ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/man/man1/rcontrib.1
Revision: 1.10
Committed: Sat Jul 19 18:19:33 2014 UTC (10 years, 9 months ago) by greg
Branch: MAIN
Changes since 1.9: +9 -1 lines
Log Message:
Added -p option to specify per-modifier function file parameters

File Contents

# User Rev Content
1 greg 1.10 .\" RCSid "$Id: rcontrib.1,v 1.9 2014/07/19 00:07:03 greg Exp $"
2 greg 1.2 .TH RCONTRIB 1 5/25/05 RADIANCE
3 greg 1.1 .SH NAME
4     rcontrib - compute contribution coefficients in a RADIANCE scene
5     .SH SYNOPSIS
6     .B rcontrib
7     [
8     .B "\-n nprocs"
9     ][
10     .B \-V
11     ][
12     .B "\-c count"
13     ][
14     .B \-fo
15     |
16     .B \-r
17     ][
18     .B "\-e expr"
19     ][
20     .B "\-f source"
21     ][
22     .B "\-o ospec"
23     ][
24 greg 1.10 .B "\-p p1=V1,p2=V2"
25     ][
26 greg 1.1 .B "\-b binv"
27     ][
28     .B "\-bn nbins"
29     ]
30     {
31     .B "\-m mod | \-M file"
32     }
33     ..
34     [
35     .B $EVAR
36     ]
37     [
38     .B @file
39     ]
40     [
41     rtrace options
42     ]
43     .B octree
44     .br
45     .B "rcontrib [ options ] \-defaults"
46     .SH DESCRIPTION
47 greg 1.3 .I Rcontrib
48 greg 1.1 computes ray coefficients
49     for objects whose modifiers are named in one or more
50     .I \-m
51     settings.
52     These modifiers are usually materials associated with
53     light sources or sky domes, and must directly modify some geometric
54     primitives to be considered in the output.
55     A modifier list may also be read from a file using the
56     .I \-M
57     option.
58     The RAYPATH environment variable determines directories to search for
59     this file.
60     (No search takes place if a file name begins with a '.', '/' or '~'
61     character.)\0
62     .PP
63     If the
64     .I \-n
65     option is specified with a value greater than 1, multiple
66     processes will be used to accelerate computation on a shared
67     memory machine.
68     Note that there is no benefit to using more processes
69     than there are local CPUs available to do the work, and the
70     .I rcontrib
71     process itself may use a considerable amount of CPU time.
72     .PP
73     By setting the boolean
74     .I \-V
75     option, you may instruct
76     .I rcontrib
77     to report the contribution from each material rather than the ray
78     coefficient.
79     This is particularly useful for light sources with directional output
80     distributions, whose value would otherwise be lost in the shuffle.
81     With the default
82     .I -V-
83     setting, the output of rcontrib is a coefficient that must be multiplied
84     by the radiance of each material to arrive at a final contribution.
85     This is more convenient for computing daylight coefficeints, or cases
86     where the actual radiance is not desired.
87     Use the
88     .I -V+
89     setting when you wish to simply sum together contributions
90     (with possible adjustment factors) to obtain a final radiance value.
91     Combined with the
92     .I \-i
93     or
94     .I \-I
95     option, irradiance contributions are reported by
96     .I \-V+
97     rather than radiance, and
98     .I \-V-
99     coefficients contain an additonal factor of PI.
100     .PP
101     The
102     .I \-c
103     option tells
104     .I rcontrib
105     how many rays to accumulate for each record.
106 greg 1.6 The default value is one, meaning a full record will be produced for
107 greg 1.1 each input ray.
108 greg 1.6 For values greater than one, contributions will be averaged together
109 greg 1.1 over the given number of input rays.
110     If set to zero, only a single record will be produced at the very
111     end, corresponding to the sum of all rays given on the input
112     (rather than the average).
113     This is equivalent to passing all the output records through a program like
114     .I total(1)
115     to sum RGB values together, but is much more efficient.
116     Using this option, it is possible to reverse sampling, sending rays from
117     a parallel source such as the sun to a diffuse surface, for example.
118 greg 1.6 Note that output flushing via zero-direction rays is disabled with
119     .I \-c
120     set to zero.
121 greg 1.1 .PP
122     The output of
123     .I rcontrib
124     has many potential uses.
125     Source contributions can be used as components in linear combination to
126     reproduce any desired variation, e.g., simulating lighting controls or
127     changing sky conditions via daylight coefficients.
128     More generally,
129     .I rcontrib
130     can be used to compute arbitrary input-output relationships in optical
131     systems, such as luminaires, light pipes, and shading devices.
132     .PP
133 greg 1.3 .I Rcontrib
134 greg 1.4 sends the accumulated rays tallies
135     to one or more destinations according to the given
136 greg 1.1 .I \-o
137     specification.
138     If a destination begins with an exclamation mark ('!'), then
139     a pipe is opened to a command and data is sent to its standard input.
140     Otherwise, the destination is treated as a file.
141     An existing file of the same name will not be clobbered, unless the
142     .I \-fo
143     option is given.
144     If instead the
145     .I \-r
146     option is specified, data recovery is attempted on existing files.
147     (If
148     .I "\-c 0"
149     is used together with the
150     .I \-r
151     option, existing files are read in and new ray evaluations are added
152     to the previous results, providing a convenient means for
153     progressive simulation.)\0
154     If an output specification contains a "%s" format, this will be
155     replaced by the modifier name.
156     The
157     .I \-b
158     option may be used to further define
159     a "bin number" within each object if finer resolution is needed, and
160     this will be applied to a "%d" format in the output file
161     specification if present.
162     The actual bin number is computed at run time based on ray direction
163     and surface intersection, as described below.
164 greg 1.5 The number of bins must be specified in advance with the
165 greg 1.1 .I \-bn
166     option, and this is critical for output files containing multiple values
167     per record.
168     A variable or constant name may be given for this parameter if
169     it has been defined via a previous
170     .I \-f
171     or
172     .I \-e
173     option.
174 greg 1.6 Since bin numbers start from zero, the bin count is always equal to
175     the last bin plus one.
176 greg 1.1 The most recent
177 greg 1.10 .I \-p,
178 greg 1.1 .I \-b,
179     .I \-bn
180     and
181     .I \-o
182     options to the left of each
183     .I \-m
184     setting are the ones used for that modifier.
185     The ordering of other options is unimportant, except for
186     .I \-x
187     and
188     .I \-y
189     if the
190     .I \-c
191 greg 1.6 is zero, when they control the resolution string
192 greg 1.1 produced in the corresponding output.
193     .PP
194     If a
195     .I \-b
196     expression is defined for a particular modifier,
197     the bin number will be evaluated at run time for each
198 greg 1.4 ray contribution.
199 greg 1.1 Specifically, each ray's world intersection point will be assigned to
200     the variables Px, Py, and Pz, and the normalized ray direction
201     will be assigned to Dx, Dy, and Dz.
202     These parameters may be combined with definitions given in
203     .I \-e
204     arguments and files read using the
205     .I \-f
206     option.
207 greg 1.10 Additional parameter values that apply only to this modifier may be specified
208     with a
209     .I \-p
210     option, which contains a list of variable names and assigned values, separated
211     by commas or semicolons.
212 greg 1.1 The computed bin value will be
213     rounded to the nearest whole number.
214 greg 1.9 (Negative bin values will be silently ignored.)\0
215 greg 1.8 For a single bin, you may specify
216     .I "\-b 0",
217     which is the default.
218 greg 1.1 This mechanism allows the user to define precise regions or directions
219     they wish to accumulate, such as the Tregenza sky discretization,
220     which would be otherwise impossible to specify
221     as a set of RADIANCE primitives.
222     The rules and predefined functions available for these expressions are
223     described in the
224     .I rcalc(1)
225     man page.
226 greg 1.8 Like
227 greg 1.1 .I rcalc,
228     .I rcontrib
229     will search the RADIANCE library directories for each file given in a
230     .I \-f
231     option.
232     .PP
233     If no
234     .I \-o
235     specification is given, results are written on the standard output in order
236     of modifier (as given on the command line) then bin number.
237     Concatenated data is also sent to a single destination (i.e., an initial
238     .I \-o
239     specification without formatting strings).
240     If a "%s" format appears but no "%d" in the
241     .I \-o
242     specification, then each modifier will have its own output file, with
243     multiple values per record in the case of a non-zero
244     .I \-b
245     definition.
246     If a "%d" format appears but no "%s", then each bin will get its own
247     output file, with modifiers output in order in each record.
248     For text output, each RGB coefficient triple is separated by a tab,
249     with a newline at the end of each ray record.
250     For binary output formats, there is no such delimiter to mark
251     the end of each record.
252     .PP
253     Input and output format defaults to plain text, where each ray's
254     origin and direction (6 real values) are given on input,
255     and one line is produced per output file per ray.
256     Alternative data representations may be specified by the
257     .I \-f[io]
258     option, which is described in the
259     .I rtrace
260     man page along with the associated
261     .I \-x
262     and
263     .I \-y
264     resolution settings.
265     In particular, the color ('c') output data representation
266     together with positive dimensions for
267     .I \-x
268     and
269     .I \-y
270     will produce an uncompressed RADIANCE picture,
271     suitable for manipulation with
272     .I pcomb(1)
273     and related tools.
274     .PP
275     Options may be given on the command line and/or read from the
276     environment and/or read from a file.
277     A command argument beginning with a dollar sign ('$') is immediately
278     replaced by the contents of the given environment variable.
279     A command argument beginning with an at sign ('@') is immediately
280     replaced by the contents of the given file.
281     .SH EXAMPLES
282     To compute the proportional contributions from sources modified
283     by "light1" vs. "light2" on a set of illuminance values:
284     .IP "" .2i
285     rcontrib \-I+ @render.opt \-o c_%s.dat \-m light1 \-m light2 scene.oct < test.dat
286     .PP
287     To generate a pair of images corresponding to these two lights'
288     contributions:
289     .IP "" .2i
290     vwrays \-ff \-x 1024 \-y 1024 \-vf best.vf |
291     rcontrib \-ffc `vwrays \-d \-x 1024 \-y 1024 \-vf best.vf`
292     @render.opt \-o c_%s.hdr \-m light1 \-m light2 scene.oct
293     .PP
294     These images may then be recombined using the desired outputs
295     of light1 and light2:
296     .IP "" .2i
297     pcomb \-c 100 90 75 c_light1.hdr \-c 50 55 57 c_light2.hdr > combined.hdr
298     .PP
299     To compute an array of illuminance contributions according to a Tregenza sky:
300     .IP "" .2i
301 greg 1.7 rcontrib \-I+ \-f tregenza.cal \-b tbin \-bn Ntbins \-o sky.dat \-m skyglow
302     \-b 0 \-o ground.dat \-m groundglow @render.opt scene.oct < test.dat
303 greg 1.1 .SH ENVIRONMENT
304     RAYPATH path to search for \-f and \-M files
305     .SH AUTHOR
306     Greg Ward
307     .SH "SEE ALSO"
308     cnt(1), genklemsamp(1), getinfo(1), pcomb(1), pfilt(1), ra_rgbe(1),
309     rcalc(1), rpict(1), rsensor(1), rtrace(1), total(1), vwrays(1), ximage(1)