ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/man/man1/rmtxop.1
Revision: 1.25
Committed: Mon Nov 27 22:04:45 2023 UTC (17 months, 3 weeks ago) by greg
Branch: MAIN
Changes since 1.24: +57 -24 lines
Log Message:
feat(rmtxop): Added symbolic transforms to -c option and made -s apply after any such transform, so both may be used simultaneously

File Contents

# User Rev Content
1 greg 1.25 .\" RCSid "$Id: rmtxop.1,v 1.24 2023/11/21 02:16:59 greg Exp $"
2 greg 1.23 .TH RMTXOP 1 5/31/2014 RADIANCE
3 greg 1.1 .SH NAME
4 greg 1.10 rmtxop - concatenate, add, multiply, divide, transpose, scale, and convert matrices
5 greg 1.1 .SH SYNOPSIS
6     .B rmtxop
7     [
8     .B \-v
9     ][
10 greg 1.3 .B \-f[afdc]
11 greg 1.1 ][
12     .B \-t
13     ][
14 greg 1.25 .B "\-c ce .."
15     ][
16 greg 1.1 .B "\-s sf .."
17     ][
18 greg 1.22 .B "\-rf|\-rb"
19 greg 1.1 ]
20     .B m1
21     [
22 greg 1.13 .B ".+*/"
23 greg 1.1 ]
24     .B ".."
25     .SH DESCRIPTION
26     .I Rmtxop
27 greg 1.10 loads and concatenates or adds/multiplies/divides
28     together component matrix files given on the command line.
29 greg 1.1 Each file must have a header containing the following variables:
30     .sp
31     .nf
32     NROWS={number of rows}
33     NCOLS={number of columns}
34     NCOMP={number of components}
35 greg 1.24 FORMAT={ascii|float|double|32-bit_rle_rgbe|32-bit_rle_xyze|Radiance_spectra}
36 greg 1.25 .fi
37 greg 1.1 .sp
38     The number of components indicates that each matrix element is actually
39     composed of multiple elements, most commonly an RGB triple.
40     This is essentially dividing the matrix into planes, where each component
41     participates in a separate calculation.
42     If an appropriate header is not present, it may be added with a call to
43     .I rcollate(1).
44     A matrix may be read from the standard input using a hyphen by itself ('-')
45     in the appropriate place on the command line.
46     .PP
47 greg 1.9 Any of the matrix inputs may be read from a command
48     instead of a file by
49     using quotes and a beginning exclamation point ('!').
50     .PP
51 greg 1.1 Two special cases are handled for component matrices that are either
52 greg 1.20 XML files containing BSDF data, or Radiance picture files.
53     In the first case, the BSDF library loads and interprets the
54     transmission matrix by default.
55     Alternatively, the front (normal-side) reflectance is selected if the
56     .I \-rf
57     option precedes the file name, or the backside reflectance if
58     .I \-rb
59     is specified.
60 greg 1.9 (XML files cannot be read from the standard input or from a command.)\0
61 greg 1.1 In the second case, the RGBE or XYZE values are loaded in a 3-component
62     matrix where the number of columns match the X-dimension of the picture, and
63     the number of rows match the Y-dimension.
64     The picture must be in standard pixel ordering, and the first row
65 greg 1.7 is at the top with the first column on the left.
66 greg 1.21 Any exposure changes that were applied to the pictures before
67 greg 1.18 .I rmtxop
68     will be undone, similar to the
69 greg 1.19 .I pcomb(1)
70 greg 1.18 .I \-o
71     option.
72 greg 1.24 Radiance spectral pictures with more than 3 components are also supported.
73     These are typically produced by
74     .I rtrace(1)
75     or
76     .I rfluxmtx(1).
77 greg 1.1 .PP
78     Before each file, the
79     .I \-t
80     and
81 greg 1.25 .I \-c
82     and/or
83 greg 1.1 .I \-s
84     options may be used to modify the matrix.
85     The
86     .I \-t
87     option transposes the matrix, swapping rows and columns.
88     The
89     .I \-c
90 greg 1.25 option can "transform" the element values, possibly changing
91 greg 1.1 the number of components in the matrix.
92     For example, a 3-component matrix can be transformed into a single-component
93     matrix by using
94     .I \-c
95     with three coefficients.
96     A four-component matrix can be turned into a two-component matrix using 8
97     coefficients, where the first four coefficients will be used to compute
98     the first new component, and the second four coefficients
99     yield the second new component.
100     Note that the number of coefficients must be an even multiple of the number
101     of original components.
102 greg 1.25 Alternatively, a set of symbolic output components can be specified as capital
103     letters, with the following definitions:
104     .sp
105     .nf
106     R - red channel
107     G - green channel
108     B - blue channel
109     X - CIE X channel
110     Y - CIE Y channel (aka., luminance or illuminance)
111     Z - CIE Z channel
112     S - scotopic luminance or illuminance
113     M - melanopic luminance or illuminance
114     .fi
115     .sp
116     These letters may be given in any order as a single string, and if
117     .I "-c RGB"
118     or
119     .I "-c XYZ"
120     is specified along with a
121     .I "-fc"
122     option, the output will be written as a RGBE or XYZE picture, respectively.
123     Note that conversion from a float or RGBE color space applies a conversion
124     of 179 lumens/watt (for CIE or melanopic output) or 412 (for scotopic output),
125     and the reverse happens for conversion from XYZE input to RGB or RGBE output.
126     .PP
127     Additionally, the
128 greg 1.1 .I \-s
129 greg 1.25 option applies the given scalar factor(s) to the elements of the matrix.
130     If only one factor is provided,
131     it will be used for all components.
132     If multiple factors are given, their number must match the number of matrix
133     components
134     .I after
135     application of any
136 greg 1.1 .I \-c
137 greg 1.25 option for this input matrix or picture.
138 greg 1.1 .PP
139     If present, the second and subsequent matrices on the command
140 greg 1.16 line are concatenated together, unless separated by a plus ('+'),
141 greg 1.10 asterisk ('*'), or forward slash ('/') symbol,
142 greg 1.15 in which case the individual matrix elements are added,
143 greg 1.16 multiplied, or divided, respectively.
144     The concatenation operator ('.') is the default and need not be specified.
145     Note also that the asterisk must be quoted or escaped in most shells.
146 greg 1.10 In the case of addition, the two matrices involved must have the same number
147     of components.
148 greg 1.15 If subtraction is desired, use addition ('+') with a scaling parameter of -1
149     for the second matrix (the
150     .I \-s
151     option).
152 greg 1.11 For element-wise multiplication and division, the second matrix is
153 greg 1.15 permitted to have a single component per element, which will be
154 greg 1.11 applied equally to all components of the first matrix.
155 greg 1.10 If element-wise division is specified, any zero elements in the second
156     matrix will result in a warning and the corresponding component(s) in the
157     first matrix will be set to zero.
158     .PP
159 greg 1.16 Evaluation proceeds from left to right, and all operations have
160     the same precedence.
161     If a different evaluation order is desired, pipe the result of one
162     .I rmtxop
163     command into another, as shown in one of the examples below.
164     .PP
165 greg 1.17 The number of components in the next matrix after applying any
166 greg 1.1 .I -c
167     transform must agree with the prior result.
168     For concatenation (matrix multiplication), the number of columns
169 greg 1.17 in the prior result must equal the number of rows in the next matrix, and
170 greg 1.1 the result will have the number of rows of the previous and the number
171 greg 1.17 of columns of the next matrix.
172 greg 1.10 In the case of addition, multiplication, and division,
173     the number of rows and columns of the prior result and the
174 greg 1.17 next matrix must match, and will not be changed by the operation.
175 greg 1.1 .PP
176 greg 1.25 A final transpose or transform/scaling operation may be applied to
177 greg 1.14 the results by appending the
178     .I \-t
179     and
180 greg 1.25 .I \-c
181     and/or
182 greg 1.14 .I \-s
183     options after the last matrix on the command line.
184     .PP
185 greg 1.1 Results are sent to the standard output.
186 greg 1.4 By default, the values will be written in the lowest resolution format
187 greg 1.6 among the inputs, but the
188 greg 1.1 .I \-f
189 greg 1.4 option may be used to explicitly output components
190 greg 1.25 as ASCII (-fa), binary doubles (-fd), floats (-ff), or common-exponent
191     colors/spectra (-fc).
192 greg 1.1 In the latter case, the actual matrix dimensions are written in the resolution
193     string rather than the header.
194 greg 1.24 Also, matrix results will be written as standard
195     Radiance pictures if they have either one
196 greg 1.1 or three components.
197     In the one-component case, the output is written as grayscale.
198 greg 1.24 If more than 3 components are in the final matrix and
199     .I -fc
200     is specified, the output will be a Radiance spectral picture.
201 greg 1.1 .PP
202     The
203     .I \-v
204     option turns on verbose reporting, which announces each operation.
205     .SH EXAMPLES
206     To concatenate two matrix files with a BTDF between them and write
207     the result as binary double:
208     .IP "" .2i
209     rmtxop -fd view.vmx blinds.xml exterior.dmx > dcoef.dmx
210     .PP
211     To convert a BTDF matrix into a Radiance picture:
212     .IP "" .2i
213     rmtxop -fc blinds.xml > blinds.hdr
214     .PP
215 greg 1.16 To extract the luminance values from a picture as an ASCII matrix:
216     .IP "" .2i
217     rmtxop -fa -c .265 .670 .065 image.hdr > image_lum.mtx
218     .PP
219 greg 1.25 To render a melanopic illuminance image with
220     .I rtrace\:
221     .IP "" .2i
222     vwrays -ff -x 1024 -y 1024 -vf myview.vf |
223     rtrace -fff -cs 18 -co+ -i+ `vwrays -x 1024 -y 1024 -vf myview.vf -d` scene.oct |
224     rmtxop -fc -c M - > scene_meli.hdr
225     .PP
226 greg 1.1 To scale a matrix by 4 and add it to the transpose of another matrix:
227     .IP "" .2i
228 greg 1.16 rmtxop -s 4 first.mtx + -t second.mtx > result.mtx
229     .PP
230     To multiply elements of two matrices, then concatenate with a third,
231     applying a final transpose to the result:
232     .IP "" .2i
233     rmtxop first.mtx \\* second.mtx . third.mtx -t > result.mtx
234 greg 1.1 .PP
235 greg 1.15 To left-multiply the element-wise division of two matrices:
236     .IP "" .2i
237     rmtxop -fd numerator.mtx / denominator.mtx | rmtxop left.mtx - > result.mtx
238     .PP
239 greg 1.1 To send the elements of a binary matrix to
240     .I rcalc(1)
241     for further processing:
242     .IP "" .2i
243 greg 1.5 rmtxop -fa orig.mtx | rcollate -ho -oc 1 | rcalc [operations]
244 greg 1.13 .SH NOTES
245 greg 1.16 Matrix concatenation is associative but not commutative, so order
246 greg 1.13 matters to the result.
247     .I Rmtxop
248 greg 1.16 takes advantage of this associative property to concatenate
249     from right to left when it reduces the number of basic operations.
250 greg 1.13 If the rightmost matrix is a column vector for example, it is
251 greg 1.16 much faster to concatenate from the right, and the result will
252 greg 1.13 be the same.
253 greg 1.16 Note that this only applies to concatenation;
254     element-wise addition, multiplication, and division are always
255 greg 1.13 evaluated from left to right.
256 greg 1.1 .SH AUTHOR
257     Greg Ward
258     .SH "SEE ALSO"
259 greg 1.25 cnt(1), getinfo(1), histo(1), neaten(1), pcomb(1),
260     ra_xyze(1), rcalc(1),
261 greg 1.23 rcollate(1), rcontrib(1), rcrop(1), rfluxmtx(1), rlam(1),
262 greg 1.25 rsplit(1), rtrace(1), tabfunc(1), total(1), vwrays(1),
263     wrapBSDF(1)