ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/man/man1/rtrace.1
Revision: 1.19
Committed: Sun Dec 13 19:13:03 2009 UTC (15 years, 4 months ago) by greg
Branch: MAIN
Changes since 1.18: +3 -5 lines
Log Message:
Eliminated restriction with -n and -I in rtrace

File Contents

# User Rev Content
1 greg 1.19 .\" RCSid "$Id: rtrace.1,v 1.18 2009/12/12 19:00:59 greg Exp $"
2 greg 1.1 .TH RTRACE 1 10/17/97 RADIANCE
3     .SH NAME
4     rtrace - trace rays in RADIANCE scene
5     .SH SYNOPSIS
6     .B rtrace
7     [
8     .B options
9     ]
10     [
11     .B $EVAR
12     ]
13     [
14     .B @file
15     ]
16     .B octree
17     .br
18     .B "rtrace [ options ] \-defaults"
19     .SH DESCRIPTION
20     .I Rtrace
21     traces rays from the standard input through the RADIANCE scene given by
22     .I octree
23     and sends the results to the standard output.
24     (The octree may be given as the output of a command enclosed in quotes
25     and preceded by a `!'.)\0
26     Input for each ray is:
27    
28     xorg yorg zorg xdir ydir zdir
29    
30     If the direction vector is (0,0,0), a bogus record
31     is printed and the output is flushed if the
32     .I -x
33     value is unset or zero.
34     (See the notes on this option below.)\0
35     This may be useful for programs that run
36     .I rtrace
37     as a separate process.
38     In the second form, the default values
39     for the options (modified by those options present)
40     are printed with a brief explanation.
41     .PP
42     Options may be given on the command line and/or read from the
43     environment and/or read from a file.
44     A command argument beginning with a dollar sign ('$') is immediately
45     replaced by the contents of the given environment variable.
46     A command argument beginning with an at sign ('@') is immediately
47     replaced by the contents of the given file.
48     Most options are followed by one or more arguments, which must be
49     separated from the option and each other by white space.
50     The exceptions to this rule are the boolean options.
51     Normally, the appearance of a boolean option causes a feature to
52     be "toggled", that is switched from off to on or on to off
53     depending on its previous state.
54     Boolean options may also be set
55     explicitly by following them immediately with a '+' or '-', meaning
56     on or off, respectively.
57     Synonyms for '+' are any of the characters "yYtT1", and synonyms
58     for '-' are any of the characters "nNfF0".
59     All other characters will generate an error.
60     .TP 10n
61     .BI -f io
62     Format input according to the character
63     .I i
64     and output according to the character
65     .I o.
66     .I Rtrace
67     understands the following input and output formats: 'a' for
68     ascii, 'f' for single-precision floating point,
69     and 'd' for double-precision floating point.
70     In addition to these three choices, the character 'c' may be used
71     to denote 4-byte floating point (Radiance) color format
72     for the output of values only
73     .I (\-ov
74     option, below).
75     If the output character is missing, the input format is used.
76     .IP
77     Note that there is no space between this option and its argument.
78     .TP
79     .BI -o spec
80     Produce output fields according to
81     .I spec.
82     Characters are interpreted as follows:
83     .IP
84     o origin (input)
85     .IP
86     d direction (normalized)
87     .IP
88     v value (radiance)
89     .IP
90 greg 1.14 V contribution (radiance)
91     .IP
92 greg 1.1 w weight
93     .IP
94 greg 1.10 W color coefficient
95 greg 1.7 .IP
96 greg 1.1 l effective length of ray
97     .IP
98     L first intersection distance
99     .IP
100 greg 1.2 c local (u,v) coordinates
101     .IP
102 greg 1.1 p point of intersection
103     .IP
104     n normal at intersection (perturbed)
105     .IP
106     N normal at intersection (unperturbed)
107     .IP
108     s surface name
109     .IP
110     m modifier name
111     .IP
112 greg 1.6 M material name
113     .IP
114 greg 1.9 ~ tilde (end of trace marker)
115 greg 1.8 .IP
116 greg 1.1 If the letter 't' appears in
117     .I spec,
118     then the fields following will be printed for every ray traced,
119     not just the final result.
120 greg 1.7 If the capital letter 'T' is given instead of 't', then all rays will
121     be reported, including shadow testing rays to light sources.
122 greg 1.1 Spawned rays are indented one tab for each level.
123 greg 1.9 The tilde marker ('~') is a handy way of differentiating the final ray
124     value from daughter values in a traced ray tree, and usually appears
125     right before the 't' or 'T' output flags.
126 greg 1.8 E.g.,
127 greg 1.9 .I \-ov~TmW
128     will emit a tilde followed by a tab at the end of each trace,
129     which can be easily distinguished even in binary output.
130 greg 1.1 .IP
131     Note that there is no space between this option and its argument.
132     .TP
133 greg 1.6 .BI -te \ mod
134 greg 1.1 Append
135 greg 1.6 .I mod
136 greg 1.1 to the trace exclude list,
137     so that it will not be reported by the trace option
138     .I (\-o*t*).
139     Any ray striking an object having
140 greg 1.6 .I mod
141 greg 1.1 as its modifier will not be reported to the standard output with
142     the rest of the rays being traced.
143 greg 1.7 This option has no effect unless either the 't' or 'T'
144     option has been given as part of the output specifier.
145 greg 1.6 Any number of excluded modifiers may be given, but each
146 greg 1.1 must appear in a separate option.
147     .TP
148 greg 1.6 .BI -ti \ mod
149 greg 1.1 Add
150 greg 1.6 .I mod
151 greg 1.1 to the trace include list,
152 greg 1.8 so that it will be reported by the trace option.
153 greg 1.1 The program can use either an include list or an exclude
154     list, but not both.
155     .TP
156     .BI -tE \ file
157     Same as
158     .I \-te,
159 greg 1.6 except read modifiers to be excluded from
160 greg 1.1 .I file.
161     The RAYPATH environment variable determines which directories are
162     searched for this file.
163 greg 1.6 The modifier names are separated by white space in the file.
164 greg 1.1 .TP
165     .BI -tI \ file
166     Same as
167     .I \-ti,
168 greg 1.6 except read modifiers to be included from
169 greg 1.1 .I file.
170     .TP
171     .BR \-i
172     Boolean switch to compute irradiance rather than radiance values.
173     This only affects the final result, substituting a Lambertian
174     surface and multiplying the radiance by pi.
175     Glass and other transparent surfaces are ignored during this stage.
176     Light sources still appear with their original radiance values,
177     though the
178     .I \-dv
179     option (below) may be used to override this.
180     This option is especially useful in
181     conjunction with ximage(1) for computing illuminance at scene points.
182     .TP
183 greg 1.13 .BR \-u
184     Boolean switch to control uncorrelated random sampling.
185 greg 1.12 When "off", a low-discrepancy sequence is used, which reduces
186     variance but can result in a brushed appearance in specular highlights.
187     When "on", pure Monte Carlo sampling is used in all calculations.
188     .TP
189 greg 1.1 .BR \-I
190     Boolean switch to compute irradiance rather than radiance,
191     with the input origin and direction interpreted instead
192     as measurement point and orientation.
193     .TP
194     .BR \-h
195     Boolean switch for information header on output.
196     .TP
197     .BI -x \ res
198     Set the x resolution to
199     .I res.
200     The output will be flushed after every
201     .I res
202     input rays.
203     A value of zero means that no output flushing will take place.
204     .TP
205     .BI -y \ res
206     Set the y resolution to
207     .I res.
208     The program will exit after
209     .I res
210     scanlines have been processed, where a scanline is the number of rays
211     given by the
212     .I \-x
213     option, or 1 if
214     .I \-x
215     is zero.
216     A value of zero means the program will not halt until the end
217     of file is reached.
218     .IP
219     If both
220     .I \-x
221     and
222     .I \-y
223     options are given, a resolution string is printed at the beginning
224     of the output.
225     This is mostly useful for recovering image dimensions with
226     .I pvalue(1),
227     and for creating valid Radiance picture files using the color output
228     format.
229     (See the
230     .I \-f
231     option, above.)
232     .TP
233 greg 1.18 .BI -n \ nproc
234     Execute in parallel on
235     .I nproc
236     local processes.
237 greg 1.19 This option is incompatible with the
238 greg 1.18 .I \-P
239     and
240     .I \-PP,
241 greg 1.19 options.
242 greg 1.18 Multiple processes also do not work properly with ray tree output
243     using any of the
244     .I \-o*t*
245     options.
246     There is no benefit from specifying more processes than there are
247     cores available on the system or the
248     .I \-x
249     setting, which forces a wait at each flush.
250     .TP
251 greg 1.1 .BI -dj \ frac
252     Set the direct jittering to
253     .I frac.
254     A value of zero samples each source at specific sample points
255     (see the
256     .I \-ds
257     option below), giving a smoother but somewhat less accurate
258     rendering.
259     A positive value causes rays to be distributed over each
260     source sample according to its size, resulting in more accurate
261     penumbras.
262     This option should never be greater than 1, and may even
263     cause problems (such as speckle) when the value is smaller.
264     A warning about aiming failure will issued if
265     .I frac
266     is too large.
267     .TP
268     .BI -ds \ frac
269     Set the direct sampling ratio to
270     .I frac.
271     A light source will be subdivided until
272     the width of each sample area divided by the distance
273     to the illuminated point is below this ratio.
274     This assures accuracy in regions close to large area sources
275     at a slight computational expense.
276     A value of zero turns source subdivision off, sending at most one
277     shadow ray to each light source.
278     .TP
279     .BI -dt \ frac
280     Set the direct threshold to
281     .I frac.
282     Shadow testing will stop when the potential contribution of at least
283     the next and at most all remaining light sources is less than
284     this fraction of the accumulated value.
285     (See the
286     .I \-dc
287     option below.)
288     The remaining light source contributions are approximated
289     statistically.
290     A value of zero means that all light sources will be tested for shadow.
291     .TP
292     .BI \-dc \ frac
293     Set the direct certainty to
294     .I frac.
295     A value of one guarantees that the absolute accuracy of the direct calculation
296     will be equal to or better than that given in the
297     .I \-dt
298     specification.
299     A value of zero only insures that all shadow lines resulting in a contrast
300     change greater than the
301     .I \-dt
302     specification will be calculated.
303     .TP
304     .BI -dr \ N
305     Set the number of relays for secondary sources to
306     .I N.
307     A value of 0 means that secondary sources will be ignored.
308     A value of 1 means that sources will be made into first generation
309     secondary sources; a value of 2 means that first generation
310     secondary sources will also be made into second generation secondary
311     sources, and so on.
312     .TP
313     .BI -dp \ D
314     Set the secondary source presampling density to D.
315     This is the number of samples per steradian
316     that will be used to determine ahead of time whether or not
317     it is worth following shadow rays through all the reflections and/or
318     transmissions associated with a secondary source path.
319     A value of 0 means that the full secondary source path will always
320     be tested for shadows if it is tested at all.
321     .TP
322     .BR \-dv
323     Boolean switch for light source visibility.
324     With this switch off, sources will be black when viewed directly
325     although they will still participate in the direct calculation.
326     This option is mostly for the program
327     .I mkillum(1)
328     to avoid inappropriate counting of light sources, but it
329     may also be desirable in conjunction with the
330     .I \-i
331     option.
332     .TP
333     .BI -sj \ frac
334     Set the specular sampling jitter to
335     .I frac.
336     This is the degree to which the highlights are sampled
337     for rough specular materials.
338     A value of one means that all highlights will be fully sampled
339     using distributed ray tracing.
340     A value of zero means that no jittering will take place, and all
341     reflections will appear sharp even when they should be diffuse.
342     .TP
343     .BI -st \ frac
344     Set the specular sampling threshold to
345     .I frac.
346     This is the minimum fraction of reflection or transmission, under which
347     no specular sampling is performed.
348     A value of zero means that highlights will always be sampled by
349     tracing reflected or transmitted rays.
350     A value of one means that specular sampling is never used.
351     Highlights from light sources will always be correct, but
352     reflections from other surfaces will be approximated using an
353     ambient value.
354     A sampling threshold between zero and one offers a compromise between image
355     accuracy and rendering time.
356     .TP
357     .BR -bv
358     Boolean switch for back face visibility.
359     With this switch off, back faces of opaque objects will be invisible
360     to all rays.
361     This is dangerous unless the model was constructed such that
362     all surface normals on opaque objects face outward.
363     Although turning off back face visibility does not save much
364     computation time under most circumstances, it may be useful as a
365     tool for scene debugging, or for seeing through one-sided walls from
366     the outside.
367     This option has no effect on transparent or translucent materials.
368     .TP
369     .BI -av " red grn blu"
370     Set the ambient value to a radiance of
371     .I "red grn blu".
372     This is the final value used in place of an
373     indirect light calculation.
374     If the number of ambient bounces is one or greater and the ambient
375     value weight is non-zero (see
376     .I -aw
377     and
378     .I -ab
379     below), this value may be modified by the computed indirect values
380     to improve overall accuracy.
381     .TP
382     .BI -aw \ N
383     Set the relative weight of the ambient value given with the
384     .I -av
385     option to
386     .I N.
387     As new indirect irradiances are computed, they will modify the
388     default ambient value in a moving average, with the specified weight
389     assigned to the initial value given on the command and all other
390     weights set to 1.
391     If a value of 0 is given with this option, then the initial ambient
392     value is never modified.
393     This is the safest value for scenes with large differences in
394     indirect contributions, such as when both indoor and outdoor
395     (daylight) areas are visible.
396     .TP
397     .BI -ab \ N
398     Set the number of ambient bounces to
399     .I N.
400     This is the maximum number of diffuse bounces
401     computed by the indirect calculation.
402     A value of zero implies no indirect calculation.
403     .TP
404     .BI -ar \ res
405     Set the ambient resolution to
406     .I res.
407     This number will determine the maximum density of ambient values
408     used in interpolation.
409     Error will start to increase on surfaces spaced closer than
410     the scene size divided by the ambient resolution.
411     The maximum ambient value density is the scene size times the
412     ambient accuracy (see the
413     .I \-aa
414     option below) divided by the ambient resolution.
415     The scene size can be determined using
416     .I getinfo(1)
417     with the
418     .I \-d
419     option on the input octree.
420     .TP
421     .BI -aa \ acc
422     Set the ambient accuracy to
423     .I acc.
424     This value will approximately equal the error
425     from indirect illuminance interpolation.
426     A value of zero implies no interpolation.
427     .TP
428     .BI -ad \ N
429     Set the number of ambient divisions to
430     .I N.
431     The error in the Monte Carlo calculation of indirect
432     illuminance will be inversely proportional to the square
433     root of this number.
434     A value of zero implies no indirect calculation.
435     .TP
436     .BI -as \ N
437     Set the number of ambient super-samples to
438     .I N.
439     Super-samples are applied only to the ambient divisions which
440     show a significant change.
441     .TP
442     .BI -af \ fname
443     Set the ambient file to
444     .I fname.
445     This is where indirect illuminance will be stored and retrieved.
446     Normally, indirect illuminance values are kept in memory and
447     lost when the program finishes or dies.
448     By using a file, different invocations can share illuminance
449     values, saving time in the computation.
450     The ambient file is in a machine-independent binary format
451     which can be examined with
452     .I lookamb(1).
453     .IP
454     The ambient file may also be used as a means of communication and
455     data sharing between simultaneously executing processes.
456     The same file may be used by multiple processes, possibly running on
457     different machines and accessing the file via the network (ie.
458     .I nfs(4)).
459     The network lock manager
460     .I lockd(8)
461     is used to insure that this information is used consistently.
462     .IP
463     If any calculation parameters are changed or the scene
464     is modified, the old ambient file should be removed so that
465     the calculation can start over from scratch.
466     For convenience, the original ambient parameters are listed in the
467     header of the ambient file.
468     .I Getinfo(1)
469     may be used to print out this information.
470     .TP
471 greg 1.6 .BI -ae \ mod
472 greg 1.1 Append
473 greg 1.6 .I mod
474 greg 1.1 to the ambient exclude list,
475     so that it will not be considered during the indirect calculation.
476     This is a hack for speeding the indirect computation by
477     ignoring certain objects.
478     Any object having
479 greg 1.6 .I mod
480 greg 1.1 as its modifier will get the default ambient
481     level rather than a calculated value.
482 greg 1.6 Any number of excluded modifiers may be given, but each
483 greg 1.1 must appear in a separate option.
484     .TP
485 greg 1.6 .BI -ai \ mod
486 greg 1.1 Add
487 greg 1.6 .I mod
488 greg 1.1 to the ambient include list,
489     so that it will be considered during the indirect calculation.
490     The program can use either an include list or an exclude
491     list, but not both.
492     .TP
493     .BI -aE \ file
494     Same as
495     .I \-ae,
496 greg 1.6 except read modifiers to be excluded from
497 greg 1.1 .I file.
498     The RAYPATH environment variable determines which directories are
499     searched for this file.
500 greg 1.6 The modifier names are separated by white space in the file.
501 greg 1.1 .TP
502     .BI -aI \ file
503     Same as
504     .I \-ai,
505 greg 1.6 except read modifiers to be included from
506 greg 1.1 .I file.
507     .TP
508     .BI -me " rext gext bext"
509     Set the global medium extinction coefficient to the indicated color,
510     in units of 1/distance (distance in world coordinates).
511     Light will be scattered or absorbed over distance according to
512     this value.
513     The ratio of scattering to total scattering plus absorption is set
514     by the albedo parameter, described below.
515     .TP
516     .BI -ma " ralb galb balb"
517     Set the global medium albedo to the given value between 0\00\00
518     and 1\01\01.
519     A zero value means that all light not transmitted by the medium
520     is absorbed.
521     A unitary value means that all light not transmitted by the medium
522     is scattered in some new direction.
523     The isotropy of scattering is determined by the Heyney-Greenstein
524     parameter, described below.
525     .TP
526     .BI \-mg \ gecc
527     Set the medium Heyney-Greenstein eccentricity parameter to
528     .I gecc.
529     This parameter determines how strongly scattering favors the forward
530     direction.
531     A value of 0 indicates perfectly isotropic scattering.
532     As this parameter approaches 1, scattering tends to prefer the
533     forward direction.
534     .TP
535     .BI \-ms \ sampdist
536     Set the medium sampling distance to
537     .I sampdist,
538     in world coordinate units.
539     During source scattering, this will be the average distance between
540     adjacent samples.
541     A value of 0 means that only one sample will be taken per light
542     source within a given scattering volume.
543     .TP
544     .BI -lr \ N
545     Limit reflections to a maximum of
546     .I N.
547 greg 1.11 If
548     .I N
549     is zero or negative, then Russian roulette is used for ray
550     termination, and the
551     .I -lw
552     setting (below) must be positive.
553     If N is a negative integer, then this sets the upper limit
554     of reflections past which Russian roulette will not be used.
555     In scenes with dielectrics and total internal reflection,
556     a setting of 0 (no limit) may cause a stack overflow.
557 greg 1.1 .TP
558     .BI -lw \ frac
559     Limit the weight of each ray to a minimum of
560     .I frac.
561 greg 1.11 During ray-tracing, a record is kept of the estimated contribution
562     (weight) a ray would have in the image.
563     If this weight is less than the specified minimum and the
564     .I -lr
565     setting (above) is positive, the ray is not traced.
566     Otherwise, Russian roulette is used to
567     continue rays with a probability equal to the ray weight
568     divided by the given
569     .I frac.
570 greg 1.1 .TP
571     .BR -ld
572     Boolean switch to limit ray distance.
573     If this option is set, then rays will only be traced as far as the
574     magnitude of each direction vector.
575     Otherwise, vector magnitude is ignored and rays are traced to infinity.
576     .TP
577     .BI -e \ efile
578     Send error messages and progress reports to
579     .I efile
580     instead of the standard error.
581     .TP
582     .BR \-w
583     Boolean switch to suppress warning messages.
584     .TP
585     .BI \-P \ pfile
586     Execute in a persistent mode, using
587     .I pfile
588     as the control file.
589     Persistent execution means that after reaching end-of-file on
590     its input,
591     .I rtrace
592     will fork a child process that will wait for another
593     .I rtrace
594     command with the same
595     .I \-P
596     option to attach to it.
597     (Note that since the rest of the command line options will be those
598     of the original invocation, it is not necessary to give any arguments
599     besides
600     .I \-P
601     for subsequent calls.)
602     Killing the process is achieved with the
603     .I kill(1)
604     command.
605     (The process ID in the first line of
606     .I pfile
607     may be used to identify the waiting
608     .I rtrace
609     process.)
610     This option may be used with the
611     .I \-fr
612     option of
613     .I pinterp(1)
614     to avoid the cost of starting up
615     .I rtrace
616     many times.
617     .TP
618     .BI \-PP \ pfile
619     Execute in continuous-forking persistent mode, using
620     .I pfile
621     as the control file.
622     The difference between this option and the
623     .I \-P
624     option described above is the creation of multiple duplicate
625     processes to handle any number of attaches.
626     This provides a simple and reliable mechanism of memory sharing
627     on most multiprocessing platforms, since the
628     .I fork(2)
629     system call will share memory on a copy-on-write basis.
630     .SH EXAMPLES
631     To compute radiance values for the rays listed in samples.inp:
632     .IP "" .2i
633 greg 1.15 rtrace \-ov scene.oct < samples.inp > radiance.out
634 greg 1.1 .PP
635     To compute illuminance values at locations selected with the 't'
636     command of
637     .I ximage(1):
638     .IP "" .2i
639 greg 1.16 ximage scene.hdr | rtrace \-h \-x 1 \-i scene.oct | rcalc \-e '$1=47.4*$1+120*$2+11.6*$3'
640 greg 1.1 .PP
641     To record the object identifier corresponding to each pixel in an image:
642     .IP "" .2i
643 greg 1.16 vwrays \-fd scene.hdr | rtrace \-fda `vwrays \-d scene.hdr` \-os scene.oct
644 greg 1.1 .PP
645     To compute an image with an unusual view mapping:
646     .IP "" .2i
647 greg 1.17 cnt 480 640 | rcalc \-e 'xr:640;yr:480' \-f unusual_view.cal | rtrace
648 greg 1.16 \-x 640 \-y 480 \-fac scene.oct > unusual.hdr
649 greg 1.1 .SH ENVIRONMENT
650     RAYPATH the directories to check for auxiliary files.
651     .SH FILES
652 greg 1.5 /tmp/rtXXXXXX common header information for picture sequence
653 greg 1.1 .SH DIAGNOSTICS
654     If the program terminates from an input related error, the exit status
655     will be 1.
656     A system related error results in an exit status of 2.
657     If the program receives a signal that is caught, it will exit with a status
658     of 3.
659     In each case, an error message will be printed to the standard error, or
660     to the file designated by the
661     .I \-e
662     option.
663     .SH AUTHOR
664     Greg Ward
665     .SH "SEE ALSO"
666     getinfo(1), lookamb(1), oconv(1), pfilt(1), pinterp(1),
667 greg 1.9 pvalue(1), rpict(1), rtcontrib(1), rvu(1), vwrays(1), ximage(1)