ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/man/man1/rmtxop.1
Revision: 1.21
Committed: Thu Jan 21 17:30:20 2021 UTC (4 years, 3 months ago) by greg
Branch: MAIN
Changes since 1.20: +2 -2 lines
Log Message:
docs: typo

File Contents

# User Rev Content
1 greg 1.21 .\" RCSid "$Id: rmtxop.1,v 1.20 2021/01/19 23:32:00 greg Exp $"
2 greg 1.1 .TH RMTXOP 1 7/8/97 RADIANCE
3     .SH NAME
4 greg 1.10 rmtxop - concatenate, add, multiply, divide, transpose, scale, and convert matrices
5 greg 1.1 .SH SYNOPSIS
6     .B rmtxop
7     [
8     .B \-v
9     ][
10 greg 1.3 .B \-f[afdc]
11 greg 1.1 ][
12     .B \-t
13     ][
14     .B "\-s sf .."
15     ][
16     .B "\-c ce .."
17 greg 1.20 ][
18     .B -r[fb]
19 greg 1.1 ]
20     .B m1
21     [
22 greg 1.13 .B ".+*/"
23 greg 1.1 ]
24     .B ".."
25     .SH DESCRIPTION
26     .I Rmtxop
27 greg 1.10 loads and concatenates or adds/multiplies/divides
28     together component matrix files given on the command line.
29 greg 1.1 Each file must have a header containing the following variables:
30     .sp
31     .nf
32     NROWS={number of rows}
33     NCOLS={number of columns}
34     NCOMP={number of components}
35     FORMAT={ascii|float|double|32-bit_rle_rgbe|32-bit_rle_xyze}
36     .sp
37     .fi
38     The number of components indicates that each matrix element is actually
39     composed of multiple elements, most commonly an RGB triple.
40     This is essentially dividing the matrix into planes, where each component
41     participates in a separate calculation.
42     If an appropriate header is not present, it may be added with a call to
43     .I rcollate(1).
44     A matrix may be read from the standard input using a hyphen by itself ('-')
45     in the appropriate place on the command line.
46     .PP
47 greg 1.9 Any of the matrix inputs may be read from a command
48     instead of a file by
49     using quotes and a beginning exclamation point ('!').
50     .PP
51 greg 1.1 Two special cases are handled for component matrices that are either
52 greg 1.20 XML files containing BSDF data, or Radiance picture files.
53     In the first case, the BSDF library loads and interprets the
54     transmission matrix by default.
55     Alternatively, the front (normal-side) reflectance is selected if the
56     .I \-rf
57     option precedes the file name, or the backside reflectance if
58     .I \-rb
59     is specified.
60 greg 1.9 (XML files cannot be read from the standard input or from a command.)\0
61 greg 1.1 In the second case, the RGBE or XYZE values are loaded in a 3-component
62     matrix where the number of columns match the X-dimension of the picture, and
63     the number of rows match the Y-dimension.
64     The picture must be in standard pixel ordering, and the first row
65 greg 1.7 is at the top with the first column on the left.
66 greg 1.21 Any exposure changes that were applied to the pictures before
67 greg 1.18 .I rmtxop
68     will be undone, similar to the
69 greg 1.19 .I pcomb(1)
70 greg 1.18 .I \-o
71     option.
72 greg 1.1 .PP
73     Before each file, the
74     .I \-t
75     and
76     .I \-s
77     or
78     .I \-c
79     options may be used to modify the matrix.
80     The
81     .I \-t
82     option transposes the matrix, swapping rows and columns.
83     The
84     .I \-s
85     option applies the given scalar factor(s) to the elements of the matrix.
86     If only one factor is provided,
87     it will be used for all components.
88     If multiple factors are given, their number must match the number of matrix
89     components.
90     Alternatively, the
91     .I \-c
92     option may be used to "transform" the element values, possibly changing
93     the number of components in the matrix.
94     For example, a 3-component matrix can be transformed into a single-component
95     matrix by using
96     .I \-c
97     with three coefficients.
98     A four-component matrix can be turned into a two-component matrix using 8
99     coefficients, where the first four coefficients will be used to compute
100     the first new component, and the second four coefficients
101     yield the second new component.
102     Note that the number of coefficients must be an even multiple of the number
103     of original components.
104     The
105     .I \-s
106     and
107     .I \-c
108     options are mutually exclusive, insofar as they cannot be applied together
109     to the same input matrix.
110     .PP
111     If present, the second and subsequent matrices on the command
112 greg 1.16 line are concatenated together, unless separated by a plus ('+'),
113 greg 1.10 asterisk ('*'), or forward slash ('/') symbol,
114 greg 1.15 in which case the individual matrix elements are added,
115 greg 1.16 multiplied, or divided, respectively.
116     The concatenation operator ('.') is the default and need not be specified.
117     Note also that the asterisk must be quoted or escaped in most shells.
118 greg 1.10 In the case of addition, the two matrices involved must have the same number
119     of components.
120 greg 1.15 If subtraction is desired, use addition ('+') with a scaling parameter of -1
121     for the second matrix (the
122     .I \-s
123     option).
124 greg 1.11 For element-wise multiplication and division, the second matrix is
125 greg 1.15 permitted to have a single component per element, which will be
126 greg 1.11 applied equally to all components of the first matrix.
127 greg 1.10 If element-wise division is specified, any zero elements in the second
128     matrix will result in a warning and the corresponding component(s) in the
129     first matrix will be set to zero.
130     .PP
131 greg 1.16 Evaluation proceeds from left to right, and all operations have
132     the same precedence.
133     If a different evaluation order is desired, pipe the result of one
134     .I rmtxop
135     command into another, as shown in one of the examples below.
136     .PP
137 greg 1.17 The number of components in the next matrix after applying any
138 greg 1.1 .I -c
139     transform must agree with the prior result.
140     For concatenation (matrix multiplication), the number of columns
141 greg 1.17 in the prior result must equal the number of rows in the next matrix, and
142 greg 1.1 the result will have the number of rows of the previous and the number
143 greg 1.17 of columns of the next matrix.
144 greg 1.10 In the case of addition, multiplication, and division,
145     the number of rows and columns of the prior result and the
146 greg 1.17 next matrix must match, and will not be changed by the operation.
147 greg 1.1 .PP
148 greg 1.14 A final transpose or scaling/transform operation may be applied to
149     the results by appending the
150     .I \-t
151     and
152     .I \-s
153     or
154     .I \-c
155     options after the last matrix on the command line.
156     .PP
157 greg 1.1 Results are sent to the standard output.
158 greg 1.4 By default, the values will be written in the lowest resolution format
159 greg 1.6 among the inputs, but the
160 greg 1.1 .I \-f
161 greg 1.4 option may be used to explicitly output components
162     as ASCII (-fa), binary doubles (-fd), floats (-ff), or RGBE colors (-fc).
163 greg 1.1 In the latter case, the actual matrix dimensions are written in the resolution
164     string rather than the header.
165     Also, matrix results written as Radiance pictures must have either one
166     or three components.
167     In the one-component case, the output is written as grayscale.
168     .PP
169     The
170     .I \-v
171     option turns on verbose reporting, which announces each operation.
172     .SH EXAMPLES
173     To concatenate two matrix files with a BTDF between them and write
174     the result as binary double:
175     .IP "" .2i
176     rmtxop -fd view.vmx blinds.xml exterior.dmx > dcoef.dmx
177     .PP
178     To convert a BTDF matrix into a Radiance picture:
179     .IP "" .2i
180     rmtxop -fc blinds.xml > blinds.hdr
181     .PP
182 greg 1.16 To extract the luminance values from a picture as an ASCII matrix:
183     .IP "" .2i
184     rmtxop -fa -c .265 .670 .065 image.hdr > image_lum.mtx
185     .PP
186 greg 1.1 To scale a matrix by 4 and add it to the transpose of another matrix:
187     .IP "" .2i
188 greg 1.16 rmtxop -s 4 first.mtx + -t second.mtx > result.mtx
189     .PP
190     To multiply elements of two matrices, then concatenate with a third,
191     applying a final transpose to the result:
192     .IP "" .2i
193     rmtxop first.mtx \\* second.mtx . third.mtx -t > result.mtx
194 greg 1.1 .PP
195 greg 1.15 To left-multiply the element-wise division of two matrices:
196     .IP "" .2i
197     rmtxop -fd numerator.mtx / denominator.mtx | rmtxop left.mtx - > result.mtx
198     .PP
199 greg 1.1 To send the elements of a binary matrix to
200     .I rcalc(1)
201     for further processing:
202     .IP "" .2i
203 greg 1.5 rmtxop -fa orig.mtx | rcollate -ho -oc 1 | rcalc [operations]
204 greg 1.13 .SH NOTES
205 greg 1.16 Matrix concatenation is associative but not commutative, so order
206 greg 1.13 matters to the result.
207     .I Rmtxop
208 greg 1.16 takes advantage of this associative property to concatenate
209     from right to left when it reduces the number of basic operations.
210 greg 1.13 If the rightmost matrix is a column vector for example, it is
211 greg 1.16 much faster to concatenate from the right, and the result will
212 greg 1.13 be the same.
213 greg 1.16 Note that this only applies to concatenation;
214     element-wise addition, multiplication, and division are always
215 greg 1.13 evaluated from left to right.
216 greg 1.1 .SH AUTHOR
217     Greg Ward
218     .SH "SEE ALSO"
219 greg 1.18 cnt(1), getinfo(1), histo(1), neaten(1), pcomb(1), rcalc(1),
220     rcollate(1), rcontrib(1), rfluxmtx(1), rlam(1),
221 greg 1.12 rsplit(1), tabfunc(1), total(1), wrapBSDF(1)