ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/man/man1/rtrace.1
Revision: 1.13
Committed: Tue Jun 14 03:34:14 2005 UTC (18 years, 11 months ago) by greg
Branch: MAIN
CVS Tags: rad3R7P2, rad3R7P1
Changes since 1.12: +3 -3 lines
Log Message:
Had to change new -R rendering option to -u to avoid conflict with rpiece

File Contents

# User Rev Content
1 greg 1.13 .\" RCSid "$Id: rtrace.1,v 1.12 2005/06/13 20:07:55 greg Exp $"
2 greg 1.1 .TH RTRACE 1 10/17/97 RADIANCE
3     .SH NAME
4     rtrace - trace rays in RADIANCE scene
5     .SH SYNOPSIS
6     .B rtrace
7     [
8     .B options
9     ]
10     [
11     .B $EVAR
12     ]
13     [
14     .B @file
15     ]
16     .B octree
17     .br
18     .B "rtrace [ options ] \-defaults"
19     .SH DESCRIPTION
20     .I Rtrace
21     traces rays from the standard input through the RADIANCE scene given by
22     .I octree
23     and sends the results to the standard output.
24     (The octree may be given as the output of a command enclosed in quotes
25     and preceded by a `!'.)\0
26     Input for each ray is:
27    
28     xorg yorg zorg xdir ydir zdir
29    
30     If the direction vector is (0,0,0), a bogus record
31     is printed and the output is flushed if the
32     .I -x
33     value is unset or zero.
34     (See the notes on this option below.)\0
35     This may be useful for programs that run
36     .I rtrace
37     as a separate process.
38     In the second form, the default values
39     for the options (modified by those options present)
40     are printed with a brief explanation.
41     .PP
42     Options may be given on the command line and/or read from the
43     environment and/or read from a file.
44     A command argument beginning with a dollar sign ('$') is immediately
45     replaced by the contents of the given environment variable.
46     A command argument beginning with an at sign ('@') is immediately
47     replaced by the contents of the given file.
48     Most options are followed by one or more arguments, which must be
49     separated from the option and each other by white space.
50     The exceptions to this rule are the boolean options.
51     Normally, the appearance of a boolean option causes a feature to
52     be "toggled", that is switched from off to on or on to off
53     depending on its previous state.
54     Boolean options may also be set
55     explicitly by following them immediately with a '+' or '-', meaning
56     on or off, respectively.
57     Synonyms for '+' are any of the characters "yYtT1", and synonyms
58     for '-' are any of the characters "nNfF0".
59     All other characters will generate an error.
60     .TP 10n
61     .BI -f io
62     Format input according to the character
63     .I i
64     and output according to the character
65     .I o.
66     .I Rtrace
67     understands the following input and output formats: 'a' for
68     ascii, 'f' for single-precision floating point,
69     and 'd' for double-precision floating point.
70     In addition to these three choices, the character 'c' may be used
71     to denote 4-byte floating point (Radiance) color format
72     for the output of values only
73     .I (\-ov
74     option, below).
75     If the output character is missing, the input format is used.
76     .IP
77     Note that there is no space between this option and its argument.
78     .TP
79     .BI -o spec
80     Produce output fields according to
81     .I spec.
82     Characters are interpreted as follows:
83     .IP
84     o origin (input)
85     .IP
86     d direction (normalized)
87     .IP
88     v value (radiance)
89     .IP
90     w weight
91     .IP
92 greg 1.10 W color coefficient
93 greg 1.7 .IP
94 greg 1.1 l effective length of ray
95     .IP
96     L first intersection distance
97     .IP
98 greg 1.2 c local (u,v) coordinates
99     .IP
100 greg 1.1 p point of intersection
101     .IP
102     n normal at intersection (perturbed)
103     .IP
104     N normal at intersection (unperturbed)
105     .IP
106     s surface name
107     .IP
108     m modifier name
109     .IP
110 greg 1.6 M material name
111     .IP
112 greg 1.9 ~ tilde (end of trace marker)
113 greg 1.8 .IP
114 greg 1.1 If the letter 't' appears in
115     .I spec,
116     then the fields following will be printed for every ray traced,
117     not just the final result.
118 greg 1.7 If the capital letter 'T' is given instead of 't', then all rays will
119     be reported, including shadow testing rays to light sources.
120 greg 1.1 Spawned rays are indented one tab for each level.
121 greg 1.9 The tilde marker ('~') is a handy way of differentiating the final ray
122     value from daughter values in a traced ray tree, and usually appears
123     right before the 't' or 'T' output flags.
124 greg 1.8 E.g.,
125 greg 1.9 .I \-ov~TmW
126     will emit a tilde followed by a tab at the end of each trace,
127     which can be easily distinguished even in binary output.
128 greg 1.1 .IP
129     Note that there is no space between this option and its argument.
130     .TP
131 greg 1.6 .BI -te \ mod
132 greg 1.1 Append
133 greg 1.6 .I mod
134 greg 1.1 to the trace exclude list,
135     so that it will not be reported by the trace option
136     .I (\-o*t*).
137     Any ray striking an object having
138 greg 1.6 .I mod
139 greg 1.1 as its modifier will not be reported to the standard output with
140     the rest of the rays being traced.
141 greg 1.7 This option has no effect unless either the 't' or 'T'
142     option has been given as part of the output specifier.
143 greg 1.6 Any number of excluded modifiers may be given, but each
144 greg 1.1 must appear in a separate option.
145     .TP
146 greg 1.6 .BI -ti \ mod
147 greg 1.1 Add
148 greg 1.6 .I mod
149 greg 1.1 to the trace include list,
150 greg 1.8 so that it will be reported by the trace option.
151 greg 1.1 The program can use either an include list or an exclude
152     list, but not both.
153     .TP
154     .BI -tE \ file
155     Same as
156     .I \-te,
157 greg 1.6 except read modifiers to be excluded from
158 greg 1.1 .I file.
159     The RAYPATH environment variable determines which directories are
160     searched for this file.
161 greg 1.6 The modifier names are separated by white space in the file.
162 greg 1.1 .TP
163     .BI -tI \ file
164     Same as
165     .I \-ti,
166 greg 1.6 except read modifiers to be included from
167 greg 1.1 .I file.
168     .TP
169     .BR \-i
170     Boolean switch to compute irradiance rather than radiance values.
171     This only affects the final result, substituting a Lambertian
172     surface and multiplying the radiance by pi.
173     Glass and other transparent surfaces are ignored during this stage.
174     Light sources still appear with their original radiance values,
175     though the
176     .I \-dv
177     option (below) may be used to override this.
178     This option is especially useful in
179     conjunction with ximage(1) for computing illuminance at scene points.
180     .TP
181 greg 1.13 .BR \-u
182     Boolean switch to control uncorrelated random sampling.
183 greg 1.12 When "off", a low-discrepancy sequence is used, which reduces
184     variance but can result in a brushed appearance in specular highlights.
185     When "on", pure Monte Carlo sampling is used in all calculations.
186     .TP
187 greg 1.1 .BR \-I
188     Boolean switch to compute irradiance rather than radiance,
189     with the input origin and direction interpreted instead
190     as measurement point and orientation.
191     .TP
192     .BR \-h
193     Boolean switch for information header on output.
194     .TP
195     .BI -x \ res
196     Set the x resolution to
197     .I res.
198     The output will be flushed after every
199     .I res
200     input rays.
201     A value of zero means that no output flushing will take place.
202     .TP
203     .BI -y \ res
204     Set the y resolution to
205     .I res.
206     The program will exit after
207     .I res
208     scanlines have been processed, where a scanline is the number of rays
209     given by the
210     .I \-x
211     option, or 1 if
212     .I \-x
213     is zero.
214     A value of zero means the program will not halt until the end
215     of file is reached.
216     .IP
217     If both
218     .I \-x
219     and
220     .I \-y
221     options are given, a resolution string is printed at the beginning
222     of the output.
223     This is mostly useful for recovering image dimensions with
224     .I pvalue(1),
225     and for creating valid Radiance picture files using the color output
226     format.
227     (See the
228     .I \-f
229     option, above.)
230     .TP
231     .BI -dj \ frac
232     Set the direct jittering to
233     .I frac.
234     A value of zero samples each source at specific sample points
235     (see the
236     .I \-ds
237     option below), giving a smoother but somewhat less accurate
238     rendering.
239     A positive value causes rays to be distributed over each
240     source sample according to its size, resulting in more accurate
241     penumbras.
242     This option should never be greater than 1, and may even
243     cause problems (such as speckle) when the value is smaller.
244     A warning about aiming failure will issued if
245     .I frac
246     is too large.
247     .TP
248     .BI -ds \ frac
249     Set the direct sampling ratio to
250     .I frac.
251     A light source will be subdivided until
252     the width of each sample area divided by the distance
253     to the illuminated point is below this ratio.
254     This assures accuracy in regions close to large area sources
255     at a slight computational expense.
256     A value of zero turns source subdivision off, sending at most one
257     shadow ray to each light source.
258     .TP
259     .BI -dt \ frac
260     Set the direct threshold to
261     .I frac.
262     Shadow testing will stop when the potential contribution of at least
263     the next and at most all remaining light sources is less than
264     this fraction of the accumulated value.
265     (See the
266     .I \-dc
267     option below.)
268     The remaining light source contributions are approximated
269     statistically.
270     A value of zero means that all light sources will be tested for shadow.
271     .TP
272     .BI \-dc \ frac
273     Set the direct certainty to
274     .I frac.
275     A value of one guarantees that the absolute accuracy of the direct calculation
276     will be equal to or better than that given in the
277     .I \-dt
278     specification.
279     A value of zero only insures that all shadow lines resulting in a contrast
280     change greater than the
281     .I \-dt
282     specification will be calculated.
283     .TP
284     .BI -dr \ N
285     Set the number of relays for secondary sources to
286     .I N.
287     A value of 0 means that secondary sources will be ignored.
288     A value of 1 means that sources will be made into first generation
289     secondary sources; a value of 2 means that first generation
290     secondary sources will also be made into second generation secondary
291     sources, and so on.
292     .TP
293     .BI -dp \ D
294     Set the secondary source presampling density to D.
295     This is the number of samples per steradian
296     that will be used to determine ahead of time whether or not
297     it is worth following shadow rays through all the reflections and/or
298     transmissions associated with a secondary source path.
299     A value of 0 means that the full secondary source path will always
300     be tested for shadows if it is tested at all.
301     .TP
302     .BR \-dv
303     Boolean switch for light source visibility.
304     With this switch off, sources will be black when viewed directly
305     although they will still participate in the direct calculation.
306     This option is mostly for the program
307     .I mkillum(1)
308     to avoid inappropriate counting of light sources, but it
309     may also be desirable in conjunction with the
310     .I \-i
311     option.
312     .TP
313     .BI -sj \ frac
314     Set the specular sampling jitter to
315     .I frac.
316     This is the degree to which the highlights are sampled
317     for rough specular materials.
318     A value of one means that all highlights will be fully sampled
319     using distributed ray tracing.
320     A value of zero means that no jittering will take place, and all
321     reflections will appear sharp even when they should be diffuse.
322     .TP
323     .BI -st \ frac
324     Set the specular sampling threshold to
325     .I frac.
326     This is the minimum fraction of reflection or transmission, under which
327     no specular sampling is performed.
328     A value of zero means that highlights will always be sampled by
329     tracing reflected or transmitted rays.
330     A value of one means that specular sampling is never used.
331     Highlights from light sources will always be correct, but
332     reflections from other surfaces will be approximated using an
333     ambient value.
334     A sampling threshold between zero and one offers a compromise between image
335     accuracy and rendering time.
336     .TP
337     .BR -bv
338     Boolean switch for back face visibility.
339     With this switch off, back faces of opaque objects will be invisible
340     to all rays.
341     This is dangerous unless the model was constructed such that
342     all surface normals on opaque objects face outward.
343     Although turning off back face visibility does not save much
344     computation time under most circumstances, it may be useful as a
345     tool for scene debugging, or for seeing through one-sided walls from
346     the outside.
347     This option has no effect on transparent or translucent materials.
348     .TP
349     .BI -av " red grn blu"
350     Set the ambient value to a radiance of
351     .I "red grn blu".
352     This is the final value used in place of an
353     indirect light calculation.
354     If the number of ambient bounces is one or greater and the ambient
355     value weight is non-zero (see
356     .I -aw
357     and
358     .I -ab
359     below), this value may be modified by the computed indirect values
360     to improve overall accuracy.
361     .TP
362     .BI -aw \ N
363     Set the relative weight of the ambient value given with the
364     .I -av
365     option to
366     .I N.
367     As new indirect irradiances are computed, they will modify the
368     default ambient value in a moving average, with the specified weight
369     assigned to the initial value given on the command and all other
370     weights set to 1.
371     If a value of 0 is given with this option, then the initial ambient
372     value is never modified.
373     This is the safest value for scenes with large differences in
374     indirect contributions, such as when both indoor and outdoor
375     (daylight) areas are visible.
376     .TP
377     .BI -ab \ N
378     Set the number of ambient bounces to
379     .I N.
380     This is the maximum number of diffuse bounces
381     computed by the indirect calculation.
382     A value of zero implies no indirect calculation.
383     .TP
384     .BI -ar \ res
385     Set the ambient resolution to
386     .I res.
387     This number will determine the maximum density of ambient values
388     used in interpolation.
389     Error will start to increase on surfaces spaced closer than
390     the scene size divided by the ambient resolution.
391     The maximum ambient value density is the scene size times the
392     ambient accuracy (see the
393     .I \-aa
394     option below) divided by the ambient resolution.
395     The scene size can be determined using
396     .I getinfo(1)
397     with the
398     .I \-d
399     option on the input octree.
400     .TP
401     .BI -aa \ acc
402     Set the ambient accuracy to
403     .I acc.
404     This value will approximately equal the error
405     from indirect illuminance interpolation.
406     A value of zero implies no interpolation.
407     .TP
408     .BI -ad \ N
409     Set the number of ambient divisions to
410     .I N.
411     The error in the Monte Carlo calculation of indirect
412     illuminance will be inversely proportional to the square
413     root of this number.
414     A value of zero implies no indirect calculation.
415     .TP
416     .BI -as \ N
417     Set the number of ambient super-samples to
418     .I N.
419     Super-samples are applied only to the ambient divisions which
420     show a significant change.
421     .TP
422     .BI -af \ fname
423     Set the ambient file to
424     .I fname.
425     This is where indirect illuminance will be stored and retrieved.
426     Normally, indirect illuminance values are kept in memory and
427     lost when the program finishes or dies.
428     By using a file, different invocations can share illuminance
429     values, saving time in the computation.
430     The ambient file is in a machine-independent binary format
431     which can be examined with
432     .I lookamb(1).
433     .IP
434     The ambient file may also be used as a means of communication and
435     data sharing between simultaneously executing processes.
436     The same file may be used by multiple processes, possibly running on
437     different machines and accessing the file via the network (ie.
438     .I nfs(4)).
439     The network lock manager
440     .I lockd(8)
441     is used to insure that this information is used consistently.
442     .IP
443     If any calculation parameters are changed or the scene
444     is modified, the old ambient file should be removed so that
445     the calculation can start over from scratch.
446     For convenience, the original ambient parameters are listed in the
447     header of the ambient file.
448     .I Getinfo(1)
449     may be used to print out this information.
450     .TP
451 greg 1.6 .BI -ae \ mod
452 greg 1.1 Append
453 greg 1.6 .I mod
454 greg 1.1 to the ambient exclude list,
455     so that it will not be considered during the indirect calculation.
456     This is a hack for speeding the indirect computation by
457     ignoring certain objects.
458     Any object having
459 greg 1.6 .I mod
460 greg 1.1 as its modifier will get the default ambient
461     level rather than a calculated value.
462 greg 1.6 Any number of excluded modifiers may be given, but each
463 greg 1.1 must appear in a separate option.
464     .TP
465 greg 1.6 .BI -ai \ mod
466 greg 1.1 Add
467 greg 1.6 .I mod
468 greg 1.1 to the ambient include list,
469     so that it will be considered during the indirect calculation.
470     The program can use either an include list or an exclude
471     list, but not both.
472     .TP
473     .BI -aE \ file
474     Same as
475     .I \-ae,
476 greg 1.6 except read modifiers to be excluded from
477 greg 1.1 .I file.
478     The RAYPATH environment variable determines which directories are
479     searched for this file.
480 greg 1.6 The modifier names are separated by white space in the file.
481 greg 1.1 .TP
482     .BI -aI \ file
483     Same as
484     .I \-ai,
485 greg 1.6 except read modifiers to be included from
486 greg 1.1 .I file.
487     .TP
488     .BI -me " rext gext bext"
489     Set the global medium extinction coefficient to the indicated color,
490     in units of 1/distance (distance in world coordinates).
491     Light will be scattered or absorbed over distance according to
492     this value.
493     The ratio of scattering to total scattering plus absorption is set
494     by the albedo parameter, described below.
495     .TP
496     .BI -ma " ralb galb balb"
497     Set the global medium albedo to the given value between 0\00\00
498     and 1\01\01.
499     A zero value means that all light not transmitted by the medium
500     is absorbed.
501     A unitary value means that all light not transmitted by the medium
502     is scattered in some new direction.
503     The isotropy of scattering is determined by the Heyney-Greenstein
504     parameter, described below.
505     .TP
506     .BI \-mg \ gecc
507     Set the medium Heyney-Greenstein eccentricity parameter to
508     .I gecc.
509     This parameter determines how strongly scattering favors the forward
510     direction.
511     A value of 0 indicates perfectly isotropic scattering.
512     As this parameter approaches 1, scattering tends to prefer the
513     forward direction.
514     .TP
515     .BI \-ms \ sampdist
516     Set the medium sampling distance to
517     .I sampdist,
518     in world coordinate units.
519     During source scattering, this will be the average distance between
520     adjacent samples.
521     A value of 0 means that only one sample will be taken per light
522     source within a given scattering volume.
523     .TP
524     .BI -lr \ N
525     Limit reflections to a maximum of
526     .I N.
527 greg 1.11 If
528     .I N
529     is zero or negative, then Russian roulette is used for ray
530     termination, and the
531     .I -lw
532     setting (below) must be positive.
533     If N is a negative integer, then this sets the upper limit
534     of reflections past which Russian roulette will not be used.
535     In scenes with dielectrics and total internal reflection,
536     a setting of 0 (no limit) may cause a stack overflow.
537 greg 1.1 .TP
538     .BI -lw \ frac
539     Limit the weight of each ray to a minimum of
540     .I frac.
541 greg 1.11 During ray-tracing, a record is kept of the estimated contribution
542     (weight) a ray would have in the image.
543     If this weight is less than the specified minimum and the
544     .I -lr
545     setting (above) is positive, the ray is not traced.
546     Otherwise, Russian roulette is used to
547     continue rays with a probability equal to the ray weight
548     divided by the given
549     .I frac.
550 greg 1.1 .TP
551     .BR -ld
552     Boolean switch to limit ray distance.
553     If this option is set, then rays will only be traced as far as the
554     magnitude of each direction vector.
555     Otherwise, vector magnitude is ignored and rays are traced to infinity.
556     .TP
557     .BI -e \ efile
558     Send error messages and progress reports to
559     .I efile
560     instead of the standard error.
561     .TP
562     .BR \-w
563     Boolean switch to suppress warning messages.
564     .TP
565     .BI \-P \ pfile
566     Execute in a persistent mode, using
567     .I pfile
568     as the control file.
569     Persistent execution means that after reaching end-of-file on
570     its input,
571     .I rtrace
572     will fork a child process that will wait for another
573     .I rtrace
574     command with the same
575     .I \-P
576     option to attach to it.
577     (Note that since the rest of the command line options will be those
578     of the original invocation, it is not necessary to give any arguments
579     besides
580     .I \-P
581     for subsequent calls.)
582     Killing the process is achieved with the
583     .I kill(1)
584     command.
585     (The process ID in the first line of
586     .I pfile
587     may be used to identify the waiting
588     .I rtrace
589     process.)
590     This option may be used with the
591     .I \-fr
592     option of
593     .I pinterp(1)
594     to avoid the cost of starting up
595     .I rtrace
596     many times.
597     .TP
598     .BI \-PP \ pfile
599     Execute in continuous-forking persistent mode, using
600     .I pfile
601     as the control file.
602     The difference between this option and the
603     .I \-P
604     option described above is the creation of multiple duplicate
605     processes to handle any number of attaches.
606     This provides a simple and reliable mechanism of memory sharing
607     on most multiprocessing platforms, since the
608     .I fork(2)
609     system call will share memory on a copy-on-write basis.
610     .SH EXAMPLES
611     To compute radiance values for the rays listed in samples.inp:
612     .IP "" .2i
613     rtrace -ov scene.oct < samples.inp > radiance.out
614     .PP
615     To compute illuminance values at locations selected with the 't'
616     command of
617     .I ximage(1):
618     .IP "" .2i
619     ximage scene.pic | rtrace -h -x 1 -i scene.oct | rcalc -e '$1=47.4*$1+120*$2+11.6*$3'
620     .PP
621     To record the object identifier corresponding to each pixel in an image:
622     .IP "" .2i
623     vwrays -fd scene.pic | rtrace -fda `vwrays -d scene.pic` -os scene.oct
624     .PP
625     To compute an image with an unusual view mapping:
626     .IP "" .2i
627     cnt 640 480 | rcalc -e 'xr:640;yr:480' -f unusual_view.cal | rtrace
628     -x 640 -y 480 -fac scene.oct > unusual.pic
629     .SH ENVIRONMENT
630     RAYPATH the directories to check for auxiliary files.
631     .SH FILES
632 greg 1.5 /tmp/rtXXXXXX common header information for picture sequence
633 greg 1.1 .SH DIAGNOSTICS
634     If the program terminates from an input related error, the exit status
635     will be 1.
636     A system related error results in an exit status of 2.
637     If the program receives a signal that is caught, it will exit with a status
638     of 3.
639     In each case, an error message will be printed to the standard error, or
640     to the file designated by the
641     .I \-e
642     option.
643     .SH AUTHOR
644     Greg Ward
645     .SH "SEE ALSO"
646     getinfo(1), lookamb(1), oconv(1), pfilt(1), pinterp(1),
647 greg 1.9 pvalue(1), rpict(1), rtcontrib(1), rvu(1), vwrays(1), ximage(1)