ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/man/man1/rtrace.1
Revision: 1.38
Committed: Wed Nov 15 19:23:37 2023 UTC (17 months, 2 weeks ago) by greg
Branch: MAIN
Changes since 1.37: +4 -7 lines
Log Message:
docs: Made note that outputs for -pY, -pS, and -pM are luminance values

File Contents

# User Rev Content
1 greg 1.38 .\" RCSid "$Id: rtrace.1,v 1.37 2023/11/15 18:02:52 greg Exp $"
2 greg 1.1 .TH RTRACE 1 10/17/97 RADIANCE
3     .SH NAME
4     rtrace - trace rays in RADIANCE scene
5     .SH SYNOPSIS
6     .B rtrace
7     [
8     .B options
9     ]
10     [
11     .B $EVAR
12     ]
13     [
14     .B @file
15     ]
16     .B octree
17     .br
18     .B "rtrace [ options ] \-defaults"
19 greg 1.36 .br
20     .B "rtrace \-features [feat1 ..]"
21 greg 1.1 .SH DESCRIPTION
22     .I Rtrace
23     traces rays from the standard input through the RADIANCE scene given by
24     .I octree
25     and sends the results to the standard output.
26     (The octree may be given as the output of a command enclosed in quotes
27     and preceded by a `!'.)\0
28     Input for each ray is:
29    
30     xorg yorg zorg xdir ydir zdir
31    
32     If the direction vector is (0,0,0), a bogus record
33     is printed and the output is flushed if the
34     .I -x
35 greg 1.24 value is one or zero.
36 greg 1.1 (See the notes on this option below.)\0
37     This may be useful for programs that run
38     .I rtrace
39     as a separate process.
40 greg 1.36 .PP
41     In the second form shown above, the default values
42 greg 1.1 for the options (modified by those options present)
43     are printed with a brief explanation.
44     .PP
45 greg 1.36 In the third form, a list of supported features is sent
46     to the standard output, one per line.
47     If additional arguments follow, they are checked for presence in
48     this list.
49     If a feature includes subfeatures, these may be checked as well by
50     specifying:
51     .nf
52    
53     rtrace -features FeatName=subfeat1,subfeat2
54    
55     .fi
56     If any named feature or subfeature is missing, an error is
57     reported and the program returns an error status.
58     If all of the named features are present, a zero status is returned.
59     .PP
60 greg 1.1 Options may be given on the command line and/or read from the
61     environment and/or read from a file.
62     A command argument beginning with a dollar sign ('$') is immediately
63     replaced by the contents of the given environment variable.
64     A command argument beginning with an at sign ('@') is immediately
65     replaced by the contents of the given file.
66     Most options are followed by one or more arguments, which must be
67     separated from the option and each other by white space.
68     The exceptions to this rule are the boolean options.
69     Normally, the appearance of a boolean option causes a feature to
70     be "toggled", that is switched from off to on or on to off
71     depending on its previous state.
72     Boolean options may also be set
73     explicitly by following them immediately with a '+' or '-', meaning
74     on or off, respectively.
75     Synonyms for '+' are any of the characters "yYtT1", and synonyms
76     for '-' are any of the characters "nNfF0".
77     All other characters will generate an error.
78     .TP 10n
79     .BI -f io
80     Format input according to the character
81     .I i
82     and output according to the character
83     .I o.
84     .I Rtrace
85     understands the following input and output formats: 'a' for
86     ascii, 'f' for single-precision floating point,
87     and 'd' for double-precision floating point.
88     In addition to these three choices, the character 'c' may be used
89 greg 1.33 to denote 4-byte RGBE (Radiance) color format
90     for the output of individual color values only, and the
91     .I \-x
92     and
93     .I \-y
94     options should also be specified to create a valid output picture.
95 greg 1.1 If the output character is missing, the input format is used.
96     .IP
97     Note that there is no space between this option and its argument.
98     .TP
99     .BI -o spec
100     Produce output fields according to
101     .I spec.
102     Characters are interpreted as follows:
103     .IP
104     o origin (input)
105     .IP
106     d direction (normalized)
107     .IP
108     v value (radiance)
109     .IP
110 greg 1.14 V contribution (radiance)
111     .IP
112 greg 1.1 w weight
113     .IP
114 greg 1.10 W color coefficient
115 greg 1.7 .IP
116 greg 1.1 l effective length of ray
117     .IP
118     L first intersection distance
119     .IP
120 greg 1.2 c local (u,v) coordinates
121     .IP
122 greg 1.1 p point of intersection
123     .IP
124     n normal at intersection (perturbed)
125     .IP
126     N normal at intersection (unperturbed)
127     .IP
128     s surface name
129     .IP
130     m modifier name
131     .IP
132 greg 1.6 M material name
133     .IP
134 greg 1.31 r mirrored value contribution
135     .IP
136     x unmirrored value contribution
137     .IP
138     R mirrored ray length
139     .IP
140     X unmirrored ray length
141     .IP
142 greg 1.9 ~ tilde (end of trace marker)
143 greg 1.8 .IP
144 greg 1.1 If the letter 't' appears in
145     .I spec,
146     then the fields following will be printed for every ray traced,
147     not just the final result.
148 greg 1.7 If the capital letter 'T' is given instead of 't', then all rays will
149     be reported, including shadow testing rays to light sources.
150 greg 1.1 Spawned rays are indented one tab for each level.
151 greg 1.9 The tilde marker ('~') is a handy way of differentiating the final ray
152     value from daughter values in a traced ray tree, and usually appears
153     right before the 't' or 'T' output flags.
154 greg 1.8 E.g.,
155 greg 1.9 .I \-ov~TmW
156     will emit a tilde followed by a tab at the end of each trace,
157     which can be easily distinguished even in binary output.
158 greg 1.1 .IP
159     Note that there is no space between this option and its argument.
160     .TP
161 greg 1.6 .BI -te \ mod
162 greg 1.1 Append
163 greg 1.6 .I mod
164 greg 1.1 to the trace exclude list,
165     so that it will not be reported by the trace option
166     .I (\-o*t*).
167     Any ray striking an object having
168 greg 1.6 .I mod
169 greg 1.1 as its modifier will not be reported to the standard output with
170     the rest of the rays being traced.
171 greg 1.7 This option has no effect unless either the 't' or 'T'
172     option has been given as part of the output specifier.
173 greg 1.6 Any number of excluded modifiers may be given, but each
174 greg 1.1 must appear in a separate option.
175     .TP
176 greg 1.6 .BI -ti \ mod
177 greg 1.1 Add
178 greg 1.6 .I mod
179 greg 1.1 to the trace include list,
180 greg 1.8 so that it will be reported by the trace option.
181 greg 1.1 The program can use either an include list or an exclude
182     list, but not both.
183     .TP
184     .BI -tE \ file
185     Same as
186     .I \-te,
187 greg 1.6 except read modifiers to be excluded from
188 greg 1.1 .I file.
189     The RAYPATH environment variable determines which directories are
190     searched for this file.
191 greg 1.6 The modifier names are separated by white space in the file.
192 greg 1.1 .TP
193     .BI -tI \ file
194     Same as
195     .I \-ti,
196 greg 1.6 except read modifiers to be included from
197 greg 1.1 .I file.
198     .TP
199     .BR \-i
200     Boolean switch to compute irradiance rather than radiance values.
201     This only affects the final result, substituting a Lambertian
202     surface and multiplying the radiance by pi.
203     Glass and other transparent surfaces are ignored during this stage.
204     Light sources still appear with their original radiance values,
205     though the
206     .I \-dv
207     option (below) may be used to override this.
208     This option is especially useful in
209 greg 1.35 conjunction with ximage(1) for computing irradiance at scene points.
210 greg 1.1 .TP
211 greg 1.13 .BR \-u
212     Boolean switch to control uncorrelated random sampling.
213 greg 1.12 When "off", a low-discrepancy sequence is used, which reduces
214     variance but can result in a brushed appearance in specular highlights.
215     When "on", pure Monte Carlo sampling is used in all calculations.
216     .TP
217 greg 1.1 .BR \-I
218     Boolean switch to compute irradiance rather than radiance,
219     with the input origin and direction interpreted instead
220     as measurement point and orientation.
221     .TP
222     .BR \-h
223     Boolean switch for information header on output.
224     .TP
225     .BI -x \ res
226     Set the x resolution to
227     .I res.
228     The output will be flushed after every
229     .I res
230 greg 1.21 input rays if
231     .I \-y
232     is set to zero.
233     A value of one means that every ray will be flushed, whatever
234     the setting of
235     .I \-y.
236 greg 1.1 A value of zero means that no output flushing will take place.
237     .TP
238     .BI -y \ res
239     Set the y resolution to
240     .I res.
241     The program will exit after
242     .I res
243     scanlines have been processed, where a scanline is the number of rays
244     given by the
245     .I \-x
246     option, or 1 if
247     .I \-x
248     is zero.
249     A value of zero means the program will not halt until the end
250     of file is reached.
251     .IP
252     If both
253     .I \-x
254     and
255     .I \-y
256     options are given, a resolution string is printed at the beginning
257     of the output.
258     This is mostly useful for recovering image dimensions with
259     .I pvalue(1),
260     and for creating valid Radiance picture files using the color output
261     format.
262     (See the
263     .I \-f
264     option, above.)
265     .TP
266 greg 1.18 .BI -n \ nproc
267     Execute in parallel on
268     .I nproc
269     local processes.
270 greg 1.19 This option is incompatible with the
271 greg 1.18 .I \-P
272     and
273     .I \-PP,
274 greg 1.19 options.
275 greg 1.18 Multiple processes also do not work properly with ray tree output
276     using any of the
277     .I \-o*t*
278     options.
279     There is no benefit from specifying more processes than there are
280     cores available on the system or the
281     .I \-x
282     setting, which forces a wait at each flush.
283     .TP
284 greg 1.1 .BI -dj \ frac
285     Set the direct jittering to
286     .I frac.
287     A value of zero samples each source at specific sample points
288     (see the
289     .I \-ds
290     option below), giving a smoother but somewhat less accurate
291     rendering.
292     A positive value causes rays to be distributed over each
293     source sample according to its size, resulting in more accurate
294     penumbras.
295     This option should never be greater than 1, and may even
296     cause problems (such as speckle) when the value is smaller.
297     A warning about aiming failure will issued if
298     .I frac
299     is too large.
300     .TP
301     .BI -ds \ frac
302     Set the direct sampling ratio to
303     .I frac.
304     A light source will be subdivided until
305     the width of each sample area divided by the distance
306     to the illuminated point is below this ratio.
307     This assures accuracy in regions close to large area sources
308     at a slight computational expense.
309     A value of zero turns source subdivision off, sending at most one
310     shadow ray to each light source.
311     .TP
312     .BI -dt \ frac
313     Set the direct threshold to
314     .I frac.
315     Shadow testing will stop when the potential contribution of at least
316     the next and at most all remaining light sources is less than
317     this fraction of the accumulated value.
318     (See the
319     .I \-dc
320     option below.)
321     The remaining light source contributions are approximated
322     statistically.
323     A value of zero means that all light sources will be tested for shadow.
324     .TP
325     .BI \-dc \ frac
326     Set the direct certainty to
327     .I frac.
328     A value of one guarantees that the absolute accuracy of the direct calculation
329     will be equal to or better than that given in the
330     .I \-dt
331     specification.
332     A value of zero only insures that all shadow lines resulting in a contrast
333     change greater than the
334     .I \-dt
335     specification will be calculated.
336     .TP
337     .BI -dr \ N
338 greg 1.35 Set the number of relays for virtual sources to
339 greg 1.1 .I N.
340 greg 1.35 A value of 0 means that virtual sources will be ignored.
341 greg 1.1 A value of 1 means that sources will be made into first generation
342 greg 1.35 virtual sources; a value of 2 means that first generation
343     virtual sources will also be made into second generation virtual
344 greg 1.1 sources, and so on.
345     .TP
346     .BI -dp \ D
347 greg 1.35 Set the virtual source presampling density to D.
348 greg 1.1 This is the number of samples per steradian
349     that will be used to determine ahead of time whether or not
350     it is worth following shadow rays through all the reflections and/or
351 greg 1.35 transmissions associated with a virtual source path.
352     A value of 0 means that the full virtual source path will always
353 greg 1.1 be tested for shadows if it is tested at all.
354     .TP
355     .BR \-dv
356     Boolean switch for light source visibility.
357     With this switch off, sources will be black when viewed directly
358     although they will still participate in the direct calculation.
359     This option is mostly for the program
360     .I mkillum(1)
361     to avoid inappropriate counting of light sources, but it
362     may also be desirable in conjunction with the
363     .I \-i
364     option.
365     .TP
366 greg 1.22 .BI -ss \ samp
367     Set the specular sampling to
368     .I samp.
369     For values less than 1, this is the degree to which the highlights
370     are sampled for rough specular materials.
371     A value greater than one causes multiple ray samples to be sent
372     to reduce noise at a commmesurate cost.
373 greg 1.1 A value of zero means that no jittering will take place, and all
374     reflections will appear sharp even when they should be diffuse.
375     .TP
376     .BI -st \ frac
377     Set the specular sampling threshold to
378     .I frac.
379     This is the minimum fraction of reflection or transmission, under which
380     no specular sampling is performed.
381     A value of zero means that highlights will always be sampled by
382     tracing reflected or transmitted rays.
383     A value of one means that specular sampling is never used.
384     Highlights from light sources will always be correct, but
385     reflections from other surfaces will be approximated using an
386     ambient value.
387     A sampling threshold between zero and one offers a compromise between image
388     accuracy and rendering time.
389     .TP
390     .BR -bv
391     Boolean switch for back face visibility.
392 greg 1.25 With this switch off, back faces of all objects will be invisible
393     to view rays.
394 greg 1.1 This is dangerous unless the model was constructed such that
395 greg 1.25 all surface normals face outward.
396 greg 1.1 Although turning off back face visibility does not save much
397     computation time under most circumstances, it may be useful as a
398     tool for scene debugging, or for seeing through one-sided walls from
399     the outside.
400     .TP
401     .BI -av " red grn blu"
402     Set the ambient value to a radiance of
403     .I "red grn blu".
404     This is the final value used in place of an
405     indirect light calculation.
406     If the number of ambient bounces is one or greater and the ambient
407     value weight is non-zero (see
408     .I -aw
409     and
410     .I -ab
411     below), this value may be modified by the computed indirect values
412     to improve overall accuracy.
413     .TP
414     .BI -aw \ N
415     Set the relative weight of the ambient value given with the
416     .I -av
417     option to
418     .I N.
419     As new indirect irradiances are computed, they will modify the
420     default ambient value in a moving average, with the specified weight
421     assigned to the initial value given on the command and all other
422     weights set to 1.
423     If a value of 0 is given with this option, then the initial ambient
424     value is never modified.
425     This is the safest value for scenes with large differences in
426     indirect contributions, such as when both indoor and outdoor
427     (daylight) areas are visible.
428     .TP
429     .BI -ab \ N
430     Set the number of ambient bounces to
431     .I N.
432 greg 1.26 This is the maximum number of diffuse bounces computed by the indirect
433     calculation. A value of zero implies no indirect calculation.
434     .IP
435 rschregle 1.27 This value defaults to 1 in photon mapping mode (see
436 greg 1.26 .I -ap
437 rschregle 1.27 below), implying that global photon irradiance is always computed via
438 greg 1.26 .I one
439 rschregle 1.27 ambient bounce; this behaviour applies to any positive number of ambient
440     bounces, regardless of the actual value specified. A negative value enables
441     a preview mode that directly visualises the irradiance from the global
442     photon map without any ambient bounces.
443 greg 1.1 .TP
444     .BI -ar \ res
445     Set the ambient resolution to
446     .I res.
447     This number will determine the maximum density of ambient values
448     used in interpolation.
449     Error will start to increase on surfaces spaced closer than
450     the scene size divided by the ambient resolution.
451     The maximum ambient value density is the scene size times the
452     ambient accuracy (see the
453     .I \-aa
454     option below) divided by the ambient resolution.
455     The scene size can be determined using
456     .I getinfo(1)
457     with the
458     .I \-d
459     option on the input octree.
460     .TP
461     .BI -aa \ acc
462     Set the ambient accuracy to
463     .I acc.
464     This value will approximately equal the error
465 greg 1.35 from indirect irradiance interpolation.
466 greg 1.1 A value of zero implies no interpolation.
467     .TP
468     .BI -ad \ N
469     Set the number of ambient divisions to
470     .I N.
471     The error in the Monte Carlo calculation of indirect
472 greg 1.35 irradiance will be inversely proportional to the square
473 greg 1.1 root of this number.
474     A value of zero implies no indirect calculation.
475     .TP
476     .BI -as \ N
477     Set the number of ambient super-samples to
478     .I N.
479     Super-samples are applied only to the ambient divisions which
480     show a significant change.
481     .TP
482     .BI -af \ fname
483     Set the ambient file to
484     .I fname.
485 greg 1.35 This is where indirect irradiance will be stored and retrieved.
486     Normally, indirect irradiance values are kept in memory and
487 greg 1.1 lost when the program finishes or dies.
488 greg 1.35 By using a file, different invocations can share irradiance
489 greg 1.1 values, saving time in the computation.
490     The ambient file is in a machine-independent binary format
491     which can be examined with
492     .I lookamb(1).
493     .IP
494     The ambient file may also be used as a means of communication and
495     data sharing between simultaneously executing processes.
496     The same file may be used by multiple processes, possibly running on
497     different machines and accessing the file via the network (ie.
498     .I nfs(4)).
499     The network lock manager
500     .I lockd(8)
501     is used to insure that this information is used consistently.
502     .IP
503     If any calculation parameters are changed or the scene
504     is modified, the old ambient file should be removed so that
505     the calculation can start over from scratch.
506     For convenience, the original ambient parameters are listed in the
507     header of the ambient file.
508     .I Getinfo(1)
509     may be used to print out this information.
510     .TP
511 greg 1.6 .BI -ae \ mod
512 greg 1.1 Append
513 greg 1.6 .I mod
514 greg 1.1 to the ambient exclude list,
515     so that it will not be considered during the indirect calculation.
516     This is a hack for speeding the indirect computation by
517     ignoring certain objects.
518     Any object having
519 greg 1.6 .I mod
520 greg 1.1 as its modifier will get the default ambient
521     level rather than a calculated value.
522 greg 1.6 Any number of excluded modifiers may be given, but each
523 greg 1.1 must appear in a separate option.
524     .TP
525 greg 1.6 .BI -ai \ mod
526 greg 1.1 Add
527 greg 1.6 .I mod
528 greg 1.1 to the ambient include list,
529     so that it will be considered during the indirect calculation.
530     The program can use either an include list or an exclude
531     list, but not both.
532     .TP
533     .BI -aE \ file
534     Same as
535     .I \-ae,
536 greg 1.6 except read modifiers to be excluded from
537 greg 1.1 .I file.
538     The RAYPATH environment variable determines which directories are
539     searched for this file.
540 greg 1.6 The modifier names are separated by white space in the file.
541 greg 1.1 .TP
542     .BI -aI \ file
543     Same as
544     .I \-ai,
545 greg 1.6 except read modifiers to be included from
546 greg 1.1 .I file.
547     .TP
548 greg 1.26 .BI -ap " file [bwidth1 [bwidth2]]"
549     Enable photon mapping mode. Loads a photon map generated with
550     .I mkpmap(1)
551     from
552     .I file,
553     and evaluates the indirect irradiance depending on the photon type
554     (automagically detected) using density estimates with a bandwidth of
555     .I bwidth1
556     photons, or the default bandwidth if none is specified (a warning will be
557     issued in this case).
558     .IP
559     Global photon irradiance is evaluated as part of the ambient calculation (see
560     .I \-ab
561     above), caustic photon irradiance is evaluated at primary rays, and
562     indirect inscattering in
563     .I mist
564 rschregle 1.29 is accounted for by volume photons. Contribution photons are treated as
565     global photons by
566     .I rtrace.
567 greg 1.26 .IP
568     Additionally specifying
569     .I bwidth2
570     enables bias compensation for the density estimates with a
571     minimum and maximum bandwidth of
572     .I bwidth1
573     and
574     .I bwidth2,
575     respectively.
576     .IP
577     Global photon irradiance may be optionally precomputed by
578     .I mkpmap(1),
579     in which case the bandwidth, if specified, is ignored, as the nearest photon
580     is invariably looked up.
581     .IP
582     Using direct photons replaces the direct calculation with density estimates
583     for debugging and validation of photon emission.
584     .TP
585     .BI -am " frac"
586 rschregle 1.27 Maximum search radius for photon map lookups. Without this option, an
587     initial maximum search radius is estimated for each photon map from the
588     average photon distance to the distribution's centre of gravity. It is then
589     adapted to the photon density in subsequent lookups. This option imposes a
590     global fixed maximum search radius for
591     .I all
592     photon maps, thus defeating the automatic adaptation. It is useful when
593     multiple warnings about short photon lookups are issued. Note that this
594     option does not conflict with the bandwidth specified with the
595     .I \-ap
596     option; the number of photons found will not exceed the latter, but may be
597     lower if the maximum search radius contains fewer photons, thus resulting in
598     short lookups. Setting this radius too large, on the other hand, may
599     degrade performance.
600 greg 1.26 .TP
601 rschregle 1.28 .BI -ac " pagesize"
602     Set the photon cache page size when using out-of-core photon mapping. The
603     photon cache reduces disk I/O incurred by on-demand loading (paging) of
604     photons, and thus increases performance. This
605     is expressed as a (float) multiple of the density estimate bandwidth
606     specified with
607     .I \-ap
608     under the assumption that photon lookups are local to a cache page. Cache
609     performance is sensitive to this parameter: larger pagesizes will reduce the
610     paging frequency at the expense of higher latency when paging does occur.
611     Sensible values are in the range 4 (default) to 16.
612     .TP
613     .BI -aC " cachesize"
614     Set the total number of photons cached when using out-of-core photon
615     mapping, taking into account the pagesize specified by
616     .I \-ac.
617     Note that this is approximate as the number of cache pages is rounded to
618     the nearest prime. This allows adapting the cache to the available physical
619     memory. In conjunction with the
620     .I \-n
621     option, this is the cache size
622     .I per parallel process.
623     Cache performance is less sensitive to this parameter,
624     and reasonable performance can obtained with as few as 10k photons. The
625     default is 1M. This option recognises multiplier suffixes (k = 1e3, M =
626     1e6), both in upper and lower case.
627     .TP
628 greg 1.1 .BI -me " rext gext bext"
629     Set the global medium extinction coefficient to the indicated color,
630     in units of 1/distance (distance in world coordinates).
631     Light will be scattered or absorbed over distance according to
632     this value.
633     The ratio of scattering to total scattering plus absorption is set
634     by the albedo parameter, described below.
635     .TP
636     .BI -ma " ralb galb balb"
637     Set the global medium albedo to the given value between 0\00\00
638     and 1\01\01.
639     A zero value means that all light not transmitted by the medium
640     is absorbed.
641     A unitary value means that all light not transmitted by the medium
642     is scattered in some new direction.
643     The isotropy of scattering is determined by the Heyney-Greenstein
644     parameter, described below.
645     .TP
646     .BI \-mg \ gecc
647     Set the medium Heyney-Greenstein eccentricity parameter to
648     .I gecc.
649     This parameter determines how strongly scattering favors the forward
650     direction.
651     A value of 0 indicates perfectly isotropic scattering.
652     As this parameter approaches 1, scattering tends to prefer the
653     forward direction.
654     .TP
655     .BI \-ms \ sampdist
656     Set the medium sampling distance to
657     .I sampdist,
658     in world coordinate units.
659     During source scattering, this will be the average distance between
660     adjacent samples.
661     A value of 0 means that only one sample will be taken per light
662     source within a given scattering volume.
663     .TP
664     .BI -lr \ N
665     Limit reflections to a maximum of
666 greg 1.20 .I N,
667     if N is a positive integer.
668 greg 1.11 If
669     .I N
670     is zero or negative, then Russian roulette is used for ray
671     termination, and the
672     .I -lw
673     setting (below) must be positive.
674 greg 1.32 If N is a negative integer, then this limits the maximum
675     number of reflections even with Russian roulette.
676 greg 1.11 In scenes with dielectrics and total internal reflection,
677     a setting of 0 (no limit) may cause a stack overflow.
678 greg 1.1 .TP
679     .BI -lw \ frac
680     Limit the weight of each ray to a minimum of
681     .I frac.
682 greg 1.11 During ray-tracing, a record is kept of the estimated contribution
683     (weight) a ray would have in the image.
684     If this weight is less than the specified minimum and the
685     .I -lr
686     setting (above) is positive, the ray is not traced.
687     Otherwise, Russian roulette is used to
688     continue rays with a probability equal to the ray weight
689     divided by the given
690     .I frac.
691 greg 1.1 .TP
692 greg 1.37 .BR \-ld
693 greg 1.1 Boolean switch to limit ray distance.
694     If this option is set, then rays will only be traced as far as the
695     magnitude of each direction vector.
696     Otherwise, vector magnitude is ignored and rays are traced to infinity.
697     .TP
698 greg 1.37 .BI -cs \ Ns
699     Use
700     .I Ns
701     bands for spectral sampling rather than the default RGB calculation space.
702     The maximum setting is controlled by the compiler macro MAXCSAMP, and
703     defaults to 24.
704     Larger values for Ns will be reduced to MAXCSAMP.
705     .TP
706     .BI -cw " nmA nmB"
707     Set extrema to the given wavelengths for spectral sampling.
708     The default is 380 and 780 nanometers.
709     The order specified does not matter.
710     .TP
711     .BR \-co
712     Boolean switch turns on spectral data output if selected.
713     The default is to reduce spectral results to RGB, but see the related
714     .I \-p*
715     options, below.
716     .TP
717     .BI -pc " xr yr xg yg xb yb xw yw"
718     Use the specified chromaticity pairs for output primaries and white
719     point rather than the standard RGB color space.
720     .TP
721     .BR \-pRGB
722     Output standard RGB values (the default).
723     .TP
724     .BR \-pXYZ
725     Output standard CIE XYZ tristimulus values rather than RGB.
726     .TP
727     .BR \-pY
728 greg 1.38 Produce a single output channel corresponding to photopic luminance.
729 greg 1.37 .TP
730     .BR \-pS
731 greg 1.38 Produce a single output channel corresponding to scotopic luminance.
732 greg 1.37 .TP
733     .BR \-pM
734 greg 1.38 Produce a single output channel corresponding to melanopic luminance.
735 greg 1.37 .TP
736 greg 1.1 .BI -e \ efile
737     Send error messages and progress reports to
738     .I efile
739     instead of the standard error.
740     .TP
741     .BR \-w
742     Boolean switch to suppress warning messages.
743     .TP
744     .BI \-P \ pfile
745     Execute in a persistent mode, using
746     .I pfile
747     as the control file.
748     Persistent execution means that after reaching end-of-file on
749     its input,
750     .I rtrace
751     will fork a child process that will wait for another
752     .I rtrace
753     command with the same
754     .I \-P
755     option to attach to it.
756     (Note that since the rest of the command line options will be those
757     of the original invocation, it is not necessary to give any arguments
758     besides
759     .I \-P
760     for subsequent calls.)
761     Killing the process is achieved with the
762     .I kill(1)
763     command.
764     (The process ID in the first line of
765     .I pfile
766     may be used to identify the waiting
767     .I rtrace
768     process.)
769     This option may be used with the
770     .I \-fr
771     option of
772     .I pinterp(1)
773     to avoid the cost of starting up
774     .I rtrace
775     many times.
776     .TP
777     .BI \-PP \ pfile
778     Execute in continuous-forking persistent mode, using
779     .I pfile
780     as the control file.
781     The difference between this option and the
782     .I \-P
783     option described above is the creation of multiple duplicate
784     processes to handle any number of attaches.
785     This provides a simple and reliable mechanism of memory sharing
786     on most multiprocessing platforms, since the
787     .I fork(2)
788     system call will share memory on a copy-on-write basis.
789 greg 1.26 .SH NOTES
790     Photons are generally surface bound (an exception are volume photons), thus
791     the ambient irradiance in photon mapping mode will be biased at positions
792     which do not lie on a surface.
793 greg 1.1 .SH EXAMPLES
794     To compute radiance values for the rays listed in samples.inp:
795     .IP "" .2i
796 greg 1.15 rtrace \-ov scene.oct < samples.inp > radiance.out
797 greg 1.1 .PP
798 greg 1.35 To compute irradiance values at locations selected with the 't'
799 greg 1.1 command of
800     .I ximage(1):
801     .IP "" .2i
802 greg 1.16 ximage scene.hdr | rtrace \-h \-x 1 \-i scene.oct | rcalc \-e '$1=47.4*$1+120*$2+11.6*$3'
803 greg 1.1 .PP
804     To record the object identifier corresponding to each pixel in an image:
805     .IP "" .2i
806 greg 1.16 vwrays \-fd scene.hdr | rtrace \-fda `vwrays \-d scene.hdr` \-os scene.oct
807 greg 1.1 .PP
808     To compute an image with an unusual view mapping:
809     .IP "" .2i
810 greg 1.17 cnt 480 640 | rcalc \-e 'xr:640;yr:480' \-f unusual_view.cal | rtrace
811 greg 1.16 \-x 640 \-y 480 \-fac scene.oct > unusual.hdr
812 greg 1.26 .PP
813 greg 1.35 To compute ambient irradiance in photon mapping mode from a global photon
814 greg 1.26 map global.pm via one ambient bounce, and from a caustic photon map
815     caustic.pm at sensor positions in samples.inp:
816     .IP "" .2i
817     rtrace -h -ov -ab 1 -ap global.pm 50 -ap caustic.pm 50 scene.oct <
818     samples.inp > illum.out
819 greg 1.1 .SH ENVIRONMENT
820     RAYPATH the directories to check for auxiliary files.
821     .SH FILES
822 greg 1.5 /tmp/rtXXXXXX common header information for picture sequence
823 greg 1.1 .SH DIAGNOSTICS
824     If the program terminates from an input related error, the exit status
825     will be 1.
826     A system related error results in an exit status of 2.
827     If the program receives a signal that is caught, it will exit with a status
828     of 3.
829     In each case, an error message will be printed to the standard error, or
830     to the file designated by the
831     .I \-e
832     option.
833     .SH AUTHOR
834     Greg Ward
835     .SH "SEE ALSO"
836 greg 1.26 getinfo(1), lookamb(1), mkpmap(1), oconv(1), pfilt(1), pinterp(1),
837 greg 1.34 pvalue(1), rcontrib(1), rsplit(1),
838     rpict(1), rtpict(1), rvu(1), vwrays(1), ximage(1)