ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/man/man1/rtrace.1
Revision: 1.27
Committed: Fri Jun 5 08:49:01 2015 UTC (9 years, 11 months ago) by rschregle
Branch: MAIN
CVS Tags: rad5R0
Changes since 1.26: +21 -11 lines
Log Message:
Revised -am and -ab options, the latter defaulting to 1 in pmap mode

File Contents

# User Rev Content
1 rschregle 1.27 .\" RCSid "$Id: rtrace.1,v 1.26 2015/02/24 19:39:26 greg Exp $"
2 greg 1.1 .TH RTRACE 1 10/17/97 RADIANCE
3     .SH NAME
4     rtrace - trace rays in RADIANCE scene
5     .SH SYNOPSIS
6     .B rtrace
7     [
8     .B options
9     ]
10     [
11     .B $EVAR
12     ]
13     [
14     .B @file
15     ]
16     .B octree
17     .br
18     .B "rtrace [ options ] \-defaults"
19     .SH DESCRIPTION
20     .I Rtrace
21     traces rays from the standard input through the RADIANCE scene given by
22     .I octree
23     and sends the results to the standard output.
24     (The octree may be given as the output of a command enclosed in quotes
25     and preceded by a `!'.)\0
26     Input for each ray is:
27    
28     xorg yorg zorg xdir ydir zdir
29    
30     If the direction vector is (0,0,0), a bogus record
31     is printed and the output is flushed if the
32     .I -x
33 greg 1.24 value is one or zero.
34 greg 1.1 (See the notes on this option below.)\0
35     This may be useful for programs that run
36     .I rtrace
37     as a separate process.
38     In the second form, the default values
39     for the options (modified by those options present)
40     are printed with a brief explanation.
41     .PP
42     Options may be given on the command line and/or read from the
43     environment and/or read from a file.
44     A command argument beginning with a dollar sign ('$') is immediately
45     replaced by the contents of the given environment variable.
46     A command argument beginning with an at sign ('@') is immediately
47     replaced by the contents of the given file.
48     Most options are followed by one or more arguments, which must be
49     separated from the option and each other by white space.
50     The exceptions to this rule are the boolean options.
51     Normally, the appearance of a boolean option causes a feature to
52     be "toggled", that is switched from off to on or on to off
53     depending on its previous state.
54     Boolean options may also be set
55     explicitly by following them immediately with a '+' or '-', meaning
56     on or off, respectively.
57     Synonyms for '+' are any of the characters "yYtT1", and synonyms
58     for '-' are any of the characters "nNfF0".
59     All other characters will generate an error.
60     .TP 10n
61     .BI -f io
62     Format input according to the character
63     .I i
64     and output according to the character
65     .I o.
66     .I Rtrace
67     understands the following input and output formats: 'a' for
68     ascii, 'f' for single-precision floating point,
69     and 'd' for double-precision floating point.
70     In addition to these three choices, the character 'c' may be used
71     to denote 4-byte floating point (Radiance) color format
72     for the output of values only
73     .I (\-ov
74     option, below).
75     If the output character is missing, the input format is used.
76     .IP
77     Note that there is no space between this option and its argument.
78     .TP
79     .BI -o spec
80     Produce output fields according to
81     .I spec.
82     Characters are interpreted as follows:
83     .IP
84     o origin (input)
85     .IP
86     d direction (normalized)
87     .IP
88     v value (radiance)
89     .IP
90 greg 1.14 V contribution (radiance)
91     .IP
92 greg 1.1 w weight
93     .IP
94 greg 1.10 W color coefficient
95 greg 1.7 .IP
96 greg 1.1 l effective length of ray
97     .IP
98     L first intersection distance
99     .IP
100 greg 1.2 c local (u,v) coordinates
101     .IP
102 greg 1.1 p point of intersection
103     .IP
104     n normal at intersection (perturbed)
105     .IP
106     N normal at intersection (unperturbed)
107     .IP
108     s surface name
109     .IP
110     m modifier name
111     .IP
112 greg 1.6 M material name
113     .IP
114 greg 1.9 ~ tilde (end of trace marker)
115 greg 1.8 .IP
116 greg 1.1 If the letter 't' appears in
117     .I spec,
118     then the fields following will be printed for every ray traced,
119     not just the final result.
120 greg 1.7 If the capital letter 'T' is given instead of 't', then all rays will
121     be reported, including shadow testing rays to light sources.
122 greg 1.1 Spawned rays are indented one tab for each level.
123 greg 1.9 The tilde marker ('~') is a handy way of differentiating the final ray
124     value from daughter values in a traced ray tree, and usually appears
125     right before the 't' or 'T' output flags.
126 greg 1.8 E.g.,
127 greg 1.9 .I \-ov~TmW
128     will emit a tilde followed by a tab at the end of each trace,
129     which can be easily distinguished even in binary output.
130 greg 1.1 .IP
131     Note that there is no space between this option and its argument.
132     .TP
133 greg 1.6 .BI -te \ mod
134 greg 1.1 Append
135 greg 1.6 .I mod
136 greg 1.1 to the trace exclude list,
137     so that it will not be reported by the trace option
138     .I (\-o*t*).
139     Any ray striking an object having
140 greg 1.6 .I mod
141 greg 1.1 as its modifier will not be reported to the standard output with
142     the rest of the rays being traced.
143 greg 1.7 This option has no effect unless either the 't' or 'T'
144     option has been given as part of the output specifier.
145 greg 1.6 Any number of excluded modifiers may be given, but each
146 greg 1.1 must appear in a separate option.
147     .TP
148 greg 1.6 .BI -ti \ mod
149 greg 1.1 Add
150 greg 1.6 .I mod
151 greg 1.1 to the trace include list,
152 greg 1.8 so that it will be reported by the trace option.
153 greg 1.1 The program can use either an include list or an exclude
154     list, but not both.
155     .TP
156     .BI -tE \ file
157     Same as
158     .I \-te,
159 greg 1.6 except read modifiers to be excluded from
160 greg 1.1 .I file.
161     The RAYPATH environment variable determines which directories are
162     searched for this file.
163 greg 1.6 The modifier names are separated by white space in the file.
164 greg 1.1 .TP
165     .BI -tI \ file
166     Same as
167     .I \-ti,
168 greg 1.6 except read modifiers to be included from
169 greg 1.1 .I file.
170     .TP
171     .BR \-i
172     Boolean switch to compute irradiance rather than radiance values.
173     This only affects the final result, substituting a Lambertian
174     surface and multiplying the radiance by pi.
175     Glass and other transparent surfaces are ignored during this stage.
176     Light sources still appear with their original radiance values,
177     though the
178     .I \-dv
179     option (below) may be used to override this.
180     This option is especially useful in
181     conjunction with ximage(1) for computing illuminance at scene points.
182     .TP
183 greg 1.13 .BR \-u
184     Boolean switch to control uncorrelated random sampling.
185 greg 1.12 When "off", a low-discrepancy sequence is used, which reduces
186     variance but can result in a brushed appearance in specular highlights.
187     When "on", pure Monte Carlo sampling is used in all calculations.
188     .TP
189 greg 1.1 .BR \-I
190     Boolean switch to compute irradiance rather than radiance,
191     with the input origin and direction interpreted instead
192     as measurement point and orientation.
193     .TP
194     .BR \-h
195     Boolean switch for information header on output.
196     .TP
197     .BI -x \ res
198     Set the x resolution to
199     .I res.
200     The output will be flushed after every
201     .I res
202 greg 1.21 input rays if
203     .I \-y
204     is set to zero.
205     A value of one means that every ray will be flushed, whatever
206     the setting of
207     .I \-y.
208 greg 1.1 A value of zero means that no output flushing will take place.
209     .TP
210     .BI -y \ res
211     Set the y resolution to
212     .I res.
213     The program will exit after
214     .I res
215     scanlines have been processed, where a scanline is the number of rays
216     given by the
217     .I \-x
218     option, or 1 if
219     .I \-x
220     is zero.
221     A value of zero means the program will not halt until the end
222     of file is reached.
223     .IP
224     If both
225     .I \-x
226     and
227     .I \-y
228     options are given, a resolution string is printed at the beginning
229     of the output.
230     This is mostly useful for recovering image dimensions with
231     .I pvalue(1),
232     and for creating valid Radiance picture files using the color output
233     format.
234     (See the
235     .I \-f
236     option, above.)
237     .TP
238 greg 1.18 .BI -n \ nproc
239     Execute in parallel on
240     .I nproc
241     local processes.
242 greg 1.19 This option is incompatible with the
243 greg 1.18 .I \-P
244     and
245     .I \-PP,
246 greg 1.19 options.
247 greg 1.18 Multiple processes also do not work properly with ray tree output
248     using any of the
249     .I \-o*t*
250     options.
251     There is no benefit from specifying more processes than there are
252     cores available on the system or the
253     .I \-x
254     setting, which forces a wait at each flush.
255     .TP
256 greg 1.1 .BI -dj \ frac
257     Set the direct jittering to
258     .I frac.
259     A value of zero samples each source at specific sample points
260     (see the
261     .I \-ds
262     option below), giving a smoother but somewhat less accurate
263     rendering.
264     A positive value causes rays to be distributed over each
265     source sample according to its size, resulting in more accurate
266     penumbras.
267     This option should never be greater than 1, and may even
268     cause problems (such as speckle) when the value is smaller.
269     A warning about aiming failure will issued if
270     .I frac
271     is too large.
272     .TP
273     .BI -ds \ frac
274     Set the direct sampling ratio to
275     .I frac.
276     A light source will be subdivided until
277     the width of each sample area divided by the distance
278     to the illuminated point is below this ratio.
279     This assures accuracy in regions close to large area sources
280     at a slight computational expense.
281     A value of zero turns source subdivision off, sending at most one
282     shadow ray to each light source.
283     .TP
284     .BI -dt \ frac
285     Set the direct threshold to
286     .I frac.
287     Shadow testing will stop when the potential contribution of at least
288     the next and at most all remaining light sources is less than
289     this fraction of the accumulated value.
290     (See the
291     .I \-dc
292     option below.)
293     The remaining light source contributions are approximated
294     statistically.
295     A value of zero means that all light sources will be tested for shadow.
296     .TP
297     .BI \-dc \ frac
298     Set the direct certainty to
299     .I frac.
300     A value of one guarantees that the absolute accuracy of the direct calculation
301     will be equal to or better than that given in the
302     .I \-dt
303     specification.
304     A value of zero only insures that all shadow lines resulting in a contrast
305     change greater than the
306     .I \-dt
307     specification will be calculated.
308     .TP
309     .BI -dr \ N
310     Set the number of relays for secondary sources to
311     .I N.
312     A value of 0 means that secondary sources will be ignored.
313     A value of 1 means that sources will be made into first generation
314     secondary sources; a value of 2 means that first generation
315     secondary sources will also be made into second generation secondary
316     sources, and so on.
317     .TP
318     .BI -dp \ D
319     Set the secondary source presampling density to D.
320     This is the number of samples per steradian
321     that will be used to determine ahead of time whether or not
322     it is worth following shadow rays through all the reflections and/or
323     transmissions associated with a secondary source path.
324     A value of 0 means that the full secondary source path will always
325     be tested for shadows if it is tested at all.
326     .TP
327     .BR \-dv
328     Boolean switch for light source visibility.
329     With this switch off, sources will be black when viewed directly
330     although they will still participate in the direct calculation.
331     This option is mostly for the program
332     .I mkillum(1)
333     to avoid inappropriate counting of light sources, but it
334     may also be desirable in conjunction with the
335     .I \-i
336     option.
337     .TP
338 greg 1.22 .BI -ss \ samp
339     Set the specular sampling to
340     .I samp.
341     For values less than 1, this is the degree to which the highlights
342     are sampled for rough specular materials.
343     A value greater than one causes multiple ray samples to be sent
344     to reduce noise at a commmesurate cost.
345 greg 1.1 A value of zero means that no jittering will take place, and all
346     reflections will appear sharp even when they should be diffuse.
347     .TP
348     .BI -st \ frac
349     Set the specular sampling threshold to
350     .I frac.
351     This is the minimum fraction of reflection or transmission, under which
352     no specular sampling is performed.
353     A value of zero means that highlights will always be sampled by
354     tracing reflected or transmitted rays.
355     A value of one means that specular sampling is never used.
356     Highlights from light sources will always be correct, but
357     reflections from other surfaces will be approximated using an
358     ambient value.
359     A sampling threshold between zero and one offers a compromise between image
360     accuracy and rendering time.
361     .TP
362     .BR -bv
363     Boolean switch for back face visibility.
364 greg 1.25 With this switch off, back faces of all objects will be invisible
365     to view rays.
366 greg 1.1 This is dangerous unless the model was constructed such that
367 greg 1.25 all surface normals face outward.
368 greg 1.1 Although turning off back face visibility does not save much
369     computation time under most circumstances, it may be useful as a
370     tool for scene debugging, or for seeing through one-sided walls from
371     the outside.
372     .TP
373     .BI -av " red grn blu"
374     Set the ambient value to a radiance of
375     .I "red grn blu".
376     This is the final value used in place of an
377     indirect light calculation.
378     If the number of ambient bounces is one or greater and the ambient
379     value weight is non-zero (see
380     .I -aw
381     and
382     .I -ab
383     below), this value may be modified by the computed indirect values
384     to improve overall accuracy.
385     .TP
386     .BI -aw \ N
387     Set the relative weight of the ambient value given with the
388     .I -av
389     option to
390     .I N.
391     As new indirect irradiances are computed, they will modify the
392     default ambient value in a moving average, with the specified weight
393     assigned to the initial value given on the command and all other
394     weights set to 1.
395     If a value of 0 is given with this option, then the initial ambient
396     value is never modified.
397     This is the safest value for scenes with large differences in
398     indirect contributions, such as when both indoor and outdoor
399     (daylight) areas are visible.
400     .TP
401     .BI -ab \ N
402     Set the number of ambient bounces to
403     .I N.
404 greg 1.26 This is the maximum number of diffuse bounces computed by the indirect
405     calculation. A value of zero implies no indirect calculation.
406     .IP
407 rschregle 1.27 This value defaults to 1 in photon mapping mode (see
408 greg 1.26 .I -ap
409 rschregle 1.27 below), implying that global photon irradiance is always computed via
410 greg 1.26 .I one
411 rschregle 1.27 ambient bounce; this behaviour applies to any positive number of ambient
412     bounces, regardless of the actual value specified. A negative value enables
413     a preview mode that directly visualises the irradiance from the global
414     photon map without any ambient bounces.
415 greg 1.1 .TP
416     .BI -ar \ res
417     Set the ambient resolution to
418     .I res.
419     This number will determine the maximum density of ambient values
420     used in interpolation.
421     Error will start to increase on surfaces spaced closer than
422     the scene size divided by the ambient resolution.
423     The maximum ambient value density is the scene size times the
424     ambient accuracy (see the
425     .I \-aa
426     option below) divided by the ambient resolution.
427     The scene size can be determined using
428     .I getinfo(1)
429     with the
430     .I \-d
431     option on the input octree.
432     .TP
433     .BI -aa \ acc
434     Set the ambient accuracy to
435     .I acc.
436     This value will approximately equal the error
437     from indirect illuminance interpolation.
438     A value of zero implies no interpolation.
439     .TP
440     .BI -ad \ N
441     Set the number of ambient divisions to
442     .I N.
443     The error in the Monte Carlo calculation of indirect
444     illuminance will be inversely proportional to the square
445     root of this number.
446     A value of zero implies no indirect calculation.
447     .TP
448     .BI -as \ N
449     Set the number of ambient super-samples to
450     .I N.
451     Super-samples are applied only to the ambient divisions which
452     show a significant change.
453     .TP
454     .BI -af \ fname
455     Set the ambient file to
456     .I fname.
457     This is where indirect illuminance will be stored and retrieved.
458     Normally, indirect illuminance values are kept in memory and
459     lost when the program finishes or dies.
460     By using a file, different invocations can share illuminance
461     values, saving time in the computation.
462     The ambient file is in a machine-independent binary format
463     which can be examined with
464     .I lookamb(1).
465     .IP
466     The ambient file may also be used as a means of communication and
467     data sharing between simultaneously executing processes.
468     The same file may be used by multiple processes, possibly running on
469     different machines and accessing the file via the network (ie.
470     .I nfs(4)).
471     The network lock manager
472     .I lockd(8)
473     is used to insure that this information is used consistently.
474     .IP
475     If any calculation parameters are changed or the scene
476     is modified, the old ambient file should be removed so that
477     the calculation can start over from scratch.
478     For convenience, the original ambient parameters are listed in the
479     header of the ambient file.
480     .I Getinfo(1)
481     may be used to print out this information.
482     .TP
483 greg 1.6 .BI -ae \ mod
484 greg 1.1 Append
485 greg 1.6 .I mod
486 greg 1.1 to the ambient exclude list,
487     so that it will not be considered during the indirect calculation.
488     This is a hack for speeding the indirect computation by
489     ignoring certain objects.
490     Any object having
491 greg 1.6 .I mod
492 greg 1.1 as its modifier will get the default ambient
493     level rather than a calculated value.
494 greg 1.6 Any number of excluded modifiers may be given, but each
495 greg 1.1 must appear in a separate option.
496     .TP
497 greg 1.6 .BI -ai \ mod
498 greg 1.1 Add
499 greg 1.6 .I mod
500 greg 1.1 to the ambient include list,
501     so that it will be considered during the indirect calculation.
502     The program can use either an include list or an exclude
503     list, but not both.
504     .TP
505     .BI -aE \ file
506     Same as
507     .I \-ae,
508 greg 1.6 except read modifiers to be excluded from
509 greg 1.1 .I file.
510     The RAYPATH environment variable determines which directories are
511     searched for this file.
512 greg 1.6 The modifier names are separated by white space in the file.
513 greg 1.1 .TP
514     .BI -aI \ file
515     Same as
516     .I \-ai,
517 greg 1.6 except read modifiers to be included from
518 greg 1.1 .I file.
519     .TP
520 greg 1.26 .BI -ap " file [bwidth1 [bwidth2]]"
521     Enable photon mapping mode. Loads a photon map generated with
522     .I mkpmap(1)
523     from
524     .I file,
525     and evaluates the indirect irradiance depending on the photon type
526     (automagically detected) using density estimates with a bandwidth of
527     .I bwidth1
528     photons, or the default bandwidth if none is specified (a warning will be
529     issued in this case).
530     .IP
531     Global photon irradiance is evaluated as part of the ambient calculation (see
532     .I \-ab
533     above), caustic photon irradiance is evaluated at primary rays, and
534     indirect inscattering in
535     .I mist
536     is accounted for by volume photons.
537     .IP
538     Additionally specifying
539     .I bwidth2
540     enables bias compensation for the density estimates with a
541     minimum and maximum bandwidth of
542     .I bwidth1
543     and
544     .I bwidth2,
545     respectively.
546     .IP
547     Global photon irradiance may be optionally precomputed by
548     .I mkpmap(1),
549     in which case the bandwidth, if specified, is ignored, as the nearest photon
550     is invariably looked up.
551     .IP
552     Using direct photons replaces the direct calculation with density estimates
553     for debugging and validation of photon emission.
554     .TP
555     .BI -am " frac"
556 rschregle 1.27 Maximum search radius for photon map lookups. Without this option, an
557     initial maximum search radius is estimated for each photon map from the
558     average photon distance to the distribution's centre of gravity. It is then
559     adapted to the photon density in subsequent lookups. This option imposes a
560     global fixed maximum search radius for
561     .I all
562     photon maps, thus defeating the automatic adaptation. It is useful when
563     multiple warnings about short photon lookups are issued. Note that this
564     option does not conflict with the bandwidth specified with the
565     .I \-ap
566     option; the number of photons found will not exceed the latter, but may be
567     lower if the maximum search radius contains fewer photons, thus resulting in
568     short lookups. Setting this radius too large, on the other hand, may
569     degrade performance.
570 greg 1.26 .TP
571 greg 1.1 .BI -me " rext gext bext"
572     Set the global medium extinction coefficient to the indicated color,
573     in units of 1/distance (distance in world coordinates).
574     Light will be scattered or absorbed over distance according to
575     this value.
576     The ratio of scattering to total scattering plus absorption is set
577     by the albedo parameter, described below.
578     .TP
579     .BI -ma " ralb galb balb"
580     Set the global medium albedo to the given value between 0\00\00
581     and 1\01\01.
582     A zero value means that all light not transmitted by the medium
583     is absorbed.
584     A unitary value means that all light not transmitted by the medium
585     is scattered in some new direction.
586     The isotropy of scattering is determined by the Heyney-Greenstein
587     parameter, described below.
588     .TP
589     .BI \-mg \ gecc
590     Set the medium Heyney-Greenstein eccentricity parameter to
591     .I gecc.
592     This parameter determines how strongly scattering favors the forward
593     direction.
594     A value of 0 indicates perfectly isotropic scattering.
595     As this parameter approaches 1, scattering tends to prefer the
596     forward direction.
597     .TP
598     .BI \-ms \ sampdist
599     Set the medium sampling distance to
600     .I sampdist,
601     in world coordinate units.
602     During source scattering, this will be the average distance between
603     adjacent samples.
604     A value of 0 means that only one sample will be taken per light
605     source within a given scattering volume.
606     .TP
607     .BI -lr \ N
608     Limit reflections to a maximum of
609 greg 1.20 .I N,
610     if N is a positive integer.
611 greg 1.11 If
612     .I N
613     is zero or negative, then Russian roulette is used for ray
614     termination, and the
615     .I -lw
616     setting (below) must be positive.
617     If N is a negative integer, then this sets the upper limit
618 greg 1.20 of reflections past which Russian roulette will be used.
619 greg 1.11 In scenes with dielectrics and total internal reflection,
620     a setting of 0 (no limit) may cause a stack overflow.
621 greg 1.1 .TP
622     .BI -lw \ frac
623     Limit the weight of each ray to a minimum of
624     .I frac.
625 greg 1.11 During ray-tracing, a record is kept of the estimated contribution
626     (weight) a ray would have in the image.
627     If this weight is less than the specified minimum and the
628     .I -lr
629     setting (above) is positive, the ray is not traced.
630     Otherwise, Russian roulette is used to
631     continue rays with a probability equal to the ray weight
632     divided by the given
633     .I frac.
634 greg 1.1 .TP
635     .BR -ld
636     Boolean switch to limit ray distance.
637     If this option is set, then rays will only be traced as far as the
638     magnitude of each direction vector.
639     Otherwise, vector magnitude is ignored and rays are traced to infinity.
640     .TP
641     .BI -e \ efile
642     Send error messages and progress reports to
643     .I efile
644     instead of the standard error.
645     .TP
646     .BR \-w
647     Boolean switch to suppress warning messages.
648     .TP
649     .BI \-P \ pfile
650     Execute in a persistent mode, using
651     .I pfile
652     as the control file.
653     Persistent execution means that after reaching end-of-file on
654     its input,
655     .I rtrace
656     will fork a child process that will wait for another
657     .I rtrace
658     command with the same
659     .I \-P
660     option to attach to it.
661     (Note that since the rest of the command line options will be those
662     of the original invocation, it is not necessary to give any arguments
663     besides
664     .I \-P
665     for subsequent calls.)
666     Killing the process is achieved with the
667     .I kill(1)
668     command.
669     (The process ID in the first line of
670     .I pfile
671     may be used to identify the waiting
672     .I rtrace
673     process.)
674     This option may be used with the
675     .I \-fr
676     option of
677     .I pinterp(1)
678     to avoid the cost of starting up
679     .I rtrace
680     many times.
681     .TP
682     .BI \-PP \ pfile
683     Execute in continuous-forking persistent mode, using
684     .I pfile
685     as the control file.
686     The difference between this option and the
687     .I \-P
688     option described above is the creation of multiple duplicate
689     processes to handle any number of attaches.
690     This provides a simple and reliable mechanism of memory sharing
691     on most multiprocessing platforms, since the
692     .I fork(2)
693     system call will share memory on a copy-on-write basis.
694 greg 1.26 .SH NOTES
695     Photons are generally surface bound (an exception are volume photons), thus
696     the ambient irradiance in photon mapping mode will be biased at positions
697     which do not lie on a surface.
698 greg 1.1 .SH EXAMPLES
699     To compute radiance values for the rays listed in samples.inp:
700     .IP "" .2i
701 greg 1.15 rtrace \-ov scene.oct < samples.inp > radiance.out
702 greg 1.1 .PP
703     To compute illuminance values at locations selected with the 't'
704     command of
705     .I ximage(1):
706     .IP "" .2i
707 greg 1.16 ximage scene.hdr | rtrace \-h \-x 1 \-i scene.oct | rcalc \-e '$1=47.4*$1+120*$2+11.6*$3'
708 greg 1.1 .PP
709     To record the object identifier corresponding to each pixel in an image:
710     .IP "" .2i
711 greg 1.16 vwrays \-fd scene.hdr | rtrace \-fda `vwrays \-d scene.hdr` \-os scene.oct
712 greg 1.1 .PP
713     To compute an image with an unusual view mapping:
714     .IP "" .2i
715 greg 1.17 cnt 480 640 | rcalc \-e 'xr:640;yr:480' \-f unusual_view.cal | rtrace
716 greg 1.16 \-x 640 \-y 480 \-fac scene.oct > unusual.hdr
717 greg 1.26 .PP
718     To compute ambient illuminance in photon mapping mode from a global photon
719     map global.pm via one ambient bounce, and from a caustic photon map
720     caustic.pm at sensor positions in samples.inp:
721     .IP "" .2i
722     rtrace -h -ov -ab 1 -ap global.pm 50 -ap caustic.pm 50 scene.oct <
723     samples.inp > illum.out
724 greg 1.1 .SH ENVIRONMENT
725     RAYPATH the directories to check for auxiliary files.
726     .SH FILES
727 greg 1.5 /tmp/rtXXXXXX common header information for picture sequence
728 greg 1.1 .SH DIAGNOSTICS
729     If the program terminates from an input related error, the exit status
730     will be 1.
731     A system related error results in an exit status of 2.
732     If the program receives a signal that is caught, it will exit with a status
733     of 3.
734     In each case, an error message will be printed to the standard error, or
735     to the file designated by the
736     .I \-e
737     option.
738     .SH AUTHOR
739     Greg Ward
740     .SH "SEE ALSO"
741 greg 1.26 getinfo(1), lookamb(1), mkpmap(1), oconv(1), pfilt(1), pinterp(1),
742 greg 1.23 pvalue(1), rpict(1), rcontrib(1), rvu(1), vwrays(1), ximage(1)