ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/man/man1/rtrace.1
Revision: 1.4
Committed: Thu Jan 1 19:31:45 2004 UTC (20 years, 4 months ago) by greg
Branch: MAIN
CVS Tags: rad3R6, rad3R6P1
Changes since 1.3: +2 -2 lines
Log Message:
Renamed rview, lam, calc, and neat to rvu, rlam, icalc, and neaten

File Contents

# User Rev Content
1 greg 1.4 .\" RCSid "$Id: rtrace.1,v 1.3 2003/12/09 15:59:07 greg Exp $"
2 greg 1.1 .TH RTRACE 1 10/17/97 RADIANCE
3     .SH NAME
4     rtrace - trace rays in RADIANCE scene
5     .SH SYNOPSIS
6     .B rtrace
7     [
8     .B options
9     ]
10     [
11     .B $EVAR
12     ]
13     [
14     .B @file
15     ]
16     .B octree
17     .br
18     .B "rtrace [ options ] \-defaults"
19     .SH DESCRIPTION
20     .I Rtrace
21     traces rays from the standard input through the RADIANCE scene given by
22     .I octree
23     and sends the results to the standard output.
24     (The octree may be given as the output of a command enclosed in quotes
25     and preceded by a `!'.)\0
26     Input for each ray is:
27    
28     xorg yorg zorg xdir ydir zdir
29    
30     If the direction vector is (0,0,0), a bogus record
31     is printed and the output is flushed if the
32     .I -x
33     value is unset or zero.
34     (See the notes on this option below.)\0
35     This may be useful for programs that run
36     .I rtrace
37     as a separate process.
38     In the second form, the default values
39     for the options (modified by those options present)
40     are printed with a brief explanation.
41     .PP
42     Options may be given on the command line and/or read from the
43     environment and/or read from a file.
44     A command argument beginning with a dollar sign ('$') is immediately
45     replaced by the contents of the given environment variable.
46     A command argument beginning with an at sign ('@') is immediately
47     replaced by the contents of the given file.
48     Most options are followed by one or more arguments, which must be
49     separated from the option and each other by white space.
50     The exceptions to this rule are the boolean options.
51     Normally, the appearance of a boolean option causes a feature to
52     be "toggled", that is switched from off to on or on to off
53     depending on its previous state.
54     Boolean options may also be set
55     explicitly by following them immediately with a '+' or '-', meaning
56     on or off, respectively.
57     Synonyms for '+' are any of the characters "yYtT1", and synonyms
58     for '-' are any of the characters "nNfF0".
59     All other characters will generate an error.
60     .TP 10n
61     .BI -f io
62     Format input according to the character
63     .I i
64     and output according to the character
65     .I o.
66     .I Rtrace
67     understands the following input and output formats: 'a' for
68     ascii, 'f' for single-precision floating point,
69     and 'd' for double-precision floating point.
70     In addition to these three choices, the character 'c' may be used
71     to denote 4-byte floating point (Radiance) color format
72     for the output of values only
73     .I (\-ov
74     option, below).
75     If the output character is missing, the input format is used.
76     .IP
77     Note that there is no space between this option and its argument.
78     .TP
79     .BI -o spec
80     Produce output fields according to
81     .I spec.
82     Characters are interpreted as follows:
83     .IP
84     o origin (input)
85     .IP
86     d direction (normalized)
87     .IP
88     v value (radiance)
89     .IP
90     w weight
91     .IP
92     l effective length of ray
93     .IP
94     L first intersection distance
95     .IP
96 greg 1.2 c local (u,v) coordinates
97     .IP
98 greg 1.1 p point of intersection
99     .IP
100     n normal at intersection (perturbed)
101     .IP
102     N normal at intersection (unperturbed)
103     .IP
104     s surface name
105     .IP
106     m modifier name
107     .IP
108     If the letter 't' appears in
109     .I spec,
110     then the fields following will be printed for every ray traced,
111     not just the final result.
112     Spawned rays are indented one tab for each level.
113     .IP
114     Note that there is no space between this option and its argument.
115     .TP
116     .BI -te \ mat
117     Append
118     .I mat
119     to the trace exclude list,
120     so that it will not be reported by the trace option
121     .I (\-o*t*).
122     Any ray striking an object having
123     .I mat
124     as its modifier will not be reported to the standard output with
125     the rest of the rays being traced.
126     This option has no effect unless the 't' option has been given as
127     part of the output specifier.
128     Any number of excluded materials may be given, but each
129     must appear in a separate option.
130     .TP
131     .BI -ti \ mat
132     Add
133     .I mat
134     to the trace include list,
135     so that it will be considered during the indirect calculation.
136     The program can use either an include list or an exclude
137     list, but not both.
138     .TP
139     .BI -tE \ file
140     Same as
141     .I \-te,
142     except read materials to be excluded from
143     .I file.
144     The RAYPATH environment variable determines which directories are
145     searched for this file.
146     The material names are separated by white space in the file.
147     .TP
148     .BI -tI \ file
149     Same as
150     .I \-ti,
151     except read materials to be included from
152     .I file.
153     .TP
154     .BR \-i
155     Boolean switch to compute irradiance rather than radiance values.
156     This only affects the final result, substituting a Lambertian
157     surface and multiplying the radiance by pi.
158     Glass and other transparent surfaces are ignored during this stage.
159     Light sources still appear with their original radiance values,
160     though the
161     .I \-dv
162     option (below) may be used to override this.
163     This option is especially useful in
164     conjunction with ximage(1) for computing illuminance at scene points.
165     .TP
166     .BR \-I
167     Boolean switch to compute irradiance rather than radiance,
168     with the input origin and direction interpreted instead
169     as measurement point and orientation.
170     .TP
171     .BR \-h
172     Boolean switch for information header on output.
173     .TP
174     .BI -x \ res
175     Set the x resolution to
176     .I res.
177     The output will be flushed after every
178     .I res
179     input rays.
180     A value of zero means that no output flushing will take place.
181     .TP
182     .BI -y \ res
183     Set the y resolution to
184     .I res.
185     The program will exit after
186     .I res
187     scanlines have been processed, where a scanline is the number of rays
188     given by the
189     .I \-x
190     option, or 1 if
191     .I \-x
192     is zero.
193     A value of zero means the program will not halt until the end
194     of file is reached.
195     .IP
196     If both
197     .I \-x
198     and
199     .I \-y
200     options are given, a resolution string is printed at the beginning
201     of the output.
202     This is mostly useful for recovering image dimensions with
203     .I pvalue(1),
204     and for creating valid Radiance picture files using the color output
205     format.
206     (See the
207     .I \-f
208     option, above.)
209     .TP
210     .BI -dj \ frac
211     Set the direct jittering to
212     .I frac.
213     A value of zero samples each source at specific sample points
214     (see the
215     .I \-ds
216     option below), giving a smoother but somewhat less accurate
217     rendering.
218     A positive value causes rays to be distributed over each
219     source sample according to its size, resulting in more accurate
220     penumbras.
221     This option should never be greater than 1, and may even
222     cause problems (such as speckle) when the value is smaller.
223     A warning about aiming failure will issued if
224     .I frac
225     is too large.
226     .TP
227     .BI -ds \ frac
228     Set the direct sampling ratio to
229     .I frac.
230     A light source will be subdivided until
231     the width of each sample area divided by the distance
232     to the illuminated point is below this ratio.
233     This assures accuracy in regions close to large area sources
234     at a slight computational expense.
235     A value of zero turns source subdivision off, sending at most one
236     shadow ray to each light source.
237     .TP
238     .BI -dt \ frac
239     Set the direct threshold to
240     .I frac.
241     Shadow testing will stop when the potential contribution of at least
242     the next and at most all remaining light sources is less than
243     this fraction of the accumulated value.
244     (See the
245     .I \-dc
246     option below.)
247     The remaining light source contributions are approximated
248     statistically.
249     A value of zero means that all light sources will be tested for shadow.
250     .TP
251     .BI \-dc \ frac
252     Set the direct certainty to
253     .I frac.
254     A value of one guarantees that the absolute accuracy of the direct calculation
255     will be equal to or better than that given in the
256     .I \-dt
257     specification.
258     A value of zero only insures that all shadow lines resulting in a contrast
259     change greater than the
260     .I \-dt
261     specification will be calculated.
262     .TP
263     .BI -dr \ N
264     Set the number of relays for secondary sources to
265     .I N.
266     A value of 0 means that secondary sources will be ignored.
267     A value of 1 means that sources will be made into first generation
268     secondary sources; a value of 2 means that first generation
269     secondary sources will also be made into second generation secondary
270     sources, and so on.
271     .TP
272     .BI -dp \ D
273     Set the secondary source presampling density to D.
274     This is the number of samples per steradian
275     that will be used to determine ahead of time whether or not
276     it is worth following shadow rays through all the reflections and/or
277     transmissions associated with a secondary source path.
278     A value of 0 means that the full secondary source path will always
279     be tested for shadows if it is tested at all.
280     .TP
281     .BR \-dv
282     Boolean switch for light source visibility.
283     With this switch off, sources will be black when viewed directly
284     although they will still participate in the direct calculation.
285     This option is mostly for the program
286     .I mkillum(1)
287     to avoid inappropriate counting of light sources, but it
288     may also be desirable in conjunction with the
289     .I \-i
290     option.
291     .TP
292     .BI -sj \ frac
293     Set the specular sampling jitter to
294     .I frac.
295     This is the degree to which the highlights are sampled
296     for rough specular materials.
297     A value of one means that all highlights will be fully sampled
298     using distributed ray tracing.
299     A value of zero means that no jittering will take place, and all
300     reflections will appear sharp even when they should be diffuse.
301     .TP
302     .BI -st \ frac
303     Set the specular sampling threshold to
304     .I frac.
305     This is the minimum fraction of reflection or transmission, under which
306     no specular sampling is performed.
307     A value of zero means that highlights will always be sampled by
308     tracing reflected or transmitted rays.
309     A value of one means that specular sampling is never used.
310     Highlights from light sources will always be correct, but
311     reflections from other surfaces will be approximated using an
312     ambient value.
313     A sampling threshold between zero and one offers a compromise between image
314     accuracy and rendering time.
315     .TP
316     .BR -bv
317     Boolean switch for back face visibility.
318     With this switch off, back faces of opaque objects will be invisible
319     to all rays.
320     This is dangerous unless the model was constructed such that
321     all surface normals on opaque objects face outward.
322     Although turning off back face visibility does not save much
323     computation time under most circumstances, it may be useful as a
324     tool for scene debugging, or for seeing through one-sided walls from
325     the outside.
326     This option has no effect on transparent or translucent materials.
327     .TP
328     .BI -av " red grn blu"
329     Set the ambient value to a radiance of
330     .I "red grn blu".
331     This is the final value used in place of an
332     indirect light calculation.
333     If the number of ambient bounces is one or greater and the ambient
334     value weight is non-zero (see
335     .I -aw
336     and
337     .I -ab
338     below), this value may be modified by the computed indirect values
339     to improve overall accuracy.
340     .TP
341     .BI -aw \ N
342     Set the relative weight of the ambient value given with the
343     .I -av
344     option to
345     .I N.
346     As new indirect irradiances are computed, they will modify the
347     default ambient value in a moving average, with the specified weight
348     assigned to the initial value given on the command and all other
349     weights set to 1.
350     If a value of 0 is given with this option, then the initial ambient
351     value is never modified.
352     This is the safest value for scenes with large differences in
353     indirect contributions, such as when both indoor and outdoor
354     (daylight) areas are visible.
355     .TP
356     .BI -ab \ N
357     Set the number of ambient bounces to
358     .I N.
359     This is the maximum number of diffuse bounces
360     computed by the indirect calculation.
361     A value of zero implies no indirect calculation.
362     .TP
363     .BI -ar \ res
364     Set the ambient resolution to
365     .I res.
366     This number will determine the maximum density of ambient values
367     used in interpolation.
368     Error will start to increase on surfaces spaced closer than
369     the scene size divided by the ambient resolution.
370     The maximum ambient value density is the scene size times the
371     ambient accuracy (see the
372     .I \-aa
373     option below) divided by the ambient resolution.
374     The scene size can be determined using
375     .I getinfo(1)
376     with the
377     .I \-d
378     option on the input octree.
379     .TP
380     .BI -aa \ acc
381     Set the ambient accuracy to
382     .I acc.
383     This value will approximately equal the error
384     from indirect illuminance interpolation.
385     A value of zero implies no interpolation.
386     .TP
387     .BI -ad \ N
388     Set the number of ambient divisions to
389     .I N.
390     The error in the Monte Carlo calculation of indirect
391     illuminance will be inversely proportional to the square
392     root of this number.
393     A value of zero implies no indirect calculation.
394     .TP
395     .BI -as \ N
396     Set the number of ambient super-samples to
397     .I N.
398     Super-samples are applied only to the ambient divisions which
399     show a significant change.
400     .TP
401     .BI -af \ fname
402     Set the ambient file to
403     .I fname.
404     This is where indirect illuminance will be stored and retrieved.
405     Normally, indirect illuminance values are kept in memory and
406     lost when the program finishes or dies.
407     By using a file, different invocations can share illuminance
408     values, saving time in the computation.
409     The ambient file is in a machine-independent binary format
410     which can be examined with
411     .I lookamb(1).
412     .IP
413     The ambient file may also be used as a means of communication and
414     data sharing between simultaneously executing processes.
415     The same file may be used by multiple processes, possibly running on
416     different machines and accessing the file via the network (ie.
417     .I nfs(4)).
418     The network lock manager
419     .I lockd(8)
420     is used to insure that this information is used consistently.
421     .IP
422     If any calculation parameters are changed or the scene
423     is modified, the old ambient file should be removed so that
424     the calculation can start over from scratch.
425     For convenience, the original ambient parameters are listed in the
426     header of the ambient file.
427     .I Getinfo(1)
428     may be used to print out this information.
429     .TP
430     .BI -ae \ mat
431     Append
432     .I mat
433     to the ambient exclude list,
434     so that it will not be considered during the indirect calculation.
435     This is a hack for speeding the indirect computation by
436     ignoring certain objects.
437     Any object having
438     .I mat
439     as its modifier will get the default ambient
440     level rather than a calculated value.
441     Any number of excluded materials may be given, but each
442     must appear in a separate option.
443     .TP
444     .BI -ai \ mat
445     Add
446     .I mat
447     to the ambient include list,
448     so that it will be considered during the indirect calculation.
449     The program can use either an include list or an exclude
450     list, but not both.
451     .TP
452     .BI -aE \ file
453     Same as
454     .I \-ae,
455     except read materials to be excluded from
456     .I file.
457     The RAYPATH environment variable determines which directories are
458     searched for this file.
459     The material names are separated by white space in the file.
460     .TP
461     .BI -aI \ file
462     Same as
463     .I \-ai,
464     except read materials to be included from
465     .I file.
466     .TP
467     .BI -me " rext gext bext"
468     Set the global medium extinction coefficient to the indicated color,
469     in units of 1/distance (distance in world coordinates).
470     Light will be scattered or absorbed over distance according to
471     this value.
472     The ratio of scattering to total scattering plus absorption is set
473     by the albedo parameter, described below.
474     .TP
475     .BI -ma " ralb galb balb"
476     Set the global medium albedo to the given value between 0\00\00
477     and 1\01\01.
478     A zero value means that all light not transmitted by the medium
479     is absorbed.
480     A unitary value means that all light not transmitted by the medium
481     is scattered in some new direction.
482     The isotropy of scattering is determined by the Heyney-Greenstein
483     parameter, described below.
484     .TP
485     .BI \-mg \ gecc
486     Set the medium Heyney-Greenstein eccentricity parameter to
487     .I gecc.
488     This parameter determines how strongly scattering favors the forward
489     direction.
490     A value of 0 indicates perfectly isotropic scattering.
491     As this parameter approaches 1, scattering tends to prefer the
492     forward direction.
493     .TP
494     .BI \-ms \ sampdist
495     Set the medium sampling distance to
496     .I sampdist,
497     in world coordinate units.
498     During source scattering, this will be the average distance between
499     adjacent samples.
500     A value of 0 means that only one sample will be taken per light
501     source within a given scattering volume.
502     .TP
503     .BI -lr \ N
504     Limit reflections to a maximum of
505     .I N.
506     .TP
507     .BI -lw \ frac
508     Limit the weight of each ray to a minimum of
509     .I frac.
510     During ray-tracing, a record is kept of the final contribution
511     a ray would have to the image.
512     If it is less then the specified minimum, the ray is not traced.
513     .TP
514     .BR -ld
515     Boolean switch to limit ray distance.
516     If this option is set, then rays will only be traced as far as the
517     magnitude of each direction vector.
518     Otherwise, vector magnitude is ignored and rays are traced to infinity.
519     .TP
520     .BI -e \ efile
521     Send error messages and progress reports to
522     .I efile
523     instead of the standard error.
524     .TP
525     .BR \-w
526     Boolean switch to suppress warning messages.
527     .TP
528     .BI \-P \ pfile
529     Execute in a persistent mode, using
530     .I pfile
531     as the control file.
532     Persistent execution means that after reaching end-of-file on
533     its input,
534     .I rtrace
535     will fork a child process that will wait for another
536     .I rtrace
537     command with the same
538     .I \-P
539     option to attach to it.
540     (Note that since the rest of the command line options will be those
541     of the original invocation, it is not necessary to give any arguments
542     besides
543     .I \-P
544     for subsequent calls.)
545     Killing the process is achieved with the
546     .I kill(1)
547     command.
548     (The process ID in the first line of
549     .I pfile
550     may be used to identify the waiting
551     .I rtrace
552     process.)
553     This option may be used with the
554     .I \-fr
555     option of
556     .I pinterp(1)
557     to avoid the cost of starting up
558     .I rtrace
559     many times.
560     .TP
561     .BI \-PP \ pfile
562     Execute in continuous-forking persistent mode, using
563     .I pfile
564     as the control file.
565     The difference between this option and the
566     .I \-P
567     option described above is the creation of multiple duplicate
568     processes to handle any number of attaches.
569     This provides a simple and reliable mechanism of memory sharing
570     on most multiprocessing platforms, since the
571     .I fork(2)
572     system call will share memory on a copy-on-write basis.
573     .SH EXAMPLES
574     To compute radiance values for the rays listed in samples.inp:
575     .IP "" .2i
576     rtrace -ov scene.oct < samples.inp > radiance.out
577     .PP
578     To compute illuminance values at locations selected with the 't'
579     command of
580     .I ximage(1):
581     .IP "" .2i
582     ximage scene.pic | rtrace -h -x 1 -i scene.oct | rcalc -e '$1=47.4*$1+120*$2+11.6*$3'
583     .PP
584     To record the object identifier corresponding to each pixel in an image:
585     .IP "" .2i
586     vwrays -fd scene.pic | rtrace -fda `vwrays -d scene.pic` -os scene.oct
587     .PP
588     To compute an image with an unusual view mapping:
589     .IP "" .2i
590     cnt 640 480 | rcalc -e 'xr:640;yr:480' -f unusual_view.cal | rtrace
591     -x 640 -y 480 -fac scene.oct > unusual.pic
592     .SH ENVIRONMENT
593     RAYPATH the directories to check for auxiliary files.
594     .SH FILES
595     /usr/tmp/rtXXXXXX common header information for picture sequence
596     .SH DIAGNOSTICS
597     If the program terminates from an input related error, the exit status
598     will be 1.
599     A system related error results in an exit status of 2.
600     If the program receives a signal that is caught, it will exit with a status
601     of 3.
602     In each case, an error message will be printed to the standard error, or
603     to the file designated by the
604     .I \-e
605     option.
606     .SH AUTHOR
607     Greg Ward
608     .SH "SEE ALSO"
609     getinfo(1), lookamb(1), oconv(1), pfilt(1), pinterp(1),
610 greg 1.4 pvalue(1), rpict(1), rvu(1), vwrays(1), ximage(1)