ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/man/man1/rcontrib.1
Revision: 1.13
Committed: Mon Sep 12 20:31:34 2016 UTC (8 years, 8 months ago) by greg
Branch: MAIN
CVS Tags: rad5R1
Changes since 1.12: +5 -2 lines
Log Message:
Hopeful fix to issue with rcontrib writing multiple records/pixel

File Contents

# User Rev Content
1 greg 1.13 .\" RCSid "$Id: rcontrib.1,v 1.12 2015/02/24 19:39:26 greg Exp $"
2 greg 1.2 .TH RCONTRIB 1 5/25/05 RADIANCE
3 greg 1.1 .SH NAME
4     rcontrib - compute contribution coefficients in a RADIANCE scene
5     .SH SYNOPSIS
6     .B rcontrib
7     [
8     .B "\-n nprocs"
9     ][
10     .B \-V
11     ][
12     .B "\-c count"
13     ][
14     .B \-fo
15     |
16     .B \-r
17     ][
18     .B "\-e expr"
19     ][
20     .B "\-f source"
21     ][
22     .B "\-o ospec"
23     ][
24 greg 1.10 .B "\-p p1=V1,p2=V2"
25     ][
26 greg 1.1 .B "\-b binv"
27     ][
28     .B "\-bn nbins"
29     ]
30     {
31     .B "\-m mod | \-M file"
32     }
33     ..
34     [
35     .B $EVAR
36     ]
37     [
38     .B @file
39     ]
40     [
41     rtrace options
42     ]
43     .B octree
44     .br
45     .B "rcontrib [ options ] \-defaults"
46     .SH DESCRIPTION
47 greg 1.3 .I Rcontrib
48 greg 1.1 computes ray coefficients
49     for objects whose modifiers are named in one or more
50     .I \-m
51     settings.
52     These modifiers are usually materials associated with
53     light sources or sky domes, and must directly modify some geometric
54     primitives to be considered in the output.
55     A modifier list may also be read from a file using the
56     .I \-M
57     option.
58     The RAYPATH environment variable determines directories to search for
59     this file.
60     (No search takes place if a file name begins with a '.', '/' or '~'
61     character.)\0
62     .PP
63     If the
64     .I \-n
65     option is specified with a value greater than 1, multiple
66     processes will be used to accelerate computation on a shared
67     memory machine.
68     Note that there is no benefit to using more processes
69     than there are local CPUs available to do the work, and the
70     .I rcontrib
71     process itself may use a considerable amount of CPU time.
72     .PP
73     By setting the boolean
74     .I \-V
75     option, you may instruct
76     .I rcontrib
77     to report the contribution from each material rather than the ray
78     coefficient.
79     This is particularly useful for light sources with directional output
80     distributions, whose value would otherwise be lost in the shuffle.
81     With the default
82     .I -V-
83     setting, the output of rcontrib is a coefficient that must be multiplied
84     by the radiance of each material to arrive at a final contribution.
85     This is more convenient for computing daylight coefficeints, or cases
86     where the actual radiance is not desired.
87     Use the
88     .I -V+
89     setting when you wish to simply sum together contributions
90     (with possible adjustment factors) to obtain a final radiance value.
91     Combined with the
92     .I \-i
93     or
94     .I \-I
95     option, irradiance contributions are reported by
96     .I \-V+
97     rather than radiance, and
98     .I \-V-
99     coefficients contain an additonal factor of PI.
100     .PP
101     The
102     .I \-c
103     option tells
104     .I rcontrib
105     how many rays to accumulate for each record.
106 greg 1.6 The default value is one, meaning a full record will be produced for
107 greg 1.1 each input ray.
108 greg 1.6 For values greater than one, contributions will be averaged together
109 greg 1.1 over the given number of input rays.
110     If set to zero, only a single record will be produced at the very
111     end, corresponding to the sum of all rays given on the input
112     (rather than the average).
113     This is equivalent to passing all the output records through a program like
114     .I total(1)
115     to sum RGB values together, but is much more efficient.
116     Using this option, it is possible to reverse sampling, sending rays from
117     a parallel source such as the sun to a diffuse surface, for example.
118 greg 1.6 Note that output flushing via zero-direction rays is disabled with
119     .I \-c
120     set to zero.
121 greg 1.1 .PP
122     The output of
123     .I rcontrib
124     has many potential uses.
125     Source contributions can be used as components in linear combination to
126     reproduce any desired variation, e.g., simulating lighting controls or
127     changing sky conditions via daylight coefficients.
128     More generally,
129     .I rcontrib
130     can be used to compute arbitrary input-output relationships in optical
131     systems, such as luminaires, light pipes, and shading devices.
132     .PP
133 greg 1.3 .I Rcontrib
134 greg 1.4 sends the accumulated rays tallies
135     to one or more destinations according to the given
136 greg 1.1 .I \-o
137     specification.
138     If a destination begins with an exclamation mark ('!'), then
139     a pipe is opened to a command and data is sent to its standard input.
140     Otherwise, the destination is treated as a file.
141     An existing file of the same name will not be clobbered, unless the
142     .I \-fo
143     option is given.
144     If instead the
145     .I \-r
146     option is specified, data recovery is attempted on existing files.
147     (If
148     .I "\-c 0"
149     is used together with the
150     .I \-r
151     option, existing files are read in and new ray evaluations are added
152     to the previous results, providing a convenient means for
153     progressive simulation.)\0
154     If an output specification contains a "%s" format, this will be
155     replaced by the modifier name.
156     The
157     .I \-b
158     option may be used to further define
159     a "bin number" within each object if finer resolution is needed, and
160     this will be applied to a "%d" format in the output file
161 greg 1.13 specification if present.
162     (The final integer will be offset incrementally
163     if the output is a RADIANCE picture and more than one modifier has
164     the same format specification.)\0
165 greg 1.1 The actual bin number is computed at run time based on ray direction
166     and surface intersection, as described below.
167 greg 1.5 The number of bins must be specified in advance with the
168 greg 1.1 .I \-bn
169     option, and this is critical for output files containing multiple values
170     per record.
171     A variable or constant name may be given for this parameter if
172     it has been defined via a previous
173     .I \-f
174     or
175     .I \-e
176     option.
177 greg 1.6 Since bin numbers start from zero, the bin count is always equal to
178     the last bin plus one.
179 greg 1.1 The most recent
180 greg 1.10 .I \-p,
181 greg 1.1 .I \-b,
182     .I \-bn
183     and
184     .I \-o
185     options to the left of each
186     .I \-m
187     setting are the ones used for that modifier.
188     The ordering of other options is unimportant, except for
189     .I \-x
190     and
191     .I \-y
192     if the
193     .I \-c
194 greg 1.6 is zero, when they control the resolution string
195 greg 1.1 produced in the corresponding output.
196     .PP
197     If a
198     .I \-b
199     expression is defined for a particular modifier,
200     the bin number will be evaluated at run time for each
201 greg 1.4 ray contribution.
202 greg 1.1 Specifically, each ray's world intersection point will be assigned to
203     the variables Px, Py, and Pz, and the normalized ray direction
204     will be assigned to Dx, Dy, and Dz.
205     These parameters may be combined with definitions given in
206     .I \-e
207     arguments and files read using the
208     .I \-f
209     option.
210 greg 1.10 Additional parameter values that apply only to this modifier may be specified
211     with a
212     .I \-p
213     option, which contains a list of variable names and assigned values, separated
214     by commas or semicolons.
215 greg 1.1 The computed bin value will be
216     rounded to the nearest whole number.
217 greg 1.9 (Negative bin values will be silently ignored.)\0
218 greg 1.8 For a single bin, you may specify
219     .I "\-b 0",
220     which is the default.
221 greg 1.1 This mechanism allows the user to define precise regions or directions
222     they wish to accumulate, such as the Tregenza sky discretization,
223     which would be otherwise impossible to specify
224     as a set of RADIANCE primitives.
225     The rules and predefined functions available for these expressions are
226     described in the
227     .I rcalc(1)
228     man page.
229 greg 1.8 Like
230 greg 1.1 .I rcalc,
231     .I rcontrib
232     will search the RADIANCE library directories for each file given in a
233     .I \-f
234     option.
235     .PP
236     If no
237     .I \-o
238     specification is given, results are written on the standard output in order
239     of modifier (as given on the command line) then bin number.
240     Concatenated data is also sent to a single destination (i.e., an initial
241     .I \-o
242     specification without formatting strings).
243     If a "%s" format appears but no "%d" in the
244     .I \-o
245     specification, then each modifier will have its own output file, with
246     multiple values per record in the case of a non-zero
247     .I \-b
248     definition.
249     If a "%d" format appears but no "%s", then each bin will get its own
250     output file, with modifiers output in order in each record.
251     For text output, each RGB coefficient triple is separated by a tab,
252     with a newline at the end of each ray record.
253     For binary output formats, there is no such delimiter to mark
254     the end of each record.
255     .PP
256     Input and output format defaults to plain text, where each ray's
257     origin and direction (6 real values) are given on input,
258     and one line is produced per output file per ray.
259     Alternative data representations may be specified by the
260     .I \-f[io]
261     option, which is described in the
262     .I rtrace
263     man page along with the associated
264     .I \-x
265     and
266     .I \-y
267     resolution settings.
268     In particular, the color ('c') output data representation
269     together with positive dimensions for
270     .I \-x
271     and
272     .I \-y
273     will produce an uncompressed RADIANCE picture,
274     suitable for manipulation with
275     .I pcomb(1)
276     and related tools.
277     .PP
278     Options may be given on the command line and/or read from the
279     environment and/or read from a file.
280     A command argument beginning with a dollar sign ('$') is immediately
281     replaced by the contents of the given environment variable.
282     A command argument beginning with an at sign ('@') is immediately
283     replaced by the contents of the given file.
284 greg 1.12 .PP
285     .I Rcontrib
286     has EXPERIMENTAL support for light source contributions from photon maps
287     generated by
288     .I mkpmap(1)
289     with its
290     .I -apC
291     option. In photon mapping mode,
292     .I rcontrib
293     only supports contributions from light sources, not arbitrary modifiers.
294     The
295     .I -b
296     option is supported along with its associated ray variables, as
297     discussed above. Ray coefficients are also supported via the
298     .I \-V-
299     option. Using fewer photons than there are light sources for the photon
300     density estimates results in omitted contributions, thus the bandwidth
301     is clamped accordingly and a warning issued.
302 greg 1.1 .SH EXAMPLES
303     To compute the proportional contributions from sources modified
304     by "light1" vs. "light2" on a set of illuminance values:
305     .IP "" .2i
306     rcontrib \-I+ @render.opt \-o c_%s.dat \-m light1 \-m light2 scene.oct < test.dat
307     .PP
308     To generate a pair of images corresponding to these two lights'
309     contributions:
310     .IP "" .2i
311     vwrays \-ff \-x 1024 \-y 1024 \-vf best.vf |
312     rcontrib \-ffc `vwrays \-d \-x 1024 \-y 1024 \-vf best.vf`
313     @render.opt \-o c_%s.hdr \-m light1 \-m light2 scene.oct
314     .PP
315     These images may then be recombined using the desired outputs
316     of light1 and light2:
317     .IP "" .2i
318     pcomb \-c 100 90 75 c_light1.hdr \-c 50 55 57 c_light2.hdr > combined.hdr
319     .PP
320     To compute an array of illuminance contributions according to a Tregenza sky:
321     .IP "" .2i
322 greg 1.7 rcontrib \-I+ \-f tregenza.cal \-b tbin \-bn Ntbins \-o sky.dat \-m skyglow
323     \-b 0 \-o ground.dat \-m groundglow @render.opt scene.oct < test.dat
324 greg 1.12 .PP
325     To perform an annual simulation of 365 daily sun positions in photon mapping
326     mode:
327     .IP "" .2i
328     rcontrib \-I+ \-h \-V \-fo \-o c_%s.dat \-M lights \-ap contrib.pm 365
329     scene.oct < test.dat,
330 greg 1.1 .SH ENVIRONMENT
331     RAYPATH path to search for \-f and \-M files
332     .SH AUTHOR
333     Greg Ward
334     .SH "SEE ALSO"
335 greg 1.12 cnt(1), genklemsamp(1), getinfo(1), mkpmap(1), pcomb(1), pfilt(1),
336     ra_rgbe(1), rcalc(1), rfluxmtx(1), rmtxop(1), rpict(1), rsensor(1),
337     rtrace(1), total(1), vwrays(1), ximage(1)
338