ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/man/man1/rtrace.1
Revision: 1.25
Committed: Sat Jan 25 18:27:39 2014 UTC (11 years, 3 months ago) by greg
Branch: MAIN
CVS Tags: rad4R2P2, rad4R2, rad4R2P1
Changes since 1.24: +4 -5 lines
Log Message:
Enabled back face invisibility (-bv0) for transparent/translucent types

File Contents

# User Rev Content
1 greg 1.25 .\" RCSid "$Id: rtrace.1,v 1.24 2012/11/15 19:41:03 greg Exp $"
2 greg 1.1 .TH RTRACE 1 10/17/97 RADIANCE
3     .SH NAME
4     rtrace - trace rays in RADIANCE scene
5     .SH SYNOPSIS
6     .B rtrace
7     [
8     .B options
9     ]
10     [
11     .B $EVAR
12     ]
13     [
14     .B @file
15     ]
16     .B octree
17     .br
18     .B "rtrace [ options ] \-defaults"
19     .SH DESCRIPTION
20     .I Rtrace
21     traces rays from the standard input through the RADIANCE scene given by
22     .I octree
23     and sends the results to the standard output.
24     (The octree may be given as the output of a command enclosed in quotes
25     and preceded by a `!'.)\0
26     Input for each ray is:
27    
28     xorg yorg zorg xdir ydir zdir
29    
30     If the direction vector is (0,0,0), a bogus record
31     is printed and the output is flushed if the
32     .I -x
33 greg 1.24 value is one or zero.
34 greg 1.1 (See the notes on this option below.)\0
35     This may be useful for programs that run
36     .I rtrace
37     as a separate process.
38     In the second form, the default values
39     for the options (modified by those options present)
40     are printed with a brief explanation.
41     .PP
42     Options may be given on the command line and/or read from the
43     environment and/or read from a file.
44     A command argument beginning with a dollar sign ('$') is immediately
45     replaced by the contents of the given environment variable.
46     A command argument beginning with an at sign ('@') is immediately
47     replaced by the contents of the given file.
48     Most options are followed by one or more arguments, which must be
49     separated from the option and each other by white space.
50     The exceptions to this rule are the boolean options.
51     Normally, the appearance of a boolean option causes a feature to
52     be "toggled", that is switched from off to on or on to off
53     depending on its previous state.
54     Boolean options may also be set
55     explicitly by following them immediately with a '+' or '-', meaning
56     on or off, respectively.
57     Synonyms for '+' are any of the characters "yYtT1", and synonyms
58     for '-' are any of the characters "nNfF0".
59     All other characters will generate an error.
60     .TP 10n
61     .BI -f io
62     Format input according to the character
63     .I i
64     and output according to the character
65     .I o.
66     .I Rtrace
67     understands the following input and output formats: 'a' for
68     ascii, 'f' for single-precision floating point,
69     and 'd' for double-precision floating point.
70     In addition to these three choices, the character 'c' may be used
71     to denote 4-byte floating point (Radiance) color format
72     for the output of values only
73     .I (\-ov
74     option, below).
75     If the output character is missing, the input format is used.
76     .IP
77     Note that there is no space between this option and its argument.
78     .TP
79     .BI -o spec
80     Produce output fields according to
81     .I spec.
82     Characters are interpreted as follows:
83     .IP
84     o origin (input)
85     .IP
86     d direction (normalized)
87     .IP
88     v value (radiance)
89     .IP
90 greg 1.14 V contribution (radiance)
91     .IP
92 greg 1.1 w weight
93     .IP
94 greg 1.10 W color coefficient
95 greg 1.7 .IP
96 greg 1.1 l effective length of ray
97     .IP
98     L first intersection distance
99     .IP
100 greg 1.2 c local (u,v) coordinates
101     .IP
102 greg 1.1 p point of intersection
103     .IP
104     n normal at intersection (perturbed)
105     .IP
106     N normal at intersection (unperturbed)
107     .IP
108     s surface name
109     .IP
110     m modifier name
111     .IP
112 greg 1.6 M material name
113     .IP
114 greg 1.9 ~ tilde (end of trace marker)
115 greg 1.8 .IP
116 greg 1.1 If the letter 't' appears in
117     .I spec,
118     then the fields following will be printed for every ray traced,
119     not just the final result.
120 greg 1.7 If the capital letter 'T' is given instead of 't', then all rays will
121     be reported, including shadow testing rays to light sources.
122 greg 1.1 Spawned rays are indented one tab for each level.
123 greg 1.9 The tilde marker ('~') is a handy way of differentiating the final ray
124     value from daughter values in a traced ray tree, and usually appears
125     right before the 't' or 'T' output flags.
126 greg 1.8 E.g.,
127 greg 1.9 .I \-ov~TmW
128     will emit a tilde followed by a tab at the end of each trace,
129     which can be easily distinguished even in binary output.
130 greg 1.1 .IP
131     Note that there is no space between this option and its argument.
132     .TP
133 greg 1.6 .BI -te \ mod
134 greg 1.1 Append
135 greg 1.6 .I mod
136 greg 1.1 to the trace exclude list,
137     so that it will not be reported by the trace option
138     .I (\-o*t*).
139     Any ray striking an object having
140 greg 1.6 .I mod
141 greg 1.1 as its modifier will not be reported to the standard output with
142     the rest of the rays being traced.
143 greg 1.7 This option has no effect unless either the 't' or 'T'
144     option has been given as part of the output specifier.
145 greg 1.6 Any number of excluded modifiers may be given, but each
146 greg 1.1 must appear in a separate option.
147     .TP
148 greg 1.6 .BI -ti \ mod
149 greg 1.1 Add
150 greg 1.6 .I mod
151 greg 1.1 to the trace include list,
152 greg 1.8 so that it will be reported by the trace option.
153 greg 1.1 The program can use either an include list or an exclude
154     list, but not both.
155     .TP
156     .BI -tE \ file
157     Same as
158     .I \-te,
159 greg 1.6 except read modifiers to be excluded from
160 greg 1.1 .I file.
161     The RAYPATH environment variable determines which directories are
162     searched for this file.
163 greg 1.6 The modifier names are separated by white space in the file.
164 greg 1.1 .TP
165     .BI -tI \ file
166     Same as
167     .I \-ti,
168 greg 1.6 except read modifiers to be included from
169 greg 1.1 .I file.
170     .TP
171     .BR \-i
172     Boolean switch to compute irradiance rather than radiance values.
173     This only affects the final result, substituting a Lambertian
174     surface and multiplying the radiance by pi.
175     Glass and other transparent surfaces are ignored during this stage.
176     Light sources still appear with their original radiance values,
177     though the
178     .I \-dv
179     option (below) may be used to override this.
180     This option is especially useful in
181     conjunction with ximage(1) for computing illuminance at scene points.
182     .TP
183 greg 1.13 .BR \-u
184     Boolean switch to control uncorrelated random sampling.
185 greg 1.12 When "off", a low-discrepancy sequence is used, which reduces
186     variance but can result in a brushed appearance in specular highlights.
187     When "on", pure Monte Carlo sampling is used in all calculations.
188     .TP
189 greg 1.1 .BR \-I
190     Boolean switch to compute irradiance rather than radiance,
191     with the input origin and direction interpreted instead
192     as measurement point and orientation.
193     .TP
194     .BR \-h
195     Boolean switch for information header on output.
196     .TP
197     .BI -x \ res
198     Set the x resolution to
199     .I res.
200     The output will be flushed after every
201     .I res
202 greg 1.21 input rays if
203     .I \-y
204     is set to zero.
205     A value of one means that every ray will be flushed, whatever
206     the setting of
207     .I \-y.
208 greg 1.1 A value of zero means that no output flushing will take place.
209     .TP
210     .BI -y \ res
211     Set the y resolution to
212     .I res.
213     The program will exit after
214     .I res
215     scanlines have been processed, where a scanline is the number of rays
216     given by the
217     .I \-x
218     option, or 1 if
219     .I \-x
220     is zero.
221     A value of zero means the program will not halt until the end
222     of file is reached.
223     .IP
224     If both
225     .I \-x
226     and
227     .I \-y
228     options are given, a resolution string is printed at the beginning
229     of the output.
230     This is mostly useful for recovering image dimensions with
231     .I pvalue(1),
232     and for creating valid Radiance picture files using the color output
233     format.
234     (See the
235     .I \-f
236     option, above.)
237     .TP
238 greg 1.18 .BI -n \ nproc
239     Execute in parallel on
240     .I nproc
241     local processes.
242 greg 1.19 This option is incompatible with the
243 greg 1.18 .I \-P
244     and
245     .I \-PP,
246 greg 1.19 options.
247 greg 1.18 Multiple processes also do not work properly with ray tree output
248     using any of the
249     .I \-o*t*
250     options.
251     There is no benefit from specifying more processes than there are
252     cores available on the system or the
253     .I \-x
254     setting, which forces a wait at each flush.
255     .TP
256 greg 1.1 .BI -dj \ frac
257     Set the direct jittering to
258     .I frac.
259     A value of zero samples each source at specific sample points
260     (see the
261     .I \-ds
262     option below), giving a smoother but somewhat less accurate
263     rendering.
264     A positive value causes rays to be distributed over each
265     source sample according to its size, resulting in more accurate
266     penumbras.
267     This option should never be greater than 1, and may even
268     cause problems (such as speckle) when the value is smaller.
269     A warning about aiming failure will issued if
270     .I frac
271     is too large.
272     .TP
273     .BI -ds \ frac
274     Set the direct sampling ratio to
275     .I frac.
276     A light source will be subdivided until
277     the width of each sample area divided by the distance
278     to the illuminated point is below this ratio.
279     This assures accuracy in regions close to large area sources
280     at a slight computational expense.
281     A value of zero turns source subdivision off, sending at most one
282     shadow ray to each light source.
283     .TP
284     .BI -dt \ frac
285     Set the direct threshold to
286     .I frac.
287     Shadow testing will stop when the potential contribution of at least
288     the next and at most all remaining light sources is less than
289     this fraction of the accumulated value.
290     (See the
291     .I \-dc
292     option below.)
293     The remaining light source contributions are approximated
294     statistically.
295     A value of zero means that all light sources will be tested for shadow.
296     .TP
297     .BI \-dc \ frac
298     Set the direct certainty to
299     .I frac.
300     A value of one guarantees that the absolute accuracy of the direct calculation
301     will be equal to or better than that given in the
302     .I \-dt
303     specification.
304     A value of zero only insures that all shadow lines resulting in a contrast
305     change greater than the
306     .I \-dt
307     specification will be calculated.
308     .TP
309     .BI -dr \ N
310     Set the number of relays for secondary sources to
311     .I N.
312     A value of 0 means that secondary sources will be ignored.
313     A value of 1 means that sources will be made into first generation
314     secondary sources; a value of 2 means that first generation
315     secondary sources will also be made into second generation secondary
316     sources, and so on.
317     .TP
318     .BI -dp \ D
319     Set the secondary source presampling density to D.
320     This is the number of samples per steradian
321     that will be used to determine ahead of time whether or not
322     it is worth following shadow rays through all the reflections and/or
323     transmissions associated with a secondary source path.
324     A value of 0 means that the full secondary source path will always
325     be tested for shadows if it is tested at all.
326     .TP
327     .BR \-dv
328     Boolean switch for light source visibility.
329     With this switch off, sources will be black when viewed directly
330     although they will still participate in the direct calculation.
331     This option is mostly for the program
332     .I mkillum(1)
333     to avoid inappropriate counting of light sources, but it
334     may also be desirable in conjunction with the
335     .I \-i
336     option.
337     .TP
338 greg 1.22 .BI -ss \ samp
339     Set the specular sampling to
340     .I samp.
341     For values less than 1, this is the degree to which the highlights
342     are sampled for rough specular materials.
343     A value greater than one causes multiple ray samples to be sent
344     to reduce noise at a commmesurate cost.
345 greg 1.1 A value of zero means that no jittering will take place, and all
346     reflections will appear sharp even when they should be diffuse.
347     .TP
348     .BI -st \ frac
349     Set the specular sampling threshold to
350     .I frac.
351     This is the minimum fraction of reflection or transmission, under which
352     no specular sampling is performed.
353     A value of zero means that highlights will always be sampled by
354     tracing reflected or transmitted rays.
355     A value of one means that specular sampling is never used.
356     Highlights from light sources will always be correct, but
357     reflections from other surfaces will be approximated using an
358     ambient value.
359     A sampling threshold between zero and one offers a compromise between image
360     accuracy and rendering time.
361     .TP
362     .BR -bv
363     Boolean switch for back face visibility.
364 greg 1.25 With this switch off, back faces of all objects will be invisible
365     to view rays.
366 greg 1.1 This is dangerous unless the model was constructed such that
367 greg 1.25 all surface normals face outward.
368 greg 1.1 Although turning off back face visibility does not save much
369     computation time under most circumstances, it may be useful as a
370     tool for scene debugging, or for seeing through one-sided walls from
371     the outside.
372     .TP
373     .BI -av " red grn blu"
374     Set the ambient value to a radiance of
375     .I "red grn blu".
376     This is the final value used in place of an
377     indirect light calculation.
378     If the number of ambient bounces is one or greater and the ambient
379     value weight is non-zero (see
380     .I -aw
381     and
382     .I -ab
383     below), this value may be modified by the computed indirect values
384     to improve overall accuracy.
385     .TP
386     .BI -aw \ N
387     Set the relative weight of the ambient value given with the
388     .I -av
389     option to
390     .I N.
391     As new indirect irradiances are computed, they will modify the
392     default ambient value in a moving average, with the specified weight
393     assigned to the initial value given on the command and all other
394     weights set to 1.
395     If a value of 0 is given with this option, then the initial ambient
396     value is never modified.
397     This is the safest value for scenes with large differences in
398     indirect contributions, such as when both indoor and outdoor
399     (daylight) areas are visible.
400     .TP
401     .BI -ab \ N
402     Set the number of ambient bounces to
403     .I N.
404     This is the maximum number of diffuse bounces
405     computed by the indirect calculation.
406     A value of zero implies no indirect calculation.
407     .TP
408     .BI -ar \ res
409     Set the ambient resolution to
410     .I res.
411     This number will determine the maximum density of ambient values
412     used in interpolation.
413     Error will start to increase on surfaces spaced closer than
414     the scene size divided by the ambient resolution.
415     The maximum ambient value density is the scene size times the
416     ambient accuracy (see the
417     .I \-aa
418     option below) divided by the ambient resolution.
419     The scene size can be determined using
420     .I getinfo(1)
421     with the
422     .I \-d
423     option on the input octree.
424     .TP
425     .BI -aa \ acc
426     Set the ambient accuracy to
427     .I acc.
428     This value will approximately equal the error
429     from indirect illuminance interpolation.
430     A value of zero implies no interpolation.
431     .TP
432     .BI -ad \ N
433     Set the number of ambient divisions to
434     .I N.
435     The error in the Monte Carlo calculation of indirect
436     illuminance will be inversely proportional to the square
437     root of this number.
438     A value of zero implies no indirect calculation.
439     .TP
440     .BI -as \ N
441     Set the number of ambient super-samples to
442     .I N.
443     Super-samples are applied only to the ambient divisions which
444     show a significant change.
445     .TP
446     .BI -af \ fname
447     Set the ambient file to
448     .I fname.
449     This is where indirect illuminance will be stored and retrieved.
450     Normally, indirect illuminance values are kept in memory and
451     lost when the program finishes or dies.
452     By using a file, different invocations can share illuminance
453     values, saving time in the computation.
454     The ambient file is in a machine-independent binary format
455     which can be examined with
456     .I lookamb(1).
457     .IP
458     The ambient file may also be used as a means of communication and
459     data sharing between simultaneously executing processes.
460     The same file may be used by multiple processes, possibly running on
461     different machines and accessing the file via the network (ie.
462     .I nfs(4)).
463     The network lock manager
464     .I lockd(8)
465     is used to insure that this information is used consistently.
466     .IP
467     If any calculation parameters are changed or the scene
468     is modified, the old ambient file should be removed so that
469     the calculation can start over from scratch.
470     For convenience, the original ambient parameters are listed in the
471     header of the ambient file.
472     .I Getinfo(1)
473     may be used to print out this information.
474     .TP
475 greg 1.6 .BI -ae \ mod
476 greg 1.1 Append
477 greg 1.6 .I mod
478 greg 1.1 to the ambient exclude list,
479     so that it will not be considered during the indirect calculation.
480     This is a hack for speeding the indirect computation by
481     ignoring certain objects.
482     Any object having
483 greg 1.6 .I mod
484 greg 1.1 as its modifier will get the default ambient
485     level rather than a calculated value.
486 greg 1.6 Any number of excluded modifiers may be given, but each
487 greg 1.1 must appear in a separate option.
488     .TP
489 greg 1.6 .BI -ai \ mod
490 greg 1.1 Add
491 greg 1.6 .I mod
492 greg 1.1 to the ambient include list,
493     so that it will be considered during the indirect calculation.
494     The program can use either an include list or an exclude
495     list, but not both.
496     .TP
497     .BI -aE \ file
498     Same as
499     .I \-ae,
500 greg 1.6 except read modifiers to be excluded from
501 greg 1.1 .I file.
502     The RAYPATH environment variable determines which directories are
503     searched for this file.
504 greg 1.6 The modifier names are separated by white space in the file.
505 greg 1.1 .TP
506     .BI -aI \ file
507     Same as
508     .I \-ai,
509 greg 1.6 except read modifiers to be included from
510 greg 1.1 .I file.
511     .TP
512     .BI -me " rext gext bext"
513     Set the global medium extinction coefficient to the indicated color,
514     in units of 1/distance (distance in world coordinates).
515     Light will be scattered or absorbed over distance according to
516     this value.
517     The ratio of scattering to total scattering plus absorption is set
518     by the albedo parameter, described below.
519     .TP
520     .BI -ma " ralb galb balb"
521     Set the global medium albedo to the given value between 0\00\00
522     and 1\01\01.
523     A zero value means that all light not transmitted by the medium
524     is absorbed.
525     A unitary value means that all light not transmitted by the medium
526     is scattered in some new direction.
527     The isotropy of scattering is determined by the Heyney-Greenstein
528     parameter, described below.
529     .TP
530     .BI \-mg \ gecc
531     Set the medium Heyney-Greenstein eccentricity parameter to
532     .I gecc.
533     This parameter determines how strongly scattering favors the forward
534     direction.
535     A value of 0 indicates perfectly isotropic scattering.
536     As this parameter approaches 1, scattering tends to prefer the
537     forward direction.
538     .TP
539     .BI \-ms \ sampdist
540     Set the medium sampling distance to
541     .I sampdist,
542     in world coordinate units.
543     During source scattering, this will be the average distance between
544     adjacent samples.
545     A value of 0 means that only one sample will be taken per light
546     source within a given scattering volume.
547     .TP
548     .BI -lr \ N
549     Limit reflections to a maximum of
550 greg 1.20 .I N,
551     if N is a positive integer.
552 greg 1.11 If
553     .I N
554     is zero or negative, then Russian roulette is used for ray
555     termination, and the
556     .I -lw
557     setting (below) must be positive.
558     If N is a negative integer, then this sets the upper limit
559 greg 1.20 of reflections past which Russian roulette will be used.
560 greg 1.11 In scenes with dielectrics and total internal reflection,
561     a setting of 0 (no limit) may cause a stack overflow.
562 greg 1.1 .TP
563     .BI -lw \ frac
564     Limit the weight of each ray to a minimum of
565     .I frac.
566 greg 1.11 During ray-tracing, a record is kept of the estimated contribution
567     (weight) a ray would have in the image.
568     If this weight is less than the specified minimum and the
569     .I -lr
570     setting (above) is positive, the ray is not traced.
571     Otherwise, Russian roulette is used to
572     continue rays with a probability equal to the ray weight
573     divided by the given
574     .I frac.
575 greg 1.1 .TP
576     .BR -ld
577     Boolean switch to limit ray distance.
578     If this option is set, then rays will only be traced as far as the
579     magnitude of each direction vector.
580     Otherwise, vector magnitude is ignored and rays are traced to infinity.
581     .TP
582     .BI -e \ efile
583     Send error messages and progress reports to
584     .I efile
585     instead of the standard error.
586     .TP
587     .BR \-w
588     Boolean switch to suppress warning messages.
589     .TP
590     .BI \-P \ pfile
591     Execute in a persistent mode, using
592     .I pfile
593     as the control file.
594     Persistent execution means that after reaching end-of-file on
595     its input,
596     .I rtrace
597     will fork a child process that will wait for another
598     .I rtrace
599     command with the same
600     .I \-P
601     option to attach to it.
602     (Note that since the rest of the command line options will be those
603     of the original invocation, it is not necessary to give any arguments
604     besides
605     .I \-P
606     for subsequent calls.)
607     Killing the process is achieved with the
608     .I kill(1)
609     command.
610     (The process ID in the first line of
611     .I pfile
612     may be used to identify the waiting
613     .I rtrace
614     process.)
615     This option may be used with the
616     .I \-fr
617     option of
618     .I pinterp(1)
619     to avoid the cost of starting up
620     .I rtrace
621     many times.
622     .TP
623     .BI \-PP \ pfile
624     Execute in continuous-forking persistent mode, using
625     .I pfile
626     as the control file.
627     The difference between this option and the
628     .I \-P
629     option described above is the creation of multiple duplicate
630     processes to handle any number of attaches.
631     This provides a simple and reliable mechanism of memory sharing
632     on most multiprocessing platforms, since the
633     .I fork(2)
634     system call will share memory on a copy-on-write basis.
635     .SH EXAMPLES
636     To compute radiance values for the rays listed in samples.inp:
637     .IP "" .2i
638 greg 1.15 rtrace \-ov scene.oct < samples.inp > radiance.out
639 greg 1.1 .PP
640     To compute illuminance values at locations selected with the 't'
641     command of
642     .I ximage(1):
643     .IP "" .2i
644 greg 1.16 ximage scene.hdr | rtrace \-h \-x 1 \-i scene.oct | rcalc \-e '$1=47.4*$1+120*$2+11.6*$3'
645 greg 1.1 .PP
646     To record the object identifier corresponding to each pixel in an image:
647     .IP "" .2i
648 greg 1.16 vwrays \-fd scene.hdr | rtrace \-fda `vwrays \-d scene.hdr` \-os scene.oct
649 greg 1.1 .PP
650     To compute an image with an unusual view mapping:
651     .IP "" .2i
652 greg 1.17 cnt 480 640 | rcalc \-e 'xr:640;yr:480' \-f unusual_view.cal | rtrace
653 greg 1.16 \-x 640 \-y 480 \-fac scene.oct > unusual.hdr
654 greg 1.1 .SH ENVIRONMENT
655     RAYPATH the directories to check for auxiliary files.
656     .SH FILES
657 greg 1.5 /tmp/rtXXXXXX common header information for picture sequence
658 greg 1.1 .SH DIAGNOSTICS
659     If the program terminates from an input related error, the exit status
660     will be 1.
661     A system related error results in an exit status of 2.
662     If the program receives a signal that is caught, it will exit with a status
663     of 3.
664     In each case, an error message will be printed to the standard error, or
665     to the file designated by the
666     .I \-e
667     option.
668     .SH AUTHOR
669     Greg Ward
670     .SH "SEE ALSO"
671     getinfo(1), lookamb(1), oconv(1), pfilt(1), pinterp(1),
672 greg 1.23 pvalue(1), rpict(1), rcontrib(1), rvu(1), vwrays(1), ximage(1)