean switch for back face visibility.
401 greg 1.25 With this switch off, back faces of all objects will be invisible
402     to view rays.
403 greg 1.1 This is dangerous unless the model was constructed such that
404 greg 1.25 all surface normals face outward.
405 greg 1.1 Although turning off back face visibility does not save much
406     computation time under most circumstances, it may be useful as a
407     tool for scene debugging, or for seeing through one-sided walls from
408     the outside.
409     .TP
410     .BI -av " red grn blu"
411     Set the ambient value to a radiance of
412     .I "red grn blu".
413     This is the final value used in place of an
414     indirect light calculation.
415     If the number of ambient bounces is one or greater and the ambient
416     value weight is non-zero (see
417     .I -aw
418     and
419     .I -ab
420     below), this value may be modified by the computed indirect values
421     to improve overall accuracy.
422     .TP
423     .BI -aw \ N
424     Set the relative weight of the ambient value given with the
425     .I -av
426     option to
427     .I N.
428     As new indirect irradiances are computed, they will modify the
429     default ambient value in a moving average, with the specified weight
430     assigned to the initial value given on the command and all other
431     weights set to 1.
432     If a value of 0 is given with this option, then the initial ambient
433     value is never modified.
434     This is the safest value for scenes with large differences in
435     indirect contributions, such as when both indoor and outdoor
436     (daylight) areas are visible.
437     .TP
438     .BI -ab \ N
439     Set the number of ambient bounces to
440     .I N.
441 greg 1.26 This is the maximum number of diffuse bounces computed by the indirect
442     calculation. A value of zero implies no indirect calculation.
443     .IP
444 rschregle 1.27 This value defaults to 1 in photon mapping mode (see
445 greg 1.26 .I -ap
446 rschregle 1.27 below), implying that global photon irradiance is always computed via
447 greg 1.26 .I one
448 rschregle 1.27 ambient bounce; this behaviour applies to any positive number of ambient
449     bounces, regardless of the actual value specified. A negative value enables
450     a preview mode that directly visualises the irradiance from the global
451     photon map without any ambient bounces.
452 greg 1.1 .TP
453     .BI -ar \ res
454     Set the ambient resolution to
455     .I res.
456     This number will determine the maximum density of ambient values
457     used in interpolation.
458     Error will start to increase on surfaces spaced closer than
459     the scene size divided by the ambient resolution.
460     The maximum ambient value density is the scene size times the
461     ambient accuracy (see the
462     .I \-aa
463     option below) divided by the ambient resolution.
464     The scene size can be determined using
465     .I getinfo(1)
466     with the
467     .I \-d
468     option on the input octree.
469     .TP
470     .BI -aa \ acc
471     Set the ambient accuracy to
472     .I acc.
473     This value will approximately equal the error
474 greg 1.35 from indirect irradiance interpolation.
475 greg 1.1 A value of zero implies no interpolation.
476     .TP
477     .BI -ad \ N
478     Set the number of ambient divisions to
479     .I N.
480     The error in the Monte Carlo calculation of indirect
481 greg 1.35 irradiance will be inversely proportional to the square
482 greg 1.1 root of this number.
483     A value of zero implies no indirect calculation.
484     .TP
485     .BI -as \ N
486     Set the number of ambient super-samples to
487     .I N.
488     Super-samples are applied only to the ambient divisions which
489     show a significant change.
490     .TP
491     .BI -af \ fname
492     Set the ambient file to
493     .I fname.
494 greg 1.35 This is where indirect irradiance will be stored and retrieved.
495     Normally, indirect irradiance values are kept in memory and
496 greg 1.1 lost when the program finishes or dies.
497 greg 1.35 By using a file, different invocations can share irradiance
498 greg 1.1 values, saving time in the computation.
499     The ambient file is in a machine-independent binary format
500     which can be examined with
501     .I lookamb(1).
502     .IP
503     The ambient file may also be used as a means of communication and
504     data sharing between simultaneously executing processes.
505     The same file may be used by multiple processes, possibly running on
506     different machines and accessing the file via the network (ie.
507     .I nfs(4)).
508     The network lock manager
509     .I lockd(8)
510     is used to insure that this information is used consistently.
511     .IP
512     If any calculation parameters are changed or the scene
513     is modified, the old ambient file should be removed so that
514     the calculation can start over from scratch.
515     For convenience, the original ambient parameters are listed in the
516     header of the ambient file.
517     .I Getinfo(1)
518     may be used to print out this information.
519     .TP
520 greg 1.6 .BI -ae \ mod
521 greg 1.1 Append
522 greg 1.6 .I mod
523 greg 1.1 to the ambient exclude list,
524     so that it will not be considered during the indirect calculation.
525     This is a hack for speeding the indirect computation by
526     ignoring certain objects.
527     Any object having
528 greg 1.6 .I mod
529 greg 1.1 as its modifier will get the default ambient
530     level rather than a calculated value.
531 greg 1.6 Any number of excluded modifiers may be given, but each
532 greg 1.1 must appear in a separate option.
533     .TP
534 greg 1.6 .BI -ai \ mod
535 greg 1.1 Add
536 greg 1.6 .I mod
537 greg 1.1 to the ambient include list,
538     so that it will be considered during the indirect calculation.
539     The program can use either an include list or an exclude
540     list, but not both.
541     .TP
542     .BI -aE \ file
543     Same as
544     .I \-ae,
545 greg 1.6 except read modifiers to be excluded from
546 greg 1.1 .I file.
547     The RAYPATH environment variable determines which directories are
548     searched for this file.
549 greg 1.6 The modifier names are separated by white space in the file.
550 greg 1.1 .TP
551     .BI -aI \ file
552     Same as
553     .I \-ai,
554 greg 1.6 except read modifiers to be included from
555 greg 1.1 .I file.
556     .TP
557 greg 1.26 .BI -ap " file [bwidth1 [bwidth2]]"
558     Enable photon mapping mode. Loads a photon map generated with
559     .I mkpmap(1)
560     from
561     .I file,
562     and evaluates the indirect irradiance depending on the photon type
563     (automagically detected) using density estimates with a bandwidth of
564     .I bwidth1
565     photons, or the default bandwidth if none is specified (a warning will be
566     issued in this case).
567     .IP
568     Global photon irradiance is evaluated as part of the ambient calculation (see
569     .I \-ab
570     above), caustic photon irradiance is evaluated at primary rays, and
571     indirect inscattering in
572     .I mist
573 rschregle 1.29 is accounted for by volume photons. Contribution photons are treated as
574     global photons by
575     .I rtrace.
576 greg 1.26 .IP
577     Additionally specifying
578     .I bwidth2
579     enables bias compensation for the density estimates with a
580     minimum and maximum bandwidth of
581     .I bwidth1
582     and
583     .I bwidth2,
584     respectively.
585     .IP
586     Global photon irradiance may be optionally precomputed by
587     .I mkpmap(1),
588     in which case the bandwidth, if specified, is ignored, as the nearest photon
589     is invariably looked up.
590     .IP
591     Using direct photons replaces the direct calculation with density estimates
592     for debugging and validation of photon emission.
593     .TP
594     .BI -am " frac"
595 rschregle 1.27 Maximum search radius for photon map lookups. Without this option, an
596     initial maximum search radius is estimated for each photon map from the
597     average photon distance to the distribution's centre of gravity. It is then
598     adapted to the photon density in subsequent lookups. This option imposes a
599     global fixed maximum search radius for
600     .I all
601     photon maps, thus defeating the automatic adaptation. It is useful when
602     multiple warnings about short photon lookups are issued. Note that this
603     option does not conflict with the bandwidth specified with the
604     .I \-ap
605     option; the number of photons found will not exceed the latter, but may be
606     lower if the maximum search radius contains fewer photons, thus resulting in
607     short lookups. Setting this radius too large, on the other hand, may
608     degrade performance.
609 greg 1.26 .TP
610 rschregle 1.28 .BI -ac " pagesize"
611     Set the photon cache page size when using out-of-core photon mapping. The
612     photon cache reduces disk I/O incurred by on-demand loading (paging) of
613     photons, and thus increases performance. This
614     is expressed as a (float) multiple of the density estimate bandwidth
615     specified with
616     .I \-ap
617     under the assumption that photon lookups are local to a cache page. Cache
618     performance is sensitive to this parameter: larger pagesizes will reduce the
619     paging frequency at the expense of higher latency when paging does occur.
620     Sensible values are in the range 4 (default) to 16.
621     .TP
622     .BI -aC " cachesize"
623     Set the total number of photons cached when using out-of-core photon
624     mapping, taking into account the pagesize specified by
625     .I \-ac.
626     Note that this is approximate as the number of cache pages is rounded to
627     the nearest prime. This allows adapting the cache to the available physical
628     memory. In conjunction with the
629     .I \-n
630     option, this is the cache size
631     .I per parallel process.
632     Cache performance is less sensitive to this parameter,
633     and reasonable performance can obtained with as few as 10k photons. The
634     default is 1M. This option recognises multiplier suffixes (k = 1e3, M =
635     1e6), both in upper and lower case.
636     .TP
637 greg 1.1 .BI -me " rext gext bext"
638     Set the global medium extinction coefficient to the indicated color,
639     in units of 1/distance (distance in world coordinates).
640     Light will be scattered or absorbed over distance according to
641     this value.
642     The ratio of scattering to total scattering plus absorption is set
643     by the albedo parameter, described below.
644     .TP
645     .BI -ma " ralb galb balb"
646     Set the global medium albedo to the given value between 0\00\00
647     and 1\01\01.
648     A zero value means that all light not transmitted by the medium
649     is absorbed.
650     A unitary value means that all light not transmitted by the medium
651     is scattered in some new direction.
652     The isotropy of scattering is determined by the Heyney-Greenstein
653     parameter, described below.
654     .TP
655     .BI \-mg \ gecc
656     Set the medium Heyney-Greenstein eccentricity parameter to
657     .I gecc.
658     This parameter determines how strongly scattering favors the forward
659     direction.
660     A value of 0 indicates perfectly isotropic scattering.
661     As this parameter approaches 1, scattering tends to prefer the
662     forward direction.
663     .TP
664     .BI \-ms \ sampdist
665     Set the medium sampling distance to
666     .I sampdist,
667     in world coordinate units.
668     During source scattering, this will be the average distance between
669     adjacent samples.
670     A value of 0 means that only one sample will be taken per light
671     source within a given scattering volume.
672     .TP
673     .BI -lr \ N
674     Limit reflections to a maximum of
675 greg 1.20 .I N,
676     if N is a positive integer.
677 greg 1.11 If
678     .I N
679     is zero or negative, then Russian roulette is used for ray
680     termination, and the
681     .I -lw
682     setting (below) must be positive.
683 greg 1.32 If N is a negative integer, then this limits the maximum
684     number of reflections even with Russian roulette.
685 greg 1.11 In scenes with dielectrics and total internal reflection,
686     a setting of 0 (no limit) may cause a stack overflow.
687 greg 1.1 .TP
688     .BI -lw \ frac
689     Limit the weight of each ray to a minimum of
690     .I frac.
691 greg 1.11 During ray-tracing, a record is kept of the estimated contribution
692     (weight) a ray would have in the image.
693     If this weight is less than the specified minimum and the
694     .I -lr
695     setting (above) is positive, the ray is not traced.
696     Otherwise, Russian roulette is used to
697     continue rays with a probability equal to the ray weight
698     divided by the given
699     .I frac.
700 greg 1.1 .TP
701 greg 1.37 .BR \-ld
702 greg 1.1 Boolean switch to limit ray distance.
703     If this option is set, then rays will only be traced as far as the
704     magnitude of each direction vector.
705     Otherwise, vector magnitude is ignored and rays are traced to infinity.
706     .TP
707 greg 1.37 .BI -cs \ Ns
708     Use
709     .I Ns
710     bands for spectral sampling rather than the default RGB calculation space.
711     The maximum setting is controlled by the compiler macro MAXCSAMP, and
712     defaults to 24.
713     Larger values for Ns will be reduced to MAXCSAMP.
714     .TP
715     .BI -cw " nmA nmB"
716     Set extrema to the given wavelengths for spectral sampling.
717     The default is 380 and 780 nanometers.
718     The order specified does not matter.
719     .TP
720     .BR \-co
721     Boolean switch turns on spectral data output if selected.
722     The default is to reduce spectral results to RGB, but see the related
723     .I \-p*
724     options, below.
725     .TP
726     .BI -pc " xr yr xg yg xb yb xw yw"
727     Use the specified chromaticity pairs for output primaries and white
728     point rather than the standard RGB color space.
729     .TP
730     .BR \-pRGB
731     Output standard RGB values (the default).
732     .TP
733     .BR \-pXYZ
734     Output standard CIE XYZ tristimulus values rather than RGB.
735     .TP
736     .BR \-pY
737 greg 1.38 Produce a single output channel corresponding to photopic luminance.
738 greg 1.37 .TP
739     .BR \-pS
740 greg 1.38 Produce a single output channel corresponding to scotopic luminance.
741 greg 1.37 .TP
742     .BR \-pM
743 greg 1.38 Produce a single output channel corresponding to melanopic luminance.
744 greg 1.37 .TP
745 greg 1.1 .BI -e \ efile
746     Send error messages and progress reports to
747     .I efile
748     instead of the standard error.
749     .TP
750     .BR \-w
751     Boolean switch to suppress warning messages.
752     .TP
753     .BI \-P \ pfile
754     Execute in a persistent mode, using
755     .I pfile
756     as the control file.
757     Persistent execution means that after reaching end-of-file on
758     its input,
759     .I rtrace
760     will fork a child process that will wait for another
761     .I rtrace
762     command with the same
763     .I \-P
764     option to attach to it.
765     (Note that since the rest of the command line options will be those
766     of the original invocation, it is not necessary to give any arguments
767     besides
768     .I \-P
769     for subsequent calls.)
770     Killing the process is achieved with the
771     .I kill(1)
772     command.
773     (The process ID in the first line of
774     .I pfile
775     may be used to identify the waiting
776     .I rtrace
777     process.)
778     This option may be used with the
779     .I \-fr
780     option of
781     .I pinterp(1)
782     to avoid the cost of starting up
783     .I rtrace
784     many times.
785     .TP
786     .BI \-PP \ pfile
787     Execute in continuous-forking persistent mode, using
788     .I pfile
789     as the control file.
790     The difference between this option and the
791     .I \-P
792     option described above is the creation of multiple duplicate
793     processes to handle any number of attaches.
794     This provides a simple and reliable mechanism of memory sharing
795     on most multiprocessing platforms, since the
796     .I fork(2)
797     system call will share memory on a copy-on-write basis.
798 greg 1.26 .SH NOTES
799     Photons are generally surface bound (an exception are volume photons), thus
800     the ambient irradiance in photon mapping mode will be biased at positions
801     which do not lie on a surface.
802 greg 1.1 .SH EXAMPLES
803     To compute radiance values for the rays listed in samples.inp:
804     .IP "" .2i
805 greg 1.15 rtrace \-ov scene.oct < samples.inp > radiance.out
806 greg 1.1 .PP
807 greg 1.35 To compute irradiance values at locations selected with the 't'
808 greg 1.1 command of
809     .I ximage(1):
810     .IP "" .2i
811 greg 1.16 ximage scene.hdr | rtrace \-h \-x 1 \-i scene.oct | rcalc \-e '$1=47.4*$1+120*$2+11.6*$3'
812 greg 1.1 .PP
813     To record the object identifier corresponding to each pixel in an image:
814     .IP "" .2i
815 greg 1.16 vwrays \-fd scene.hdr | rtrace \-fda `vwrays \-d scene.hdr` \-os scene.oct
816 greg 1.1 .PP
817     To compute an image with an unusual view mapping:
818     .IP "" .2i
819 greg 1.17 cnt 480 640 | rcalc \-e 'xr:640;yr:480' \-f unusual_view.cal | rtrace
820 greg 1.16 \-x 640 \-y 480 \-fac scene.oct > unusual.hdr
821 greg 1.26 .PP
822 greg 1.35 To compute ambient irradiance in photon mapping mode from a global photon
823 greg 1.26 map global.pm via one ambient bounce, and from a caustic photon map
824     caustic.pm at sensor positions in samples.inp:
825     .IP "" .2i
826     rtrace -h -ov -ab 1 -ap global.pm 50 -ap caustic.pm 50 scene.oct <
827     samples.inp > illum.out
828 greg 1.1 .SH ENVIRONMENT
829     RAYPATH the directories to check for auxiliary files.
830     .SH FILES
831 greg 1.5 /tmp/rtXXXXXX common header information for picture sequence
832 greg 1.1 .SH DIAGNOSTICS
833     If the program terminates from an input related error, the exit status
834     will be 1.
835     A system related error results in an exit status of 2.
836     If the program receives a signal that is caught, it will exit with a status
837     of 3.
838     In each case, an error message will be printed to the standard error, or
839     to the file designated by the
840     .I \-e
841     option.
842     .SH AUTHOR
843     Greg Ward
844     .SH "SEE ALSO"
845 greg 1.39 dctimestep(1), getinfo(1), lookamb(1),
846     mkpmap(1), oconv(1), pfilt(1), pinterp(1),
847 greg 1.40 pvalue(1), rcalc(1), rcomb(1), rcontrib(1), rcrop(1),
848     rmtxop(1), rsplit(1),
849 greg 1.34 rpict(1), rtpict(1), rvu(1), vwrays(1), ximage(1)