ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/man/man1/rtrace.1
Revision: 1.32
Committed: Fri Jan 11 21:12:24 2019 UTC (6 years, 4 months ago) by greg
Branch: MAIN
Changes since 1.31: +3 -3 lines
Log Message:
Fixed incorrect wording on -lr option

File Contents

# User Rev Content
1 greg 1.32 .\" RCSid "$Id: rtrace.1,v 1.31 2018/11/13 19:58:33 greg Exp $"
2 greg 1.1 .TH RTRACE 1 10/17/97 RADIANCE
3     .SH NAME
4     rtrace - trace rays in RADIANCE scene
5     .SH SYNOPSIS
6     .B rtrace
7     [
8     .B options
9     ]
10     [
11     .B $EVAR
12     ]
13     [
14     .B @file
15     ]
16     .B octree
17     .br
18     .B "rtrace [ options ] \-defaults"
19     .SH DESCRIPTION
20     .I Rtrace
21     traces rays from the standard input through the RADIANCE scene given by
22     .I octree
23     and sends the results to the standard output.
24     (The octree may be given as the output of a command enclosed in quotes
25     and preceded by a `!'.)\0
26     Input for each ray is:
27    
28     xorg yorg zorg xdir ydir zdir
29    
30     If the direction vector is (0,0,0), a bogus record
31     is printed and the output is flushed if the
32     .I -x
33 greg 1.24 value is one or zero.
34 greg 1.1 (See the notes on this option below.)\0
35     This may be useful for programs that run
36     .I rtrace
37     as a separate process.
38     In the second form, the default values
39     for the options (modified by those options present)
40     are printed with a brief explanation.
41     .PP
42     Options may be given on the command line and/or read from the
43     environment and/or read from a file.
44     A command argument beginning with a dollar sign ('$') is immediately
45     replaced by the contents of the given environment variable.
46     A command argument beginning with an at sign ('@') is immediately
47     replaced by the contents of the given file.
48     Most options are followed by one or more arguments, which must be
49     separated from the option and each other by white space.
50     The exceptions to this rule are the boolean options.
51     Normally, the appearance of a boolean option causes a feature to
52     be "toggled", that is switched from off to on or on to off
53     depending on its previous state.
54     Boolean options may also be set
55     explicitly by following them immediately with a '+' or '-', meaning
56     on or off, respectively.
57     Synonyms for '+' are any of the characters "yYtT1", and synonyms
58     for '-' are any of the characters "nNfF0".
59     All other characters will generate an error.
60     .TP 10n
61     .BI -f io
62     Format input according to the character
63     .I i
64     and output according to the character
65     .I o.
66     .I Rtrace
67     understands the following input and output formats: 'a' for
68     ascii, 'f' for single-precision floating point,
69     and 'd' for double-precision floating point.
70     In addition to these three choices, the character 'c' may be used
71     to denote 4-byte floating point (Radiance) color format
72     for the output of values only
73     .I (\-ov
74     option, below).
75     If the output character is missing, the input format is used.
76     .IP
77     Note that there is no space between this option and its argument.
78     .TP
79     .BI -o spec
80     Produce output fields according to
81     .I spec.
82     Characters are interpreted as follows:
83     .IP
84     o origin (input)
85     .IP
86     d direction (normalized)
87     .IP
88     v value (radiance)
89     .IP
90 greg 1.14 V contribution (radiance)
91     .IP
92 greg 1.1 w weight
93     .IP
94 greg 1.10 W color coefficient
95 greg 1.7 .IP
96 greg 1.1 l effective length of ray
97     .IP
98     L first intersection distance
99     .IP
100 greg 1.2 c local (u,v) coordinates
101     .IP
102 greg 1.1 p point of intersection
103     .IP
104     n normal at intersection (perturbed)
105     .IP
106     N normal at intersection (unperturbed)
107     .IP
108     s surface name
109     .IP
110     m modifier name
111     .IP
112 greg 1.6 M material name
113     .IP
114 greg 1.31 r mirrored value contribution
115     .IP
116     x unmirrored value contribution
117     .IP
118     R mirrored ray length
119     .IP
120     X unmirrored ray length
121     .IP
122 greg 1.9 ~ tilde (end of trace marker)
123 greg 1.8 .IP
124 greg 1.1 If the letter 't' appears in
125     .I spec,
126     then the fields following will be printed for every ray traced,
127     not just the final result.
128 greg 1.7 If the capital letter 'T' is given instead of 't', then all rays will
129     be reported, including shadow testing rays to light sources.
130 greg 1.1 Spawned rays are indented one tab for each level.
131 greg 1.9 The tilde marker ('~') is a handy way of differentiating the final ray
132     value from daughter values in a traced ray tree, and usually appears
133     right before the 't' or 'T' output flags.
134 greg 1.8 E.g.,
135 greg 1.9 .I \-ov~TmW
136     will emit a tilde followed by a tab at the end of each trace,
137     which can be easily distinguished even in binary output.
138 greg 1.1 .IP
139     Note that there is no space between this option and its argument.
140     .TP
141 greg 1.6 .BI -te \ mod
142 greg 1.1 Append
143 greg 1.6 .I mod
144 greg 1.1 to the trace exclude list,
145     so that it will not be reported by the trace option
146     .I (\-o*t*).
147     Any ray striking an object having
148 greg 1.6 .I mod
149 greg 1.1 as its modifier will not be reported to the standard output with
150     the rest of the rays being traced.
151 greg 1.7 This option has no effect unless either the 't' or 'T'
152     option has been given as part of the output specifier.
153 greg 1.6 Any number of excluded modifiers may be given, but each
154 greg 1.1 must appear in a separate option.
155     .TP
156 greg 1.6 .BI -ti \ mod
157 greg 1.1 Add
158 greg 1.6 .I mod
159 greg 1.1 to the trace include list,
160 greg 1.8 so that it will be reported by the trace option.
161 greg 1.1 The program can use either an include list or an exclude
162     list, but not both.
163     .TP
164     .BI -tE \ file
165     Same as
166     .I \-te,
167 greg 1.6 except read modifiers to be excluded from
168 greg 1.1 .I file.
169     The RAYPATH environment variable determines which directories are
170     searched for this file.
171 greg 1.6 The modifier names are separated by white space in the file.
172 greg 1.1 .TP
173     .BI -tI \ file
174     Same as
175     .I \-ti,
176 greg 1.6 except read modifiers to be included from
177 greg 1.1 .I file.
178     .TP
179     .BR \-i
180     Boolean switch to compute irradiance rather than radiance values.
181     This only affects the final result, substituting a Lambertian
182     surface and multiplying the radiance by pi.
183     Glass and other transparent surfaces are ignored during this stage.
184     Light sources still appear with their original radiance values,
185     though the
186     .I \-dv
187     option (below) may be used to override this.
188     This option is especially useful in
189     conjunction with ximage(1) for computing illuminance at scene points.
190     .TP
191 greg 1.13 .BR \-u
192     Boolean switch to control uncorrelated random sampling.
193 greg 1.12 When "off", a low-discrepancy sequence is used, which reduces
194     variance but can result in a brushed appearance in specular highlights.
195     When "on", pure Monte Carlo sampling is used in all calculations.
196     .TP
197 greg 1.1 .BR \-I
198     Boolean switch to compute irradiance rather than radiance,
199     with the input origin and direction interpreted instead
200     as measurement point and orientation.
201     .TP
202     .BR \-h
203     Boolean switch for information header on output.
204     .TP
205     .BI -x \ res
206     Set the x resolution to
207     .I res.
208     The output will be flushed after every
209     .I res
210 greg 1.21 input rays if
211     .I \-y
212     is set to zero.
213     A value of one means that every ray will be flushed, whatever
214     the setting of
215     .I \-y.
216 greg 1.1 A value of zero means that no output flushing will take place.
217     .TP
218     .BI -y \ res
219     Set the y resolution to
220     .I res.
221     The program will exit after
222     .I res
223     scanlines have been processed, where a scanline is the number of rays
224     given by the
225     .I \-x
226     option, or 1 if
227     .I \-x
228     is zero.
229     A value of zero means the program will not halt until the end
230     of file is reached.
231     .IP
232     If both
233     .I \-x
234     and
235     .I \-y
236     options are given, a resolution string is printed at the beginning
237     of the output.
238     This is mostly useful for recovering image dimensions with
239     .I pvalue(1),
240     and for creating valid Radiance picture files using the color output
241     format.
242     (See the
243     .I \-f
244     option, above.)
245     .TP
246 greg 1.18 .BI -n \ nproc
247     Execute in parallel on
248     .I nproc
249     local processes.
250 greg 1.19 This option is incompatible with the
251 greg 1.18 .I \-P
252     and
253     .I \-PP,
254 greg 1.19 options.
255 greg 1.18 Multiple processes also do not work properly with ray tree output
256     using any of the
257     .I \-o*t*
258     options.
259     There is no benefit from specifying more processes than there are
260     cores available on the system or the
261     .I \-x
262     setting, which forces a wait at each flush.
263     .TP
264 greg 1.1 .BI -dj \ frac
265     Set the direct jittering to
266     .I frac.
267     A value of zero samples each source at specific sample points
268     (see the
269     .I \-ds
270     option below), giving a smoother but somewhat less accurate
271     rendering.
272     A positive value causes rays to be distributed over each
273     source sample according to its size, resulting in more accurate
274     penumbras.
275     This option should never be greater than 1, and may even
276     cause problems (such as speckle) when the value is smaller.
277     A warning about aiming failure will issued if
278     .I frac
279     is too large.
280     .TP
281     .BI -ds \ frac
282     Set the direct sampling ratio to
283     .I frac.
284     A light source will be subdivided until
285     the width of each sample area divided by the distance
286     to the illuminated point is below this ratio.
287     This assures accuracy in regions close to large area sources
288     at a slight computational expense.
289     A value of zero turns source subdivision off, sending at most one
290     shadow ray to each light source.
291     .TP
292     .BI -dt \ frac
293     Set the direct threshold to
294     .I frac.
295     Shadow testing will stop when the potential contribution of at least
296     the next and at most all remaining light sources is less than
297     this fraction of the accumulated value.
298     (See the
299     .I \-dc
300     option below.)
301     The remaining light source contributions are approximated
302     statistically.
303     A value of zero means that all light sources will be tested for shadow.
304     .TP
305     .BI \-dc \ frac
306     Set the direct certainty to
307     .I frac.
308     A value of one guarantees that the absolute accuracy of the direct calculation
309     will be equal to or better than that given in the
310     .I \-dt
311     specification.
312     A value of zero only insures that all shadow lines resulting in a contrast
313     change greater than the
314     .I \-dt
315     specification will be calculated.
316     .TP
317     .BI -dr \ N
318     Set the number of relays for secondary sources to
319     .I N.
320     A value of 0 means that secondary sources will be ignored.
321     A value of 1 means that sources will be made into first generation
322     secondary sources; a value of 2 means that first generation
323     secondary sources will also be made into second generation secondary
324     sources, and so on.
325     .TP
326     .BI -dp \ D
327     Set the secondary source presampling density to D.
328     This is the number of samples per steradian
329     that will be used to determine ahead of time whether or not
330     it is worth following shadow rays through all the reflections and/or
331     transmissions associated with a secondary source path.
332     A value of 0 means that the full secondary source path will always
333     be tested for shadows if it is tested at all.
334     .TP
335     .BR \-dv
336     Boolean switch for light source visibility.
337     With this switch off, sources will be black when viewed directly
338     although they will still participate in the direct calculation.
339     This option is mostly for the program
340     .I mkillum(1)
341     to avoid inappropriate counting of light sources, but it
342     may also be desirable in conjunction with the
343     .I \-i
344     option.
345     .TP
346 greg 1.22 .BI -ss \ samp
347     Set the specular sampling to
348     .I samp.
349     For values less than 1, this is the degree to which the highlights
350     are sampled for rough specular materials.
351     A value greater than one causes multiple ray samples to be sent
352     to reduce noise at a commmesurate cost.
353 greg 1.1 A value of zero means that no jittering will take place, and all
354     reflections will appear sharp even when they should be diffuse.
355     .TP
356     .BI -st \ frac
357     Set the specular sampling threshold to
358     .I frac.
359     This is the minimum fraction of reflection or transmission, under which
360     no specular sampling is performed.
361     A value of zero means that highlights will always be sampled by
362     tracing reflected or transmitted rays.
363     A value of one means that specular sampling is never used.
364     Highlights from light sources will always be correct, but
365     reflections from other surfaces will be approximated using an
366     ambient value.
367     A sampling threshold between zero and one offers a compromise between image
368     accuracy and rendering time.
369     .TP
370     .BR -bv
371     Boolean switch for back face visibility.
372 greg 1.25 With this switch off, back faces of all objects will be invisible
373     to view rays.
374 greg 1.1 This is dangerous unless the model was constructed such that
375 greg 1.25 all surface normals face outward.
376 greg 1.1 Although turning off back face visibility does not save much
377     computation time under most circumstances, it may be useful as a
378     tool for scene debugging, or for seeing through one-sided walls from
379     the outside.
380     .TP
381     .BI -av " red grn blu"
382     Set the ambient value to a radiance of
383     .I "red grn blu".
384     This is the final value used in place of an
385     indirect light calculation.
386     If the number of ambient bounces is one or greater and the ambient
387     value weight is non-zero (see
388     .I -aw
389     and
390     .I -ab
391     below), this value may be modified by the computed indirect values
392     to improve overall accuracy.
393     .TP
394     .BI -aw \ N
395     Set the relative weight of the ambient value given with the
396     .I -av
397     option to
398     .I N.
399     As new indirect irradiances are computed, they will modify the
400     default ambient value in a moving average, with the specified weight
401     assigned to the initial value given on the command and all other
402     weights set to 1.
403     If a value of 0 is given with this option, then the initial ambient
404     value is never modified.
405     This is the safest value for scenes with large differences in
406     indirect contributions, such as when both indoor and outdoor
407     (daylight) areas are visible.
408     .TP
409     .BI -ab \ N
410     Set the number of ambient bounces to
411     .I N.
412 greg 1.26 This is the maximum number of diffuse bounces computed by the indirect
413     calculation. A value of zero implies no indirect calculation.
414     .IP
415 rschregle 1.27 This value defaults to 1 in photon mapping mode (see
416 greg 1.26 .I -ap
417 rschregle 1.27 below), implying that global photon irradiance is always computed via
418 greg 1.26 .I one
419 rschregle 1.27 ambient bounce; this behaviour applies to any positive number of ambient
420     bounces, regardless of the actual value specified. A negative value enables
421     a preview mode that directly visualises the irradiance from the global
422     photon map without any ambient bounces.
423 greg 1.1 .TP
424     .BI -ar \ res
425     Set the ambient resolution to
426     .I res.
427     This number will determine the maximum density of ambient values
428     used in interpolation.
429     Error will start to increase on surfaces spaced closer than
430     the scene size divided by the ambient resolution.
431     The maximum ambient value density is the scene size times the
432     ambient accuracy (see the
433     .I \-aa
434     option below) divided by the ambient resolution.
435     The scene size can be determined using
436     .I getinfo(1)
437     with the
438     .I \-d
439     option on the input octree.
440     .TP
441     .BI -aa \ acc
442     Set the ambient accuracy to
443     .I acc.
444     This value will approximately equal the error
445     from indirect illuminance interpolation.
446     A value of zero implies no interpolation.
447     .TP
448     .BI -ad \ N
449     Set the number of ambient divisions to
450     .I N.
451     The error in the Monte Carlo calculation of indirect
452     illuminance will be inversely proportional to the square
453     root of this number.
454     A value of zero implies no indirect calculation.
455     .TP
456     .BI -as \ N
457     Set the number of ambient super-samples to
458     .I N.
459     Super-samples are applied only to the ambient divisions which
460     show a significant change.
461     .TP
462     .BI -af \ fname
463     Set the ambient file to
464     .I fname.
465     This is where indirect illuminance will be stored and retrieved.
466     Normally, indirect illuminance values are kept in memory and
467     lost when the program finishes or dies.
468     By using a file, different invocations can share illuminance
469     values, saving time in the computation.
470     The ambient file is in a machine-independent binary format
471     which can be examined with
472     .I lookamb(1).
473     .IP
474     The ambient file may also be used as a means of communication and
475     data sharing between simultaneously executing processes.
476     The same file may be used by multiple processes, possibly running on
477     different machines and accessing the file via the network (ie.
478     .I nfs(4)).
479     The network lock manager
480     .I lockd(8)
481     is used to insure that this information is used consistently.
482     .IP
483     If any calculation parameters are changed or the scene
484     is modified, the old ambient file should be removed so that
485     the calculation can start over from scratch.
486     For convenience, the original ambient parameters are listed in the
487     header of the ambient file.
488     .I Getinfo(1)
489     may be used to print out this information.
490     .TP
491 greg 1.6 .BI -ae \ mod
492 greg 1.1 Append
493 greg 1.6 .I mod
494 greg 1.1 to the ambient exclude list,
495     so that it will not be considered during the indirect calculation.
496     This is a hack for speeding the indirect computation by
497     ignoring certain objects.
498     Any object having
499 greg 1.6 .I mod
500 greg 1.1 as its modifier will get the default ambient
501     level rather than a calculated value.
502 greg 1.6 Any number of excluded modifiers may be given, but each
503 greg 1.1 must appear in a separate option.
504     .TP
505 greg 1.6 .BI -ai \ mod
506 greg 1.1 Add
507 greg 1.6 .I mod
508 greg 1.1 to the ambient include list,
509     so that it will be considered during the indirect calculation.
510     The program can use either an include list or an exclude
511     list, but not both.
512     .TP
513     .BI -aE \ file
514     Same as
515     .I \-ae,
516 greg 1.6 except read modifiers to be excluded from
517 greg 1.1 .I file.
518     The RAYPATH environment variable determines which directories are
519     searched for this file.
520 greg 1.6 The modifier names are separated by white space in the file.
521 greg 1.1 .TP
522     .BI -aI \ file
523     Same as
524     .I \-ai,
525 greg 1.6 except read modifiers to be included from
526 greg 1.1 .I file.
527     .TP
528 greg 1.26 .BI -ap " file [bwidth1 [bwidth2]]"
529     Enable photon mapping mode. Loads a photon map generated with
530     .I mkpmap(1)
531     from
532     .I file,
533     and evaluates the indirect irradiance depending on the photon type
534     (automagically detected) using density estimates with a bandwidth of
535     .I bwidth1
536     photons, or the default bandwidth if none is specified (a warning will be
537     issued in this case).
538     .IP
539     Global photon irradiance is evaluated as part of the ambient calculation (see
540     .I \-ab
541     above), caustic photon irradiance is evaluated at primary rays, and
542     indirect inscattering in
543     .I mist
544 rschregle 1.29 is accounted for by volume photons. Contribution photons are treated as
545     global photons by
546     .I rtrace.
547 greg 1.26 .IP
548     Additionally specifying
549     .I bwidth2
550     enables bias compensation for the density estimates with a
551     minimum and maximum bandwidth of
552     .I bwidth1
553     and
554     .I bwidth2,
555     respectively.
556     .IP
557     Global photon irradiance may be optionally precomputed by
558     .I mkpmap(1),
559     in which case the bandwidth, if specified, is ignored, as the nearest photon
560     is invariably looked up.
561     .IP
562     Using direct photons replaces the direct calculation with density estimates
563     for debugging and validation of photon emission.
564     .TP
565     .BI -am " frac"
566 rschregle 1.27 Maximum search radius for photon map lookups. Without this option, an
567     initial maximum search radius is estimated for each photon map from the
568     average photon distance to the distribution's centre of gravity. It is then
569     adapted to the photon density in subsequent lookups. This option imposes a
570     global fixed maximum search radius for
571     .I all
572     photon maps, thus defeating the automatic adaptation. It is useful when
573     multiple warnings about short photon lookups are issued. Note that this
574     option does not conflict with the bandwidth specified with the
575     .I \-ap
576     option; the number of photons found will not exceed the latter, but may be
577     lower if the maximum search radius contains fewer photons, thus resulting in
578     short lookups. Setting this radius too large, on the other hand, may
579     degrade performance.
580 greg 1.26 .TP
581 rschregle 1.28 .BI -ac " pagesize"
582     Set the photon cache page size when using out-of-core photon mapping. The
583     photon cache reduces disk I/O incurred by on-demand loading (paging) of
584     photons, and thus increases performance. This
585     is expressed as a (float) multiple of the density estimate bandwidth
586     specified with
587     .I \-ap
588     under the assumption that photon lookups are local to a cache page. Cache
589     performance is sensitive to this parameter: larger pagesizes will reduce the
590     paging frequency at the expense of higher latency when paging does occur.
591     Sensible values are in the range 4 (default) to 16.
592     .TP
593     .BI -aC " cachesize"
594     Set the total number of photons cached when using out-of-core photon
595     mapping, taking into account the pagesize specified by
596     .I \-ac.
597     Note that this is approximate as the number of cache pages is rounded to
598     the nearest prime. This allows adapting the cache to the available physical
599     memory. In conjunction with the
600     .I \-n
601     option, this is the cache size
602     .I per parallel process.
603     Cache performance is less sensitive to this parameter,
604     and reasonable performance can obtained with as few as 10k photons. The
605     default is 1M. This option recognises multiplier suffixes (k = 1e3, M =
606     1e6), both in upper and lower case.
607     .TP
608 greg 1.1 .BI -me " rext gext bext"
609     Set the global medium extinction coefficient to the indicated color,
610     in units of 1/distance (distance in world coordinates).
611     Light will be scattered or absorbed over distance according to
612     this value.
613     The ratio of scattering to total scattering plus absorption is set
614     by the albedo parameter, described below.
615     .TP
616     .BI -ma " ralb galb balb"
617     Set the global medium albedo to the given value between 0\00\00
618     and 1\01\01.
619     A zero value means that all light not transmitted by the medium
620     is absorbed.
621     A unitary value means that all light not transmitted by the medium
622     is scattered in some new direction.
623     The isotropy of scattering is determined by the Heyney-Greenstein
624     parameter, described below.
625     .TP
626     .BI \-mg \ gecc
627     Set the medium Heyney-Greenstein eccentricity parameter to
628     .I gecc.
629     This parameter determines how strongly scattering favors the forward
630     direction.
631     A value of 0 indicates perfectly isotropic scattering.
632     As this parameter approaches 1, scattering tends to prefer the
633     forward direction.
634     .TP
635     .BI \-ms \ sampdist
636     Set the medium sampling distance to
637     .I sampdist,
638     in world coordinate units.
639     During source scattering, this will be the average distance between
640     adjacent samples.
641     A value of 0 means that only one sample will be taken per light
642     source within a given scattering volume.
643     .TP
644     .BI -lr \ N
645     Limit reflections to a maximum of
646 greg 1.20 .I N,
647     if N is a positive integer.
648 greg 1.11 If
649     .I N
650     is zero or negative, then Russian roulette is used for ray
651     termination, and the
652     .I -lw
653     setting (below) must be positive.
654 greg 1.32 If N is a negative integer, then this limits the maximum
655     number of reflections even with Russian roulette.
656 greg 1.11 In scenes with dielectrics and total internal reflection,
657     a setting of 0 (no limit) may cause a stack overflow.
658 greg 1.1 .TP
659     .BI -lw \ frac
660     Limit the weight of each ray to a minimum of
661     .I frac.
662 greg 1.11 During ray-tracing, a record is kept of the estimated contribution
663     (weight) a ray would have in the image.
664     If this weight is less than the specified minimum and the
665     .I -lr
666     setting (above) is positive, the ray is not traced.
667     Otherwise, Russian roulette is used to
668     continue rays with a probability equal to the ray weight
669     divided by the given
670     .I frac.
671 greg 1.1 .TP
672     .BR -ld
673     Boolean switch to limit ray distance.
674     If this option is set, then rays will only be traced as far as the
675     magnitude of each direction vector.
676     Otherwise, vector magnitude is ignored and rays are traced to infinity.
677     .TP
678     .BI -e \ efile
679     Send error messages and progress reports to
680     .I efile
681     instead of the standard error.
682     .TP
683     .BR \-w
684     Boolean switch to suppress warning messages.
685     .TP
686     .BI \-P \ pfile
687     Execute in a persistent mode, using
688     .I pfile
689     as the control file.
690     Persistent execution means that after reaching end-of-file on
691     its input,
692     .I rtrace
693     will fork a child process that will wait for another
694     .I rtrace
695     command with the same
696     .I \-P
697     option to attach to it.
698     (Note that since the rest of the command line options will be those
699     of the original invocation, it is not necessary to give any arguments
700     besides
701     .I \-P
702     for subsequent calls.)
703     Killing the process is achieved with the
704     .I kill(1)
705     command.
706     (The process ID in the first line of
707     .I pfile
708     may be used to identify the waiting
709     .I rtrace
710     process.)
711     This option may be used with the
712     .I \-fr
713     option of
714     .I pinterp(1)
715     to avoid the cost of starting up
716     .I rtrace
717     many times.
718     .TP
719     .BI \-PP \ pfile
720     Execute in continuous-forking persistent mode, using
721     .I pfile
722     as the control file.
723     The difference between this option and the
724     .I \-P
725     option described above is the creation of multiple duplicate
726     processes to handle any number of attaches.
727     This provides a simple and reliable mechanism of memory sharing
728     on most multiprocessing platforms, since the
729     .I fork(2)
730     system call will share memory on a copy-on-write basis.
731 greg 1.26 .SH NOTES
732     Photons are generally surface bound (an exception are volume photons), thus
733     the ambient irradiance in photon mapping mode will be biased at positions
734     which do not lie on a surface.
735 greg 1.1 .SH EXAMPLES
736     To compute radiance values for the rays listed in samples.inp:
737     .IP "" .2i
738 greg 1.15 rtrace \-ov scene.oct < samples.inp > radiance.out
739 greg 1.1 .PP
740     To compute illuminance values at locations selected with the 't'
741     command of
742     .I ximage(1):
743     .IP "" .2i
744 greg 1.16 ximage scene.hdr | rtrace \-h \-x 1 \-i scene.oct | rcalc \-e '$1=47.4*$1+120*$2+11.6*$3'
745 greg 1.1 .PP
746     To record the object identifier corresponding to each pixel in an image:
747     .IP "" .2i
748 greg 1.16 vwrays \-fd scene.hdr | rtrace \-fda `vwrays \-d scene.hdr` \-os scene.oct
749 greg 1.1 .PP
750     To compute an image with an unusual view mapping:
751     .IP "" .2i
752 greg 1.17 cnt 480 640 | rcalc \-e 'xr:640;yr:480' \-f unusual_view.cal | rtrace
753 greg 1.16 \-x 640 \-y 480 \-fac scene.oct > unusual.hdr
754 greg 1.26 .PP
755     To compute ambient illuminance in photon mapping mode from a global photon
756     map global.pm via one ambient bounce, and from a caustic photon map
757     caustic.pm at sensor positions in samples.inp:
758     .IP "" .2i
759     rtrace -h -ov -ab 1 -ap global.pm 50 -ap caustic.pm 50 scene.oct <
760     samples.inp > illum.out
761 greg 1.1 .SH ENVIRONMENT
762     RAYPATH the directories to check for auxiliary files.
763     .SH FILES
764 greg 1.5 /tmp/rtXXXXXX common header information for picture sequence
765 greg 1.1 .SH DIAGNOSTICS
766     If the program terminates from an input related error, the exit status
767     will be 1.
768     A system related error results in an exit status of 2.
769     If the program receives a signal that is caught, it will exit with a status
770     of 3.
771     In each case, an error message will be printed to the standard error, or
772     to the file designated by the
773     .I \-e
774     option.
775     .SH AUTHOR
776     Greg Ward
777     .SH "SEE ALSO"
778 greg 1.26 getinfo(1), lookamb(1), mkpmap(1), oconv(1), pfilt(1), pinterp(1),
779 greg 1.30 pvalue(1), rcontrib(1), rpict(1), rtpict(1), rvu(1), vwrays(1), ximage(1)