ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/man/man1/rmtxop.1
Revision: 1.29
Committed: Fri Dec 8 17:56:26 2023 UTC (16 months, 3 weeks ago) by greg
Branch: MAIN
Changes since 1.28: +3 -2 lines
Log Message:
feat(pfilt): Added support for hyperspectral image filtering

File Contents

# User Rev Content
1 greg 1.29 .\" RCSid "$Id: rmtxop.1,v 1.28 2023/12/06 01:27:00 greg Exp $"
2 greg 1.23 .TH RMTXOP 1 5/31/2014 RADIANCE
3 greg 1.1 .SH NAME
4 greg 1.10 rmtxop - concatenate, add, multiply, divide, transpose, scale, and convert matrices
5 greg 1.1 .SH SYNOPSIS
6     .B rmtxop
7     [
8     .B \-v
9     ][
10 greg 1.3 .B \-f[afdc]
11 greg 1.1 ][
12 greg 1.27 .B "\-C {symbols|file}"
13 greg 1.1 ][
14 greg 1.25 .B "\-c ce .."
15     ][
16 greg 1.1 .B "\-s sf .."
17     ][
18 greg 1.27 .B \-t
19     ][
20 greg 1.22 .B "\-rf|\-rb"
21 greg 1.1 ]
22     .B m1
23     [
24 greg 1.13 .B ".+*/"
25 greg 1.1 ]
26     .B ".."
27     .SH DESCRIPTION
28     .I Rmtxop
29 greg 1.10 loads and concatenates or adds/multiplies/divides
30     together component matrix files given on the command line.
31 greg 1.28 Each file must have a header containing the following metadata:
32 greg 1.1 .sp
33     .nf
34     NROWS={number of rows}
35     NCOLS={number of columns}
36     NCOMP={number of components}
37 greg 1.24 FORMAT={ascii|float|double|32-bit_rle_rgbe|32-bit_rle_xyze|Radiance_spectra}
38 greg 1.25 .fi
39 greg 1.1 .sp
40     The number of components indicates that each matrix element is actually
41     composed of multiple elements, most commonly an RGB triple.
42     This is essentially dividing the matrix into planes, where each component
43     participates in a separate calculation.
44     If an appropriate header is not present, it may be added with a call to
45     .I rcollate(1).
46     A matrix may be read from the standard input using a hyphen by itself ('-')
47     in the appropriate place on the command line.
48 greg 1.28 Similarly, any of the inputs may be read from a command
49 greg 1.9 instead of a file by
50     using quotes and a beginning exclamation point ('!').
51     .PP
52 greg 1.1 Two special cases are handled for component matrices that are either
53 greg 1.20 XML files containing BSDF data, or Radiance picture files.
54     In the first case, the BSDF library loads and interprets the
55     transmission matrix by default.
56     Alternatively, the front (normal-side) reflectance is selected if the
57     .I \-rf
58     option precedes the file name, or the backside reflectance if
59     .I \-rb
60     is specified.
61 greg 1.9 (XML files cannot be read from the standard input or from a command.)\0
62 greg 1.1 In the second case, the RGBE or XYZE values are loaded in a 3-component
63     matrix where the number of columns match the X-dimension of the picture, and
64     the number of rows match the Y-dimension.
65     The picture must be in standard pixel ordering, and the first row
66 greg 1.7 is at the top with the first column on the left.
67 greg 1.21 Any exposure changes that were applied to the pictures before
68 greg 1.18 .I rmtxop
69     will be undone, similar to the
70 greg 1.19 .I pcomb(1)
71 greg 1.18 .I \-o
72     option.
73 greg 1.24 Radiance spectral pictures with more than 3 components are also supported.
74     These are typically produced by
75     .I rtrace(1)
76     or
77     .I rfluxmtx(1).
78 greg 1.1 .PP
79 greg 1.28 Before each input, the
80 greg 1.1 .I \-t
81     and
82 greg 1.25 .I \-c
83     and/or
84 greg 1.1 .I \-s
85     options may be used to modify the matrix.
86     The
87     .I \-t
88     option transposes the matrix, swapping rows and columns.
89     The
90     .I \-c
91 greg 1.25 option can "transform" the element values, possibly changing
92 greg 1.1 the number of components in the matrix.
93     For example, a 3-component matrix can be transformed into a single-component
94     matrix by using
95     .I \-c
96     with three coefficients.
97     A four-component matrix can be turned into a two-component matrix using 8
98     coefficients, where the first four coefficients will be used to compute
99     the first new component, and the second four coefficients
100     yield the second new component.
101     Note that the number of coefficients must be an even multiple of the number
102     of original components.
103 greg 1.27 .PP
104     Alternatively, a set of symbolic output components may be given to the
105     .I \-c
106     option, with the following definitions:
107 greg 1.25 .sp
108     .nf
109     R - red channel
110     G - green channel
111     B - blue channel
112     X - CIE X channel
113     Y - CIE Y channel (aka., luminance or illuminance)
114     Z - CIE Z channel
115     S - scotopic luminance or illuminance
116     M - melanopic luminance or illuminance
117 greg 1.26 A - average component value
118 greg 1.25 .fi
119     .sp
120     These letters may be given in any order as a single string, and if
121     .I "-c RGB"
122     or
123     .I "-c XYZ"
124 greg 1.28 is specified for an input picture or the
125 greg 1.25 .I "-fc"
126 greg 1.28 option is given, the output will be written as a RGBE or XYZE picture.
127 greg 1.25 Note that conversion from a float or RGBE color space applies a conversion
128     of 179 lumens/watt (for CIE or melanopic output) or 412 (for scotopic output),
129     and the reverse happens for conversion from XYZE input to RGB or RGBE output.
130     .PP
131 greg 1.28 If a matrix or picture file path is given to the
132 greg 1.27 .I \-c
133     option, then the color space of that file will be used, instead.
134     .PP
135     The
136     .I \-C
137     option takes either a symbolic color space or an input file, and will be
138     applied to all subsequent matrices that do not have their own associated
139     .I \-c
140     option.
141     .PP
142 greg 1.25 Additionally, the
143 greg 1.1 .I \-s
144 greg 1.25 option applies the given scalar factor(s) to the elements of the matrix.
145     If only one factor is provided,
146     it will be used for all components.
147     If multiple factors are given, their number must match the number of matrix
148     components
149     .I after
150     application of any
151 greg 1.1 .I \-c
152 greg 1.28 option for this input matrix or picture, even if the
153     .I \-s
154     option appears first.
155 greg 1.1 .PP
156     If present, the second and subsequent matrices on the command
157 greg 1.16 line are concatenated together, unless separated by a plus ('+'),
158 greg 1.10 asterisk ('*'), or forward slash ('/') symbol,
159 greg 1.15 in which case the individual matrix elements are added,
160 greg 1.16 multiplied, or divided, respectively.
161     The concatenation operator ('.') is the default and need not be specified.
162     Note also that the asterisk must be quoted or escaped in most shells.
163 greg 1.10 In the case of addition, the two matrices involved must have the same number
164     of components.
165 greg 1.15 If subtraction is desired, use addition ('+') with a scaling parameter of -1
166     for the second matrix (the
167     .I \-s
168     option).
169 greg 1.11 For element-wise multiplication and division, the second matrix is
170 greg 1.15 permitted to have a single component per element, which will be
171 greg 1.11 applied equally to all components of the first matrix.
172 greg 1.10 If element-wise division is specified, any zero elements in the second
173     matrix will result in a warning and the corresponding component(s) in the
174     first matrix will be set to zero.
175     .PP
176 greg 1.16 Evaluation proceeds from left to right, and all operations have
177     the same precedence.
178     If a different evaluation order is desired, pipe the result of one
179     .I rmtxop
180     command into another, as shown in one of the examples below.
181     .PP
182 greg 1.17 The number of components in the next matrix after applying any
183 greg 1.1 .I -c
184     transform must agree with the prior result.
185     For concatenation (matrix multiplication), the number of columns
186 greg 1.17 in the prior result must equal the number of rows in the next matrix, and
187 greg 1.1 the result will have the number of rows of the previous and the number
188 greg 1.17 of columns of the next matrix.
189 greg 1.10 In the case of addition, multiplication, and division,
190     the number of rows and columns of the prior result and the
191 greg 1.17 next matrix must match, and will not be changed by the operation.
192 greg 1.1 .PP
193 greg 1.25 A final transpose or transform/scaling operation may be applied to
194 greg 1.14 the results by appending the
195     .I \-t
196     and
197 greg 1.25 .I \-c
198     and/or
199 greg 1.14 .I \-s
200     options after the last matrix on the command line.
201     .PP
202 greg 1.1 Results are sent to the standard output.
203 greg 1.28 By default, the values will be written in the lowest precision format
204 greg 1.6 among the inputs, but the
205 greg 1.28 .I \-f[adfc]
206 greg 1.4 option may be used to explicitly output components
207 greg 1.25 as ASCII (-fa), binary doubles (-fd), floats (-ff), or common-exponent
208     colors/spectra (-fc).
209 greg 1.28 In the latter case, the actual matrix dimensions are written in
210     the resolution string rather than the header.
211 greg 1.24 Also, matrix results will be written as standard
212     Radiance pictures if they have either one
213 greg 1.1 or three components.
214     In the one-component case, the output is written as grayscale.
215 greg 1.24 If more than 3 components are in the final matrix and
216     .I -fc
217     is specified, the output will be a Radiance spectral picture.
218 greg 1.1 .PP
219     The
220     .I \-v
221     option turns on verbose reporting, which announces each operation.
222     .SH EXAMPLES
223     To concatenate two matrix files with a BTDF between them and write
224     the result as binary double:
225     .IP "" .2i
226     rmtxop -fd view.vmx blinds.xml exterior.dmx > dcoef.dmx
227     .PP
228     To convert a BTDF matrix into a Radiance picture:
229     .IP "" .2i
230     rmtxop -fc blinds.xml > blinds.hdr
231     .PP
232 greg 1.16 To extract the luminance values from a picture as an ASCII matrix:
233     .IP "" .2i
234     rmtxop -fa -c .265 .670 .065 image.hdr > image_lum.mtx
235     .PP
236 greg 1.25 To render a melanopic illuminance image with
237     .I rtrace\:
238     .IP "" .2i
239     vwrays -ff -x 1024 -y 1024 -vf myview.vf |
240     rtrace -fff -cs 18 -co+ -i+ `vwrays -x 1024 -y 1024 -vf myview.vf -d` scene.oct |
241     rmtxop -fc -c M - > scene_meli.hdr
242     .PP
243 greg 1.1 To scale a matrix by 4 and add it to the transpose of another matrix:
244     .IP "" .2i
245 greg 1.16 rmtxop -s 4 first.mtx + -t second.mtx > result.mtx
246     .PP
247     To multiply elements of two matrices, then concatenate with a third,
248     applying a final transpose to the result:
249     .IP "" .2i
250     rmtxop first.mtx \\* second.mtx . third.mtx -t > result.mtx
251 greg 1.1 .PP
252 greg 1.15 To left-multiply the element-wise division of two matrices:
253     .IP "" .2i
254     rmtxop -fd numerator.mtx / denominator.mtx | rmtxop left.mtx - > result.mtx
255     .PP
256 greg 1.1 To send the elements of a binary matrix to
257     .I rcalc(1)
258     for further processing:
259     .IP "" .2i
260 greg 1.5 rmtxop -fa orig.mtx | rcollate -ho -oc 1 | rcalc [operations]
261 greg 1.13 .SH NOTES
262 greg 1.16 Matrix concatenation is associative but not commutative, so order
263 greg 1.13 matters to the result.
264     .I Rmtxop
265 greg 1.16 takes advantage of this associative property to concatenate
266     from right to left when it reduces the number of basic operations.
267 greg 1.13 If the rightmost matrix is a column vector for example, it is
268 greg 1.16 much faster to concatenate from the right, and the result will
269 greg 1.13 be the same.
270 greg 1.16 Note that this only applies to concatenation;
271     element-wise addition, multiplication, and division are always
272 greg 1.13 evaluated from left to right.
273 greg 1.1 .SH AUTHOR
274     Greg Ward
275     .SH "SEE ALSO"
276 greg 1.29 cnt(1), dctimestep(1), getinfo(1), pcomb(1), pfilt(1),
277     ra_xyze(1), rcalc(1),
278 greg 1.28 rcollate(1), rcontrib(1), rcrop(1), rfluxmtx(1),
279     rmtxcomb(1), rtrace(1), vwrays(1), wrapBSDF(1)