ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/man/man1/rtrace.1
Revision: 1.14
Committed: Sun Feb 5 22:22:20 2006 UTC (18 years, 3 months ago) by greg
Branch: MAIN
CVS Tags: rad3R8
Changes since 1.13: +3 -1 lines
Log Message:
Added -V option to rtcontrib and -oV option to rtrace to report contributions

File Contents

# User Rev Content
1 greg 1.14 .\" RCSid "$Id: rtrace.1,v 1.13 2005/06/14 03:34:14 greg Exp $"
2 greg 1.1 .TH RTRACE 1 10/17/97 RADIANCE
3     .SH NAME
4     rtrace - trace rays in RADIANCE scene
5     .SH SYNOPSIS
6     .B rtrace
7     [
8     .B options
9     ]
10     [
11     .B $EVAR
12     ]
13     [
14     .B @file
15     ]
16     .B octree
17     .br
18     .B "rtrace [ options ] \-defaults"
19     .SH DESCRIPTION
20     .I Rtrace
21     traces rays from the standard input through the RADIANCE scene given by
22     .I octree
23     and sends the results to the standard output.
24     (The octree may be given as the output of a command enclosed in quotes
25     and preceded by a `!'.)\0
26     Input for each ray is:
27    
28     xorg yorg zorg xdir ydir zdir
29    
30     If the direction vector is (0,0,0), a bogus record
31     is printed and the output is flushed if the
32     .I -x
33     value is unset or zero.
34     (See the notes on this option below.)\0
35     This may be useful for programs that run
36     .I rtrace
37     as a separate process.
38     In the second form, the default values
39     for the options (modified by those options present)
40     are printed with a brief explanation.
41     .PP
42     Options may be given on the command line and/or read from the
43     environment and/or read from a file.
44     A command argument beginning with a dollar sign ('$') is immediately
45     replaced by the contents of the given environment variable.
46     A command argument beginning with an at sign ('@') is immediately
47     replaced by the contents of the given file.
48     Most options are followed by one or more arguments, which must be
49     separated from the option and each other by white space.
50     The exceptions to this rule are the boolean options.
51     Normally, the appearance of a boolean option causes a feature to
52     be "toggled", that is switched from off to on or on to off
53     depending on its previous state.
54     Boolean options may also be set
55     explicitly by following them immediately with a '+' or '-', meaning
56     on or off, respectively.
57     Synonyms for '+' are any of the characters "yYtT1", and synonyms
58     for '-' are any of the characters "nNfF0".
59     All other characters will generate an error.
60     .TP 10n
61     .BI -f io
62     Format input according to the character
63     .I i
64     and output according to the character
65     .I o.
66     .I Rtrace
67     understands the following input and output formats: 'a' for
68     ascii, 'f' for single-precision floating point,
69     and 'd' for double-precision floating point.
70     In addition to these three choices, the character 'c' may be used
71     to denote 4-byte floating point (Radiance) color format
72     for the output of values only
73     .I (\-ov
74     option, below).
75     If the output character is missing, the input format is used.
76     .IP
77     Note that there is no space between this option and its argument.
78     .TP
79     .BI -o spec
80     Produce output fields according to
81     .I spec.
82     Characters are interpreted as follows:
83     .IP
84     o origin (input)
85     .IP
86     d direction (normalized)
87     .IP
88     v value (radiance)
89     .IP
90 greg 1.14 V contribution (radiance)
91     .IP
92 greg 1.1 w weight
93     .IP
94 greg 1.10 W color coefficient
95 greg 1.7 .IP
96 greg 1.1 l effective length of ray
97     .IP
98     L first intersection distance
99     .IP
100 greg 1.2 c local (u,v) coordinates
101     .IP
102 greg 1.1 p point of intersection
103     .IP
104     n normal at intersection (perturbed)
105     .IP
106     N normal at intersection (unperturbed)
107     .IP
108     s surface name
109     .IP
110     m modifier name
111     .IP
112 greg 1.6 M material name
113     .IP
114 greg 1.9 ~ tilde (end of trace marker)
115 greg 1.8 .IP
116 greg 1.1 If the letter 't' appears in
117     .I spec,
118     then the fields following will be printed for every ray traced,
119     not just the final result.
120 greg 1.7 If the capital letter 'T' is given instead of 't', then all rays will
121     be reported, including shadow testing rays to light sources.
122 greg 1.1 Spawned rays are indented one tab for each level.
123 greg 1.9 The tilde marker ('~') is a handy way of differentiating the final ray
124     value from daughter values in a traced ray tree, and usually appears
125     right before the 't' or 'T' output flags.
126 greg 1.8 E.g.,
127 greg 1.9 .I \-ov~TmW
128     will emit a tilde followed by a tab at the end of each trace,
129     which can be easily distinguished even in binary output.
130 greg 1.1 .IP
131     Note that there is no space between this option and its argument.
132     .TP
133 greg 1.6 .BI -te \ mod
134 greg 1.1 Append
135 greg 1.6 .I mod
136 greg 1.1 to the trace exclude list,
137     so that it will not be reported by the trace option
138     .I (\-o*t*).
139     Any ray striking an object having
140 greg 1.6 .I mod
141 greg 1.1 as its modifier will not be reported to the standard output with
142     the rest of the rays being traced.
143 greg 1.7 This option has no effect unless either the 't' or 'T'
144     option has been given as part of the output specifier.
145 greg 1.6 Any number of excluded modifiers may be given, but each
146 greg 1.1 must appear in a separate option.
147     .TP
148 greg 1.6 .BI -ti \ mod
149 greg 1.1 Add
150 greg 1.6 .I mod
151 greg 1.1 to the trace include list,
152 greg 1.8 so that it will be reported by the trace option.
153 greg 1.1 The program can use either an include list or an exclude
154     list, but not both.
155     .TP
156     .BI -tE \ file
157     Same as
158     .I \-te,
159 greg 1.6 except read modifiers to be excluded from
160 greg 1.1 .I file.
161     The RAYPATH environment variable determines which directories are
162     searched for this file.
163 greg 1.6 The modifier names are separated by white space in the file.
164 greg 1.1 .TP
165     .BI -tI \ file
166     Same as
167     .I \-ti,
168 greg 1.6 except read modifiers to be included from
169 greg 1.1 .I file.
170     .TP
171     .BR \-i
172     Boolean switch to compute irradiance rather than radiance values.
173     This only affects the final result, substituting a Lambertian
174     surface and multiplying the radiance by pi.
175     Glass and other transparent surfaces are ignored during this stage.
176     Light sources still appear with their original radiance values,
177     though the
178     .I \-dv
179     option (below) may be used to override this.
180     This option is especially useful in
181     conjunction with ximage(1) for computing illuminance at scene points.
182     .TP
183 greg 1.13 .BR \-u
184     Boolean switch to control uncorrelated random sampling.
185 greg 1.12 When "off", a low-discrepancy sequence is used, which reduces
186     variance but can result in a brushed appearance in specular highlights.
187     When "on", pure Monte Carlo sampling is used in all calculations.
188     .TP
189 greg 1.1 .BR \-I
190     Boolean switch to compute irradiance rather than radiance,
191     with the input origin and direction interpreted instead
192     as measurement point and orientation.
193     .TP
194     .BR \-h
195     Boolean switch for information header on output.
196     .TP
197     .BI -x \ res
198     Set the x resolution to
199     .I res.
200     The output will be flushed after every
201     .I res
202     input rays.
203     A value of zero means that no output flushing will take place.
204     .TP
205     .BI -y \ res
206     Set the y resolution to
207     .I res.
208     The program will exit after
209     .I res
210     scanlines have been processed, where a scanline is the number of rays
211     given by the
212     .I \-x
213     option, or 1 if
214     .I \-x
215     is zero.
216     A value of zero means the program will not halt until the end
217     of file is reached.
218     .IP
219     If both
220     .I \-x
221     and
222     .I \-y
223     options are given, a resolution string is printed at the beginning
224     of the output.
225     This is mostly useful for recovering image dimensions with
226     .I pvalue(1),
227     and for creating valid Radiance picture files using the color output
228     format.
229     (See the
230     .I \-f
231     option, above.)
232     .TP
233     .BI -dj \ frac
234     Set the direct jittering to
235     .I frac.
236     A value of zero samples each source at specific sample points
237     (see the
238     .I \-ds
239     option below), giving a smoother but somewhat less accurate
240     rendering.
241     A positive value causes rays to be distributed over each
242     source sample according to its size, resulting in more accurate
243     penumbras.
244     This option should never be greater than 1, and may even
245     cause problems (such as speckle) when the value is smaller.
246     A warning about aiming failure will issued if
247     .I frac
248     is too large.
249     .TP
250     .BI -ds \ frac
251     Set the direct sampling ratio to
252     .I frac.
253     A light source will be subdivided until
254     the width of each sample area divided by the distance
255     to the illuminated point is below this ratio.
256     This assures accuracy in regions close to large area sources
257     at a slight computational expense.
258     A value of zero turns source subdivision off, sending at most one
259     shadow ray to each light source.
260     .TP
261     .BI -dt \ frac
262     Set the direct threshold to
263     .I frac.
264     Shadow testing will stop when the potential contribution of at least
265     the next and at most all remaining light sources is less than
266     this fraction of the accumulated value.
267     (See the
268     .I \-dc
269     option below.)
270     The remaining light source contributions are approximated
271     statistically.
272     A value of zero means that all light sources will be tested for shadow.
273     .TP
274     .BI \-dc \ frac
275     Set the direct certainty to
276     .I frac.
277     A value of one guarantees that the absolute accuracy of the direct calculation
278     will be equal to or better than that given in the
279     .I \-dt
280     specification.
281     A value of zero only insures that all shadow lines resulting in a contrast
282     change greater than the
283     .I \-dt
284     specification will be calculated.
285     .TP
286     .BI -dr \ N
287     Set the number of relays for secondary sources to
288     .I N.
289     A value of 0 means that secondary sources will be ignored.
290     A value of 1 means that sources will be made into first generation
291     secondary sources; a value of 2 means that first generation
292     secondary sources will also be made into second generation secondary
293     sources, and so on.
294     .TP
295     .BI -dp \ D
296     Set the secondary source presampling density to D.
297     This is the number of samples per steradian
298     that will be used to determine ahead of time whether or not
299     it is worth following shadow rays through all the reflections and/or
300     transmissions associated with a secondary source path.
301     A value of 0 means that the full secondary source path will always
302     be tested for shadows if it is tested at all.
303     .TP
304     .BR \-dv
305     Boolean switch for light source visibility.
306     With this switch off, sources will be black when viewed directly
307     although they will still participate in the direct calculation.
308     This option is mostly for the program
309     .I mkillum(1)
310     to avoid inappropriate counting of light sources, but it
311     may also be desirable in conjunction with the
312     .I \-i
313     option.
314     .TP
315     .BI -sj \ frac
316     Set the specular sampling jitter to
317     .I frac.
318     This is the degree to which the highlights are sampled
319     for rough specular materials.
320     A value of one means that all highlights will be fully sampled
321     using distributed ray tracing.
322     A value of zero means that no jittering will take place, and all
323     reflections will appear sharp even when they should be diffuse.
324     .TP
325     .BI -st \ frac
326     Set the specular sampling threshold to
327     .I frac.
328     This is the minimum fraction of reflection or transmission, under which
329     no specular sampling is performed.
330     A value of zero means that highlights will always be sampled by
331     tracing reflected or transmitted rays.
332     A value of one means that specular sampling is never used.
333     Highlights from light sources will always be correct, but
334     reflections from other surfaces will be approximated using an
335     ambient value.
336     A sampling threshold between zero and one offers a compromise between image
337     accuracy and rendering time.
338     .TP
339     .BR -bv
340     Boolean switch for back face visibility.
341     With this switch off, back faces of opaque objects will be invisible
342     to all rays.
343     This is dangerous unless the model was constructed such that
344     all surface normals on opaque objects face outward.
345     Although turning off back face visibility does not save much
346     computation time under most circumstances, it may be useful as a
347     tool for scene debugging, or for seeing through one-sided walls from
348     the outside.
349     This option has no effect on transparent or translucent materials.
350     .TP
351     .BI -av " red grn blu"
352     Set the ambient value to a radiance of
353     .I "red grn blu".
354     This is the final value used in place of an
355     indirect light calculation.
356     If the number of ambient bounces is one or greater and the ambient
357     value weight is non-zero (see
358     .I -aw
359     and
360     .I -ab
361     below), this value may be modified by the computed indirect values
362     to improve overall accuracy.
363     .TP
364     .BI -aw \ N
365     Set the relative weight of the ambient value given with the
366     .I -av
367     option to
368     .I N.
369     As new indirect irradiances are computed, they will modify the
370     default ambient value in a moving average, with the specified weight
371     assigned to the initial value given on the command and all other
372     weights set to 1.
373     If a value of 0 is given with this option, then the initial ambient
374     value is never modified.
375     This is the safest value for scenes with large differences in
376     indirect contributions, such as when both indoor and outdoor
377     (daylight) areas are visible.
378     .TP
379     .BI -ab \ N
380     Set the number of ambient bounces to
381     .I N.
382     This is the maximum number of diffuse bounces
383     computed by the indirect calculation.
384     A value of zero implies no indirect calculation.
385     .TP
386     .BI -ar \ res
387     Set the ambient resolution to
388     .I res.
389     This number will determine the maximum density of ambient values
390     used in interpolation.
391     Error will start to increase on surfaces spaced closer than
392     the scene size divided by the ambient resolution.
393     The maximum ambient value density is the scene size times the
394     ambient accuracy (see the
395     .I \-aa
396     option below) divided by the ambient resolution.
397     The scene size can be determined using
398     .I getinfo(1)
399     with the
400     .I \-d
401     option on the input octree.
402     .TP
403     .BI -aa \ acc
404     Set the ambient accuracy to
405     .I acc.
406     This value will approximately equal the error
407     from indirect illuminance interpolation.
408     A value of zero implies no interpolation.
409     .TP
410     .BI -ad \ N
411     Set the number of ambient divisions to
412     .I N.
413     The error in the Monte Carlo calculation of indirect
414     illuminance will be inversely proportional to the square
415     root of this number.
416     A value of zero implies no indirect calculation.
417     .TP
418     .BI -as \ N
419     Set the number of ambient super-samples to
420     .I N.
421     Super-samples are applied only to the ambient divisions which
422     show a significant change.
423     .TP
424     .BI -af \ fname
425     Set the ambient file to
426     .I fname.
427     This is where indirect illuminance will be stored and retrieved.
428     Normally, indirect illuminance values are kept in memory and
429     lost when the program finishes or dies.
430     By using a file, different invocations can share illuminance
431     values, saving time in the computation.
432     The ambient file is in a machine-independent binary format
433     which can be examined with
434     .I lookamb(1).
435     .IP
436     The ambient file may also be used as a means of communication and
437     data sharing between simultaneously executing processes.
438     The same file may be used by multiple processes, possibly running on
439     different machines and accessing the file via the network (ie.
440     .I nfs(4)).
441     The network lock manager
442     .I lockd(8)
443     is used to insure that this information is used consistently.
444     .IP
445     If any calculation parameters are changed or the scene
446     is modified, the old ambient file should be removed so that
447     the calculation can start over from scratch.
448     For convenience, the original ambient parameters are listed in the
449     header of the ambient file.
450     .I Getinfo(1)
451     may be used to print out this information.
452     .TP
453 greg 1.6 .BI -ae \ mod
454 greg 1.1 Append
455 greg 1.6 .I mod
456 greg 1.1 to the ambient exclude list,
457     so that it will not be considered during the indirect calculation.
458     This is a hack for speeding the indirect computation by
459     ignoring certain objects.
460     Any object having
461 greg 1.6 .I mod
462 greg 1.1 as its modifier will get the default ambient
463     level rather than a calculated value.
464 greg 1.6 Any number of excluded modifiers may be given, but each
465 greg 1.1 must appear in a separate option.
466     .TP
467 greg 1.6 .BI -ai \ mod
468 greg 1.1 Add
469 greg 1.6 .I mod
470 greg 1.1 to the ambient include list,
471     so that it will be considered during the indirect calculation.
472     The program can use either an include list or an exclude
473     list, but not both.
474     .TP
475     .BI -aE \ file
476     Same as
477     .I \-ae,
478 greg 1.6 except read modifiers to be excluded from
479 greg 1.1 .I file.
480     The RAYPATH environment variable determines which directories are
481     searched for this file.
482 greg 1.6 The modifier names are separated by white space in the file.
483 greg 1.1 .TP
484     .BI -aI \ file
485     Same as
486     .I \-ai,
487 greg 1.6 except read modifiers to be included from
488 greg 1.1 .I file.
489     .TP
490     .BI -me " rext gext bext"
491     Set the global medium extinction coefficient to the indicated color,
492     in units of 1/distance (distance in world coordinates).
493     Light will be scattered or absorbed over distance according to
494     this value.
495     The ratio of scattering to total scattering plus absorption is set
496     by the albedo parameter, described below.
497     .TP
498     .BI -ma " ralb galb balb"
499     Set the global medium albedo to the given value between 0\00\00
500     and 1\01\01.
501     A zero value means that all light not transmitted by the medium
502     is absorbed.
503     A unitary value means that all light not transmitted by the medium
504     is scattered in some new direction.
505     The isotropy of scattering is determined by the Heyney-Greenstein
506     parameter, described below.
507     .TP
508     .BI \-mg \ gecc
509     Set the medium Heyney-Greenstein eccentricity parameter to
510     .I gecc.
511     This parameter determines how strongly scattering favors the forward
512     direction.
513     A value of 0 indicates perfectly isotropic scattering.
514     As this parameter approaches 1, scattering tends to prefer the
515     forward direction.
516     .TP
517     .BI \-ms \ sampdist
518     Set the medium sampling distance to
519     .I sampdist,
520     in world coordinate units.
521     During source scattering, this will be the average distance between
522     adjacent samples.
523     A value of 0 means that only one sample will be taken per light
524     source within a given scattering volume.
525     .TP
526     .BI -lr \ N
527     Limit reflections to a maximum of
528     .I N.
529 greg 1.11 If
530     .I N
531     is zero or negative, then Russian roulette is used for ray
532     termination, and the
533     .I -lw
534     setting (below) must be positive.
535     If N is a negative integer, then this sets the upper limit
536     of reflections past which Russian roulette will not be used.
537     In scenes with dielectrics and total internal reflection,
538     a setting of 0 (no limit) may cause a stack overflow.
539 greg 1.1 .TP
540     .BI -lw \ frac
541     Limit the weight of each ray to a minimum of
542     .I frac.
543 greg 1.11 During ray-tracing, a record is kept of the estimated contribution
544     (weight) a ray would have in the image.
545     If this weight is less than the specified minimum and the
546     .I -lr
547     setting (above) is positive, the ray is not traced.
548     Otherwise, Russian roulette is used to
549     continue rays with a probability equal to the ray weight
550     divided by the given
551     .I frac.
552 greg 1.1 .TP
553     .BR -ld
554     Boolean switch to limit ray distance.
555     If this option is set, then rays will only be traced as far as the
556     magnitude of each direction vector.
557     Otherwise, vector magnitude is ignored and rays are traced to infinity.
558     .TP
559     .BI -e \ efile
560     Send error messages and progress reports to
561     .I efile
562     instead of the standard error.
563     .TP
564     .BR \-w
565     Boolean switch to suppress warning messages.
566     .TP
567     .BI \-P \ pfile
568     Execute in a persistent mode, using
569     .I pfile
570     as the control file.
571     Persistent execution means that after reaching end-of-file on
572     its input,
573     .I rtrace
574     will fork a child process that will wait for another
575     .I rtrace
576     command with the same
577     .I \-P
578     option to attach to it.
579     (Note that since the rest of the command line options will be those
580     of the original invocation, it is not necessary to give any arguments
581     besides
582     .I \-P
583     for subsequent calls.)
584     Killing the process is achieved with the
585     .I kill(1)
586     command.
587     (The process ID in the first line of
588     .I pfile
589     may be used to identify the waiting
590     .I rtrace
591     process.)
592     This option may be used with the
593     .I \-fr
594     option of
595     .I pinterp(1)
596     to avoid the cost of starting up
597     .I rtrace
598     many times.
599     .TP
600     .BI \-PP \ pfile
601     Execute in continuous-forking persistent mode, using
602     .I pfile
603     as the control file.
604     The difference between this option and the
605     .I \-P
606     option described above is the creation of multiple duplicate
607     processes to handle any number of attaches.
608     This provides a simple and reliable mechanism of memory sharing
609     on most multiprocessing platforms, since the
610     .I fork(2)
611     system call will share memory on a copy-on-write basis.
612     .SH EXAMPLES
613     To compute radiance values for the rays listed in samples.inp:
614     .IP "" .2i
615     rtrace -ov scene.oct < samples.inp > radiance.out
616     .PP
617     To compute illuminance values at locations selected with the 't'
618     command of
619     .I ximage(1):
620     .IP "" .2i
621     ximage scene.pic | rtrace -h -x 1 -i scene.oct | rcalc -e '$1=47.4*$1+120*$2+11.6*$3'
622     .PP
623     To record the object identifier corresponding to each pixel in an image:
624     .IP "" .2i
625     vwrays -fd scene.pic | rtrace -fda `vwrays -d scene.pic` -os scene.oct
626     .PP
627     To compute an image with an unusual view mapping:
628     .IP "" .2i
629     cnt 640 480 | rcalc -e 'xr:640;yr:480' -f unusual_view.cal | rtrace
630     -x 640 -y 480 -fac scene.oct > unusual.pic
631     .SH ENVIRONMENT
632     RAYPATH the directories to check for auxiliary files.
633     .SH FILES
634 greg 1.5 /tmp/rtXXXXXX common header information for picture sequence
635 greg 1.1 .SH DIAGNOSTICS
636     If the program terminates from an input related error, the exit status
637     will be 1.
638     A system related error results in an exit status of 2.
639     If the program receives a signal that is caught, it will exit with a status
640     of 3.
641     In each case, an error message will be printed to the standard error, or
642     to the file designated by the
643     .I \-e
644     option.
645     .SH AUTHOR
646     Greg Ward
647     .SH "SEE ALSO"
648     getinfo(1), lookamb(1), oconv(1), pfilt(1), pinterp(1),
649 greg 1.9 pvalue(1), rpict(1), rtcontrib(1), rvu(1), vwrays(1), ximage(1)