ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/man/man1/rmtxop.1
Revision: 1.16
Committed: Mon Aug 12 17:14:40 2019 UTC (5 years, 9 months ago) by greg
Branch: MAIN
Changes since 1.15: +27 -12 lines
Log Message:
Further clarifications and examples

File Contents

# User Rev Content
1 greg 1.16 .\" RCSid "$Id: rmtxop.1,v 1.15 2019/08/12 16:55:24 greg Exp $"
2 greg 1.1 .TH RMTXOP 1 7/8/97 RADIANCE
3     .SH NAME
4 greg 1.10 rmtxop - concatenate, add, multiply, divide, transpose, scale, and convert matrices
5 greg 1.1 .SH SYNOPSIS
6     .B rmtxop
7     [
8     .B \-v
9     ][
10 greg 1.3 .B \-f[afdc]
11 greg 1.1 ][
12     .B \-t
13     ][
14     .B "\-s sf .."
15     ][
16     .B "\-c ce .."
17     ]
18     .B m1
19     [
20 greg 1.13 .B ".+*/"
21 greg 1.1 ]
22     .B ".."
23     .SH DESCRIPTION
24     .I Rmtxop
25 greg 1.10 loads and concatenates or adds/multiplies/divides
26     together component matrix files given on the command line.
27 greg 1.1 Each file must have a header containing the following variables:
28     .sp
29     .nf
30     NROWS={number of rows}
31     NCOLS={number of columns}
32     NCOMP={number of components}
33     FORMAT={ascii|float|double|32-bit_rle_rgbe|32-bit_rle_xyze}
34     .sp
35     .fi
36     The number of components indicates that each matrix element is actually
37     composed of multiple elements, most commonly an RGB triple.
38     This is essentially dividing the matrix into planes, where each component
39     participates in a separate calculation.
40     If an appropriate header is not present, it may be added with a call to
41     .I rcollate(1).
42     A matrix may be read from the standard input using a hyphen by itself ('-')
43     in the appropriate place on the command line.
44     .PP
45 greg 1.9 Any of the matrix inputs may be read from a command
46     instead of a file by
47     using quotes and a beginning exclamation point ('!').
48     .PP
49 greg 1.1 Two special cases are handled for component matrices that are either
50     XML files containing BTDF data, or Radiance picture files.
51     In the first case, a BSDF library is used to load and interpret the
52     transmission matrix.
53 greg 1.9 (XML files cannot be read from the standard input or from a command.)\0
54 greg 1.1 In the second case, the RGBE or XYZE values are loaded in a 3-component
55     matrix where the number of columns match the X-dimension of the picture, and
56     the number of rows match the Y-dimension.
57     The picture must be in standard pixel ordering, and the first row
58 greg 1.7 is at the top with the first column on the left.
59 greg 1.1 .PP
60     Before each file, the
61     .I \-t
62     and
63     .I \-s
64     or
65     .I \-c
66     options may be used to modify the matrix.
67     The
68     .I \-t
69     option transposes the matrix, swapping rows and columns.
70     The
71     .I \-s
72     option applies the given scalar factor(s) to the elements of the matrix.
73     If only one factor is provided,
74     it will be used for all components.
75     If multiple factors are given, their number must match the number of matrix
76     components.
77     Alternatively, the
78     .I \-c
79     option may be used to "transform" the element values, possibly changing
80     the number of components in the matrix.
81     For example, a 3-component matrix can be transformed into a single-component
82     matrix by using
83     .I \-c
84     with three coefficients.
85     A four-component matrix can be turned into a two-component matrix using 8
86     coefficients, where the first four coefficients will be used to compute
87     the first new component, and the second four coefficients
88     yield the second new component.
89     Note that the number of coefficients must be an even multiple of the number
90     of original components.
91     The
92     .I \-s
93     and
94     .I \-c
95     options are mutually exclusive, insofar as they cannot be applied together
96     to the same input matrix.
97     .PP
98     If present, the second and subsequent matrices on the command
99 greg 1.16 line are concatenated together, unless separated by a plus ('+'),
100 greg 1.10 asterisk ('*'), or forward slash ('/') symbol,
101 greg 1.15 in which case the individual matrix elements are added,
102 greg 1.16 multiplied, or divided, respectively.
103     The concatenation operator ('.') is the default and need not be specified.
104     Note also that the asterisk must be quoted or escaped in most shells.
105 greg 1.10 In the case of addition, the two matrices involved must have the same number
106     of components.
107 greg 1.15 If subtraction is desired, use addition ('+') with a scaling parameter of -1
108     for the second matrix (the
109     .I \-s
110     option).
111 greg 1.11 For element-wise multiplication and division, the second matrix is
112 greg 1.15 permitted to have a single component per element, which will be
113 greg 1.11 applied equally to all components of the first matrix.
114 greg 1.10 If element-wise division is specified, any zero elements in the second
115     matrix will result in a warning and the corresponding component(s) in the
116     first matrix will be set to zero.
117     .PP
118 greg 1.16 Evaluation proceeds from left to right, and all operations have
119     the same precedence.
120     If a different evaluation order is desired, pipe the result of one
121     .I rmtxop
122     command into another, as shown in one of the examples below.
123     .PP
124 greg 1.1 The number of components in the new matrix after applying any
125     .I -c
126     transform must agree with the prior result.
127     For concatenation (matrix multiplication), the number of columns
128     in the prior result must equal the number of rows in the new matrix, and
129     the result will have the number of rows of the previous and the number
130     of columns of the new matrix.
131 greg 1.10 In the case of addition, multiplication, and division,
132     the number of rows and columns of the prior result and the
133     new matrix must match, and will not be changed by the operation.
134 greg 1.1 .PP
135 greg 1.14 A final transpose or scaling/transform operation may be applied to
136     the results by appending the
137     .I \-t
138     and
139     .I \-s
140     or
141     .I \-c
142     options after the last matrix on the command line.
143     .PP
144 greg 1.1 Results are sent to the standard output.
145 greg 1.4 By default, the values will be written in the lowest resolution format
146 greg 1.6 among the inputs, but the
147 greg 1.1 .I \-f
148 greg 1.4 option may be used to explicitly output components
149     as ASCII (-fa), binary doubles (-fd), floats (-ff), or RGBE colors (-fc).
150 greg 1.1 In the latter case, the actual matrix dimensions are written in the resolution
151     string rather than the header.
152     Also, matrix results written as Radiance pictures must have either one
153     or three components.
154     In the one-component case, the output is written as grayscale.
155     .PP
156     The
157     .I \-v
158     option turns on verbose reporting, which announces each operation.
159     .SH EXAMPLES
160     To concatenate two matrix files with a BTDF between them and write
161     the result as binary double:
162     .IP "" .2i
163     rmtxop -fd view.vmx blinds.xml exterior.dmx > dcoef.dmx
164     .PP
165     To convert a BTDF matrix into a Radiance picture:
166     .IP "" .2i
167     rmtxop -fc blinds.xml > blinds.hdr
168     .PP
169 greg 1.16 To extract the luminance values from a picture as an ASCII matrix:
170     .IP "" .2i
171     rmtxop -fa -c .265 .670 .065 image.hdr > image_lum.mtx
172     .PP
173 greg 1.1 To scale a matrix by 4 and add it to the transpose of another matrix:
174     .IP "" .2i
175 greg 1.16 rmtxop -s 4 first.mtx + -t second.mtx > result.mtx
176     .PP
177     To multiply elements of two matrices, then concatenate with a third,
178     applying a final transpose to the result:
179     .IP "" .2i
180     rmtxop first.mtx \\* second.mtx . third.mtx -t > result.mtx
181 greg 1.1 .PP
182 greg 1.15 To left-multiply the element-wise division of two matrices:
183     .IP "" .2i
184     rmtxop -fd numerator.mtx / denominator.mtx | rmtxop left.mtx - > result.mtx
185     .PP
186 greg 1.1 To send the elements of a binary matrix to
187     .I rcalc(1)
188     for further processing:
189     .IP "" .2i
190 greg 1.5 rmtxop -fa orig.mtx | rcollate -ho -oc 1 | rcalc [operations]
191 greg 1.13 .SH NOTES
192 greg 1.16 Matrix concatenation is associative but not commutative, so order
193 greg 1.13 matters to the result.
194     .I Rmtxop
195 greg 1.16 takes advantage of this associative property to concatenate
196     from right to left when it reduces the number of basic operations.
197 greg 1.13 If the rightmost matrix is a column vector for example, it is
198 greg 1.16 much faster to concatenate from the right, and the result will
199 greg 1.13 be the same.
200 greg 1.16 Note that this only applies to concatenation;
201     element-wise addition, multiplication, and division are always
202 greg 1.13 evaluated from left to right.
203 greg 1.1 .SH AUTHOR
204     Greg Ward
205     .SH "SEE ALSO"
206 greg 1.5 cnt(1), getinfo(1), histo(1), neaten(1), rcalc(1), rcollate(1),
207 greg 1.12 rcontrib(1), rfluxmtx(1), rlam(1),
208     rsplit(1), tabfunc(1), total(1), wrapBSDF(1)