ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/man/man1/rtcontrib.1
Revision: 1.23
Committed: Sun Sep 26 15:51:14 2010 UTC (14 years, 9 months ago) by greg
Branch: MAIN
CVS Tags: rad4R1
Changes since 1.22: +2 -2 lines
Log Message:
Added checknorm() macro to avoid normalization errors with gcc --fast-math

File Contents

# User Rev Content
1 greg 1.23 .\" RCSid "$Id: rtcontrib.1,v 1.22 2009/06/14 18:21:58 greg Exp $"
2 greg 1.3 .TH RTCONTRIB 1 5/25/05 RADIANCE
3 greg 1.1 .SH NAME
4 greg 1.5 rtcontrib - compute contribution coefficients in a RADIANCE scene
5 greg 1.1 .SH SYNOPSIS
6     .B rtcontrib
7     [
8     .B "\-n nprocs"
9     ][
10 greg 1.15 .B \-V
11     ][
12 greg 1.18 .B "\-c count"
13 greg 1.17 ][
14 greg 1.14 .B \-fo
15     |
16 greg 1.8 .B \-r
17     ][
18 greg 1.1 .B "\-e expr"
19     ][
20     .B "\-f source"
21     ][
22 greg 1.7 .B "\-o ospec"
23 greg 1.1 ][
24     .B "\-b binv"
25 greg 1.12 ][
26     .B "\-bn nbins"
27 greg 1.1 ]
28 greg 1.9 {
29     .B "\-m mod | \-M file"
30     }
31     ..
32 greg 1.1 [
33     .B $EVAR
34     ]
35     [
36     .B @file
37     ]
38     [
39     rtrace options
40     ]
41     .B octree
42 greg 1.4 .br
43     .B "rtcontrib [ options ] \-defaults"
44 greg 1.1 .SH DESCRIPTION
45     .I Rtcontrib
46 greg 1.15 computes ray coefficients
47 greg 1.1 for objects whose modifiers are named in one or more
48     .I \-m
49     settings.
50 greg 1.2 These modifiers are usually materials associated with
51     light sources or sky domes, and must directly modify some geometric
52     primitives to be considered in the output.
53 greg 1.9 A modifier list may also be read from a file using the
54     .I \-M
55     option.
56 greg 1.10 The RAYPATH environment variable determines directories to search for
57     this file.
58     (No search takes place if a file name begins with a '.', '/' or '~'
59     character.)\0
60 greg 1.9 .PP
61 greg 1.18 If the
62     .I \-n
63     option is specified with a value greater than 1, multiple
64     .I rtrace
65     processes will be used to accelerate computation on a shared
66     memory machine.
67     Note that there is no benefit to using more processes
68     than there are local CPUs available to do the work, and the
69     .I rtcontrib
70     process itself may use a considerable amount of CPU time.
71     .PP
72 greg 1.15 By setting the boolean
73     .I \-V
74     option, you may instruct
75     .I rtcontrib
76     to report the contribution from each material rather than the ray
77     coefficient.
78     This is particularly useful for light sources with directional output
79     distributions, whose value would otherwise be lost in the shuffle.
80     With the default
81     .I -V-
82     setting, the output of rtcontrib is a coefficient that must be multiplied
83     by the radiance of each material to arrive at a final contribution.
84     This is more convenient for computing daylight coefficeints, or cases
85     where the actual radiance is not desired.
86     Use the
87     .I -V+
88     setting when you wish to simply sum together contributions
89     (with possible adjustment factors) to obtain a final radiance value.
90     Combined with the
91     .I \-i
92     or
93     .I \-I
94     option, irradiance contributions are reported by
95     .I \-V+
96     rather than radiance, and
97     .I \-V-
98     coefficients contain an additonal factor of PI.
99     .PP
100 greg 1.18 The
101     .I \-c
102     option tells
103     .I rtcontrib
104     how many rays to accumulate for each record.
105     The default value is 1, meaning a full record will be produced for
106     each input ray.
107     For values greater than 1, contributions will be averaged together
108     over the given number of input rays.
109     If set to zero, only a single record will be produced at the very
110     end, corresponding to the sum of all rays given on the input
111     (rather than the average).
112     This is equivalent to passing all the output records through a program like
113     .I total(1)
114     to sum RGB values together, but is much more efficient.
115     Using this option, it is possible to reverse sampling, sending rays from
116     a parallel source such as the sun to a diffuse surface, for example.
117     Note that output flushing via zero-direction rays is disabled
118     for accumulated evaluations.
119     .PP
120 greg 1.3 The output of
121     .I rtcontrib
122     has many potential uses.
123     Source contributions can be used as components in linear combination to
124 greg 1.1 reproduce any desired variation, e.g., simulating lighting controls or
125     changing sky conditions via daylight coefficients.
126     More generally,
127     .I rtcontrib
128 greg 1.3 can be used to compute arbitrary input-output relationships in optical
129     systems, such as luminaires, light pipes, and shading devices.
130 greg 1.1 .PP
131 greg 1.2 .I Rtcontrib
132     calls
133     .I rtrace(1)
134 greg 1.16 with the \-oTW (or \-oTV) option to calculate the daughter ray
135 greg 1.5 contributions for each input ray, and the output tallies
136 greg 1.7 are sent to one or more destinations according to the given
137 greg 1.1 .I \-o
138     specification.
139 greg 1.7 If a destination begins with an exclamation mark ('!'), then
140     a pipe is opened to a command and data is sent to its standard input.
141     Otherwise, the destination is treated as a file.
142 greg 1.14 An existing file of the same name will not be clobbered, unless the
143     .I \-fo
144     option is given.
145     If instead the
146 greg 1.8 .I \-r
147 greg 1.14 option is specified, data recovery is attempted on existing files.
148 greg 1.17 (If
149 greg 1.18 .I "\-c 0"
150 greg 1.17 is used together with the
151     .I \-r
152     option, existing files are read in and new ray evaluations are added
153     to the previous results, providing a convenient means for
154     progressive simulation.)\0
155 greg 1.2 If an output specification contains a "%s" format, this will be
156 greg 1.1 replaced by the modifier name.
157     The
158     .I \-b
159     option may be used to further define
160 greg 1.2 a "bin number" within each object if finer resolution is needed, and
161     this will be applied to a "%d" format in the output file
162 greg 1.1 specification if present.
163 greg 1.3 The actual bin number is computed at run time based on ray direction
164     and surface intersection, as described below.
165 greg 1.12 If the number of bins is known in advance, it should be specified with the
166     .I \-bn
167 greg 1.13 option, and this is critical for output files containing multiple values
168     per record.
169 greg 1.22 A variable or constant name may be given for this parameter if
170     it has been defined via a previous
171     .I \-f
172     or
173     .I \-e
174     option.
175 greg 1.13 Since bin numbers start from 0, the bin count is always equal to
176     the last bin plus 1.
177     Set the this value to 0 if the bin count is unknown (the default).
178 greg 1.1 The most recent
179 greg 1.12 .I \-b,
180     .I \-bn
181 greg 1.1 and
182     .I \-o
183 greg 1.2 options to the left of each
184 greg 1.1 .I \-m
185 greg 1.22 setting are the ones used for that modifier.
186 greg 1.17 The ordering of other options is unimportant, except for
187     .I \-x
188     and
189     .I \-y
190     if the
191     .I \-c
192 greg 1.19 is 0, when they control the resolution string
193 greg 1.17 produced in the corresponding output.
194 greg 1.1 .PP
195 greg 1.2 If a
196     .I \-b
197     expression is defined for a particular modifier,
198     the bin number will be evaluated at run time for each
199     ray contribution from
200     .I rtrace.
201     Specifically, each ray's world intersection point will be assigned to
202     the variables Px, Py, and Pz, and the normalized ray direction
203     will be assigned to Dx, Dy, and Dz.
204     These parameters may be combined with definitions given in
205     .I \-e
206 greg 1.3 arguments and files read using the
207 greg 1.2 .I \-f
208 greg 1.3 option.
209     The computed bin value will be
210 greg 1.2 rounded to the nearest whole number.
211     This mechanism allows the user to define precise regions or directions
212     they wish to accumulate, such as the Tregenza sky discretization,
213     which would be otherwise impossible to specify
214     as a set of RADIANCE primitives.
215 greg 1.3 The rules and predefined functions available for these expressions are
216     described in the
217     .I rcalc(1)
218     man page.
219 greg 1.6 Unlike
220     .I rcalc,
221     .I rtcontrib
222     will search the RADIANCE library directories for each file given in a
223     .I \-f
224     option.
225 greg 1.1 .PP
226     If no
227     .I \-o
228     specification is given, results are written on the standard output in order
229     of modifier (as given on the command line) then bin number.
230 greg 1.7 Concatenated data is also sent to a single destination (i.e., an initial
231 greg 1.2 .I \-o
232     specification without formatting strings).
233 greg 1.1 If a "%s" format appears but no "%d" in the
234     .I \-o
235     specification, then each modifier will have its own output file, with
236     multiple values per record in the case of a non-zero
237     .I \-b
238     definition.
239     If a "%d" format appears but no "%s", then each bin will get its own
240     output file, with modifiers output in order in each record.
241     For text output, each RGB coefficient triple is separated by a tab,
242     with a newline at the end of each ray record.
243     For binary output formats, there is no such delimiter to mark
244     the end of each record.
245     .PP
246 greg 1.2 Input and output format defaults to plain text, where each ray's
247     origin and direction (6 real values) are given on input,
248     and one line is produced per output file per ray.
249     Alternative data representations may be specified by the
250     .I \-f[io]
251     option, which is described in the
252     .I rtrace
253     man page along with the associated
254     .I \-x
255     and
256     .I \-y
257     resolution settings.
258     In particular, the color ('c') output data representation
259     together with positive dimensions for
260     .I \-x
261     and
262     .I \-y
263     will produce an uncompressed RADIANCE picture,
264     suitable for manipulation with
265     .I pcomb(1)
266     and related tools.
267 greg 1.1 .PP
268     Options may be given on the command line and/or read from the
269     environment and/or read from a file.
270     A command argument beginning with a dollar sign ('$') is immediately
271     replaced by the contents of the given environment variable.
272     A command argument beginning with an at sign ('@') is immediately
273     replaced by the contents of the given file.
274 greg 1.2 .SH EXAMPLES
275     To compute the proportional contributions from sources modified
276     by "light1" vs. "light2" on a set of illuminance values:
277 greg 1.1 .IP "" .2i
278 greg 1.16 rtcontrib \-I+ @render.opt \-o c_%s.dat \-m light1 \-m light2 scene.oct < test.dat
279 greg 1.2 .PP
280     To generate a pair of images corresponding to these two lights'
281     contributions:
282 greg 1.1 .IP "" .2i
283 greg 1.16 vwrays \-ff \-x 1024 \-y 1024 \-vf best.vf |
284     rtcontrib \-ffc `vwrays \-d \-x 1024 \-y 1024 \-vf best.vf`
285 greg 1.20 @render.opt \-o c_%s.hdr \-m light1 \-m light2 scene.oct
286 greg 1.2 .PP
287     These images may then be recombined using the desired outputs
288     of light1 and light2:
289 greg 1.1 .IP "" .2i
290 greg 1.20 pcomb \-c 100 90 75 c_light1.hdr \-c 50 55 57 c_light2.hdr > combined.hdr
291 greg 1.1 .PP
292 greg 1.2 To compute an array of illuminance contributions according to a Tregenza sky:
293     .IP "" .2i
294 greg 1.16 rtcontrib \-I+ \-b tbin \-o sky.dat \-m skyglow \-b 0 \-o ground.dat \-m groundglow
295     @render.opt \-f tregenza.cal scene.oct < test.dat
296 greg 1.6 .SH ENVIRONMENT
297 greg 1.16 RAYPATH path to search for \-f and \-M files
298 greg 1.1 .SH AUTHOR
299     Greg Ward
300     .SH "SEE ALSO"
301 greg 1.21 cnt(1), genklemsamp(1), getinfo(1), pcomb(1), pfilt(1), ra_rgbe(1),
302 greg 1.23 rcalc(1), rpict(1), rsensor(1), rtrace(1), total(1), vwrays(1), ximage(1)