ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/man/man1/rtcontrib.1
Revision: 1.18
Committed: Fri Apr 18 18:06:29 2008 UTC (16 years, 1 month ago) by greg
Branch: MAIN
CVS Tags: rad3R9
Changes since 1.17: +34 -29 lines
Log Message:
Modified rtcontrib -c option to accumulate a specified number of rays

File Contents

# User Rev Content
1 greg 1.18 .\" RCSid "$Id: rtcontrib.1,v 1.17 2007/11/17 01:13:50 greg Exp $"
2 greg 1.3 .TH RTCONTRIB 1 5/25/05 RADIANCE
3 greg 1.1 .SH NAME
4 greg 1.5 rtcontrib - compute contribution coefficients in a RADIANCE scene
5 greg 1.1 .SH SYNOPSIS
6     .B rtcontrib
7     [
8     .B "\-n nprocs"
9     ][
10 greg 1.15 .B \-V
11     ][
12 greg 1.18 .B "\-c count"
13 greg 1.17 ][
14 greg 1.14 .B \-fo
15     |
16 greg 1.8 .B \-r
17     ][
18 greg 1.1 .B "\-e expr"
19     ][
20     .B "\-f source"
21     ][
22 greg 1.7 .B "\-o ospec"
23 greg 1.1 ][
24     .B "\-b binv"
25 greg 1.12 ][
26     .B "\-bn nbins"
27 greg 1.1 ]
28 greg 1.9 {
29     .B "\-m mod | \-M file"
30     }
31     ..
32 greg 1.1 [
33     .B $EVAR
34     ]
35     [
36     .B @file
37     ]
38     [
39     rtrace options
40     ]
41     .B octree
42 greg 1.4 .br
43     .B "rtcontrib [ options ] \-defaults"
44 greg 1.1 .SH DESCRIPTION
45     .I Rtcontrib
46 greg 1.15 computes ray coefficients
47 greg 1.1 for objects whose modifiers are named in one or more
48     .I \-m
49     settings.
50 greg 1.2 These modifiers are usually materials associated with
51     light sources or sky domes, and must directly modify some geometric
52     primitives to be considered in the output.
53 greg 1.9 A modifier list may also be read from a file using the
54     .I \-M
55     option.
56 greg 1.10 The RAYPATH environment variable determines directories to search for
57     this file.
58     (No search takes place if a file name begins with a '.', '/' or '~'
59     character.)\0
60 greg 1.9 .PP
61 greg 1.18 If the
62     .I \-n
63     option is specified with a value greater than 1, multiple
64     .I rtrace
65     processes will be used to accelerate computation on a shared
66     memory machine.
67     Note that there is no benefit to using more processes
68     than there are local CPUs available to do the work, and the
69     .I rtcontrib
70     process itself may use a considerable amount of CPU time.
71     .PP
72 greg 1.15 By setting the boolean
73     .I \-V
74     option, you may instruct
75     .I rtcontrib
76     to report the contribution from each material rather than the ray
77     coefficient.
78     This is particularly useful for light sources with directional output
79     distributions, whose value would otherwise be lost in the shuffle.
80     With the default
81     .I -V-
82     setting, the output of rtcontrib is a coefficient that must be multiplied
83     by the radiance of each material to arrive at a final contribution.
84     This is more convenient for computing daylight coefficeints, or cases
85     where the actual radiance is not desired.
86     Use the
87     .I -V+
88     setting when you wish to simply sum together contributions
89     (with possible adjustment factors) to obtain a final radiance value.
90     Combined with the
91     .I \-i
92     or
93     .I \-I
94     option, irradiance contributions are reported by
95     .I \-V+
96     rather than radiance, and
97     .I \-V-
98     coefficients contain an additonal factor of PI.
99     .PP
100 greg 1.18 The
101     .I \-c
102     option tells
103     .I rtcontrib
104     how many rays to accumulate for each record.
105     The default value is 1, meaning a full record will be produced for
106     each input ray.
107     For values greater than 1, contributions will be averaged together
108     over the given number of input rays.
109     If set to zero, only a single record will be produced at the very
110     end, corresponding to the sum of all rays given on the input
111     (rather than the average).
112     This is equivalent to passing all the output records through a program like
113     .I total(1)
114     to sum RGB values together, but is much more efficient.
115     Using this option, it is possible to reverse sampling, sending rays from
116     a parallel source such as the sun to a diffuse surface, for example.
117     Note that output flushing via zero-direction rays is disabled
118     for accumulated evaluations.
119     .PP
120 greg 1.3 The output of
121     .I rtcontrib
122     has many potential uses.
123     Source contributions can be used as components in linear combination to
124 greg 1.1 reproduce any desired variation, e.g., simulating lighting controls or
125     changing sky conditions via daylight coefficients.
126     More generally,
127     .I rtcontrib
128 greg 1.3 can be used to compute arbitrary input-output relationships in optical
129     systems, such as luminaires, light pipes, and shading devices.
130 greg 1.1 .PP
131 greg 1.2 .I Rtcontrib
132     calls
133     .I rtrace(1)
134 greg 1.16 with the \-oTW (or \-oTV) option to calculate the daughter ray
135 greg 1.5 contributions for each input ray, and the output tallies
136 greg 1.7 are sent to one or more destinations according to the given
137 greg 1.1 .I \-o
138     specification.
139 greg 1.7 If a destination begins with an exclamation mark ('!'), then
140     a pipe is opened to a command and data is sent to its standard input.
141     Otherwise, the destination is treated as a file.
142 greg 1.14 An existing file of the same name will not be clobbered, unless the
143     .I \-fo
144     option is given.
145     If instead the
146 greg 1.8 .I \-r
147 greg 1.14 option is specified, data recovery is attempted on existing files.
148 greg 1.17 (If
149 greg 1.18 .I "\-c 0"
150 greg 1.17 is used together with the
151     .I \-r
152     option, existing files are read in and new ray evaluations are added
153     to the previous results, providing a convenient means for
154     progressive simulation.)\0
155 greg 1.2 If an output specification contains a "%s" format, this will be
156 greg 1.1 replaced by the modifier name.
157     The
158     .I \-b
159     option may be used to further define
160 greg 1.2 a "bin number" within each object if finer resolution is needed, and
161     this will be applied to a "%d" format in the output file
162 greg 1.1 specification if present.
163 greg 1.3 The actual bin number is computed at run time based on ray direction
164     and surface intersection, as described below.
165 greg 1.12 If the number of bins is known in advance, it should be specified with the
166     .I \-bn
167 greg 1.13 option, and this is critical for output files containing multiple values
168     per record.
169     Since bin numbers start from 0, the bin count is always equal to
170     the last bin plus 1.
171     Set the this value to 0 if the bin count is unknown (the default).
172 greg 1.1 The most recent
173 greg 1.12 .I \-b,
174     .I \-bn
175 greg 1.1 and
176     .I \-o
177 greg 1.2 options to the left of each
178 greg 1.1 .I \-m
179 greg 1.2 setting affect only that modifier.
180 greg 1.17 The ordering of other options is unimportant, except for
181     .I \-x
182     and
183     .I \-y
184     if the
185     .I \-c
186     is present, when they control the resolution string
187     produced in the corresponding output.
188 greg 1.1 .PP
189 greg 1.2 If a
190     .I \-b
191     expression is defined for a particular modifier,
192     the bin number will be evaluated at run time for each
193     ray contribution from
194     .I rtrace.
195     Specifically, each ray's world intersection point will be assigned to
196     the variables Px, Py, and Pz, and the normalized ray direction
197     will be assigned to Dx, Dy, and Dz.
198     These parameters may be combined with definitions given in
199     .I \-e
200 greg 1.3 arguments and files read using the
201 greg 1.2 .I \-f
202 greg 1.3 option.
203     The computed bin value will be
204 greg 1.2 rounded to the nearest whole number.
205     This mechanism allows the user to define precise regions or directions
206     they wish to accumulate, such as the Tregenza sky discretization,
207     which would be otherwise impossible to specify
208     as a set of RADIANCE primitives.
209 greg 1.3 The rules and predefined functions available for these expressions are
210     described in the
211     .I rcalc(1)
212     man page.
213 greg 1.6 Unlike
214     .I rcalc,
215     .I rtcontrib
216     will search the RADIANCE library directories for each file given in a
217     .I \-f
218     option.
219 greg 1.1 .PP
220     If no
221     .I \-o
222     specification is given, results are written on the standard output in order
223     of modifier (as given on the command line) then bin number.
224 greg 1.7 Concatenated data is also sent to a single destination (i.e., an initial
225 greg 1.2 .I \-o
226     specification without formatting strings).
227 greg 1.1 If a "%s" format appears but no "%d" in the
228     .I \-o
229     specification, then each modifier will have its own output file, with
230     multiple values per record in the case of a non-zero
231     .I \-b
232     definition.
233     If a "%d" format appears but no "%s", then each bin will get its own
234     output file, with modifiers output in order in each record.
235     For text output, each RGB coefficient triple is separated by a tab,
236     with a newline at the end of each ray record.
237     For binary output formats, there is no such delimiter to mark
238     the end of each record.
239     .PP
240 greg 1.2 Input and output format defaults to plain text, where each ray's
241     origin and direction (6 real values) are given on input,
242     and one line is produced per output file per ray.
243     Alternative data representations may be specified by the
244     .I \-f[io]
245     option, which is described in the
246     .I rtrace
247     man page along with the associated
248     .I \-x
249     and
250     .I \-y
251     resolution settings.
252     In particular, the color ('c') output data representation
253     together with positive dimensions for
254     .I \-x
255     and
256     .I \-y
257     will produce an uncompressed RADIANCE picture,
258     suitable for manipulation with
259     .I pcomb(1)
260     and related tools.
261 greg 1.1 .PP
262     Options may be given on the command line and/or read from the
263     environment and/or read from a file.
264     A command argument beginning with a dollar sign ('$') is immediately
265     replaced by the contents of the given environment variable.
266     A command argument beginning with an at sign ('@') is immediately
267     replaced by the contents of the given file.
268 greg 1.2 .SH EXAMPLES
269     To compute the proportional contributions from sources modified
270     by "light1" vs. "light2" on a set of illuminance values:
271 greg 1.1 .IP "" .2i
272 greg 1.16 rtcontrib \-I+ @render.opt \-o c_%s.dat \-m light1 \-m light2 scene.oct < test.dat
273 greg 1.2 .PP
274     To generate a pair of images corresponding to these two lights'
275     contributions:
276 greg 1.1 .IP "" .2i
277 greg 1.16 vwrays \-ff \-x 1024 \-y 1024 \-vf best.vf |
278     rtcontrib \-ffc `vwrays \-d \-x 1024 \-y 1024 \-vf best.vf`
279     @render.opt \-o c_%s.pic \-m light1 \-m light2 scene.oct
280 greg 1.2 .PP
281     These images may then be recombined using the desired outputs
282     of light1 and light2:
283 greg 1.1 .IP "" .2i
284 greg 1.16 pcomb \-c 100 90 75 c_light1.pic \-c 50 55 57 c_light2.pic > combined.pic
285 greg 1.1 .PP
286 greg 1.2 To compute an array of illuminance contributions according to a Tregenza sky:
287     .IP "" .2i
288 greg 1.16 rtcontrib \-I+ \-b tbin \-o sky.dat \-m skyglow \-b 0 \-o ground.dat \-m groundglow
289     @render.opt \-f tregenza.cal scene.oct < test.dat
290 greg 1.6 .SH ENVIRONMENT
291 greg 1.16 RAYPATH path to search for \-f and \-M files
292 greg 1.1 .SH AUTHOR
293     Greg Ward
294     .SH "SEE ALSO"
295     cnt(1), getinfo(1), pcomb(1), pfilt(1), ra_rgbe(1),
296 greg 1.17 rcalc(1), rpict(1), rtrace(1), total(1), vwrays(1), ximage(1)