ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/man/man1/rmtxop.1
(Generate patch)

Comparing ray/doc/man/man1/rmtxop.1 (file contents):
Revision 1.20 by greg, Tue Jan 19 23:32:00 2021 UTC vs.
Revision 1.25 by greg, Mon Nov 27 22:04:45 2023 UTC

# Line 1 | Line 1
1   .\" RCSid "$Id$"
2 < .TH RMTXOP 1 7/8/97 RADIANCE
2 > .TH RMTXOP 1 5/31/2014 RADIANCE
3   .SH NAME
4   rmtxop - concatenate, add, multiply, divide, transpose, scale, and convert matrices
5   .SH SYNOPSIS
# Line 11 | Line 11 | rmtxop - concatenate, add, multiply, divide, transpose
11   ][
12   .B \-t
13   ][
14 .B "\-s sf .."
15 ][
14   .B "\-c ce .."
15   ][
16 < .B -r[fb]
16 > .B "\-s sf .."
17 > ][
18 > .B "\-rf|\-rb"
19   ]
20   .B m1
21   [
# Line 32 | Line 32 | Each file must have a header containing the following
32   NROWS={number of rows}
33   NCOLS={number of columns}
34   NCOMP={number of components}
35 < FORMAT={ascii|float|double|32-bit_rle_rgbe|32-bit_rle_xyze}
36 < .sp
35 > FORMAT={ascii|float|double|32-bit_rle_rgbe|32-bit_rle_xyze|Radiance_spectra}
36   .fi
37 + .sp
38   The number of components indicates that each matrix element is actually
39   composed of multiple elements, most commonly an RGB triple.
40   This is essentially dividing the matrix into planes, where each component
# Line 63 | Line 63 | matrix where the number of columns match the X-dimensi
63   the number of rows match the Y-dimension.
64   The picture must be in standard pixel ordering, and the first row
65   is at the top with the first column on the left.
66 < Any exposure changes applied to the pictures beforehand
66 > Any exposure changes that were applied to the pictures before
67   .I rmtxop
68   will be undone, similar to the
69   .I pcomb(1)
70   .I \-o
71   option.
72 + Radiance spectral pictures with more than 3 components are also supported.
73 + These are typically produced by
74 + .I rtrace(1)
75 + or
76 + .I rfluxmtx(1).
77   .PP
78   Before each file, the
79   .I \-t
80   and
76 .I \-s
77 or
81   .I \-c
82 + and/or
83 + .I \-s
84   options may be used to modify the matrix.
85   The
86   .I \-t
87   option transposes the matrix, swapping rows and columns.
88   The
84 .I \-s
85 option applies the given scalar factor(s) to the elements of the matrix.
86 If only one factor is provided,
87 it will be used for all components.
88 If multiple factors are given, their number must match the number of matrix
89 components.
90 Alternatively, the
89   .I \-c
90 < option may be used to "transform" the element values, possibly changing
90 > option can "transform" the element values, possibly changing
91   the number of components in the matrix.
92   For example, a 3-component matrix can be transformed into a single-component
93   matrix by using
# Line 101 | Line 99 | the first new component, and the second four coefficie
99   yield the second new component.
100   Note that the number of coefficients must be an even multiple of the number
101   of original components.
102 < The
102 > Alternatively, a set of symbolic output components can be specified as capital
103 > letters, with the following definitions:
104 > .sp
105 > .nf
106 > R       - red channel
107 > G       - green channel
108 > B       - blue channel
109 > X       - CIE X channel
110 > Y       - CIE Y channel (aka., luminance or illuminance)
111 > Z       - CIE Z channel
112 > S       - scotopic luminance or illuminance
113 > M       - melanopic luminance or illuminance
114 > .fi
115 > .sp
116 > These letters may be given in any order as a single string, and if
117 > .I "-c RGB"
118 > or
119 > .I "-c XYZ"
120 > is specified along with a
121 > .I "-fc"
122 > option, the output will be written as a RGBE or XYZE picture, respectively.
123 > Note that conversion from a float or RGBE color space applies a conversion
124 > of 179 lumens/watt (for CIE or melanopic output) or 412 (for scotopic output),
125 > and the reverse happens for conversion from XYZE input to RGB or RGBE output.
126 > .PP
127 > Additionally, the
128   .I \-s
129 < and
129 > option applies the given scalar factor(s) to the elements of the matrix.
130 > If only one factor is provided,
131 > it will be used for all components.
132 > If multiple factors are given, their number must match the number of matrix
133 > components
134 > .I after
135 > application of any
136   .I \-c
137 < options are mutually exclusive, insofar as they cannot be applied together
109 < to the same input matrix.
137 > option for this input matrix or picture.
138   .PP
139   If present, the second and subsequent matrices on the command
140   line are concatenated together, unless separated by a plus ('+'),
# Line 145 | Line 173 | In the case of addition, multiplication, and division,
173   the number of rows and columns of the prior result and the
174   next matrix must match, and will not be changed by the operation.
175   .PP
176 < A final transpose or scaling/transform operation may be applied to
176 > A final transpose or transform/scaling operation may be applied to
177   the results by appending the
178   .I \-t
179   and
152 .I \-s
153 or
180   .I \-c
181 + and/or
182 + .I \-s
183   options after the last matrix on the command line.
184   .PP
185   Results are sent to the standard output.
# Line 159 | Line 187 | By default, the values will be written in the lowest r
187   among the inputs, but the
188   .I \-f
189   option may be used to explicitly output components
190 < as ASCII (-fa), binary doubles (-fd), floats (-ff), or RGBE colors (-fc).
190 > as ASCII (-fa), binary doubles (-fd), floats (-ff), or common-exponent
191 > colors/spectra (-fc).
192   In the latter case, the actual matrix dimensions are written in the resolution
193   string rather than the header.
194 < Also, matrix results written as Radiance pictures must have either one
194 > Also, matrix results will be written as standard
195 > Radiance pictures if they have either one
196   or three components.
197   In the one-component case, the output is written as grayscale.
198 + If more than 3 components are in the final matrix and
199 + .I -fc
200 + is specified, the output will be a Radiance spectral picture.
201   .PP
202   The
203   .I \-v
# Line 183 | Line 216 | To extract the luminance values from a picture as an A
216   .IP "" .2i
217   rmtxop -fa -c .265 .670 .065 image.hdr > image_lum.mtx
218   .PP
219 + To render a melanopic illuminance image with
220 + .I rtrace\:
221 + .IP "" .2i
222 + vwrays -ff -x 1024 -y 1024 -vf myview.vf |
223 + rtrace -fff -cs 18 -co+ -i+ `vwrays -x 1024 -y 1024 -vf myview.vf -d` scene.oct |
224 + rmtxop -fc -c M - > scene_meli.hdr
225 + .PP
226   To scale a matrix by 4 and add it to the transpose of another matrix:
227   .IP "" .2i
228   rmtxop -s 4 first.mtx + -t second.mtx > result.mtx
# Line 216 | Line 256 | evaluated from left to right.
256   .SH AUTHOR
257   Greg Ward
258   .SH "SEE ALSO"
259 < cnt(1), getinfo(1), histo(1), neaten(1), pcomb(1), rcalc(1),
260 < rcollate(1), rcontrib(1), rfluxmtx(1), rlam(1),
261 < rsplit(1), tabfunc(1), total(1), wrapBSDF(1)
259 > cnt(1), getinfo(1), histo(1), neaten(1), pcomb(1),
260 > ra_xyze(1), rcalc(1),
261 > rcollate(1), rcontrib(1), rcrop(1), rfluxmtx(1), rlam(1),
262 > rsplit(1), rtrace(1), tabfunc(1), total(1), vwrays(1),
263 > wrapBSDF(1)

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines