11 |
|
][ |
12 |
|
.B \-f[afdc] |
13 |
|
][ |
14 |
+ |
.B "\-n nproc" |
15 |
+ |
][ |
16 |
|
.B "\-f file" |
17 |
|
][ |
18 |
|
.B "\-e expr" |
25 |
|
] |
26 |
|
.B "m1 .." |
27 |
|
[ |
28 |
< |
.B "\-m mcat" |
28 |
> |
.B "\-m[t] mcat" |
29 |
|
] |
30 |
|
.SH DESCRIPTION |
31 |
|
.I Rcomb |
60 |
|
using the |
61 |
|
.I \-m |
62 |
|
option. |
63 |
+ |
If the option is given as |
64 |
+ |
.I \-mt |
65 |
+ |
then the concatenation matrix will be transposed before it is applied. |
66 |
|
Matrix concatenation will happen before or after any trailing |
67 |
|
operations, depending on relative command line placement. |
68 |
|
.PP |
146 |
|
is specified for an input picture or the |
147 |
|
.I "-fc" |
148 |
|
option is given, the output will be written as a RGBE or XYZE picture. |
149 |
< |
Note that conversion from a float or RGBE color space applies a conversion |
149 |
> |
Note that conversion from a float or RGBE color space applies an efficacy factor |
150 |
|
of 179 lumens/watt (for CIE or melanopic output) or 412 (for scotopic output), |
151 |
< |
and the reverse happens for conversion from XYZE input to RGB or RGBE output. |
151 |
> |
and the inverse happens for conversion from XYZE input to RGB or RGBE output. |
152 |
|
Lower case versions of all these components are also supported, the only |
153 |
< |
difference is that the aforementioned efficacy factors |
149 |
< |
will be left out of the conversion. |
153 |
> |
difference being that the efficacy factors are ignored. |
154 |
|
.PP |
155 |
|
If a matrix or picture file path is given to the |
156 |
|
.I \-c |
254 |
|
.I \-w |
255 |
|
option turns off warnings about divide-by-zero and other non-fatal |
256 |
|
calculation errors. |
257 |
+ |
.PP |
258 |
+ |
The |
259 |
+ |
.I \-n |
260 |
+ |
option specifies how many execution processes to employ, |
261 |
+ |
which may improve performance on multi-core architectures, |
262 |
+ |
especially for matrix multiplication |
263 |
+ |
and complex operations on long input rows. |
264 |
|
.SH EXAMPLES |
265 |
< |
To convert two hyperspectral inputs to RGB color space, |
265 |
> |
To convert two hyperspectral pictures to RGB color space, |
266 |
|
average them together, and write them out as a RADIANCE picture: |
267 |
|
.IP "" .2i |
268 |
< |
rcomb -C RGB -s .5 img1.spc -s .5 img2.spc > avg.hdr |
268 |
> |
rcomb -C RGB -s .5 img1.hsr -s .5 -fc img2.hsr > avg.hdr |
269 |
|
.PP |
270 |
|
Divide one set of matrix elements by the Euclidean sum of two others: |
271 |
|
.IP "" .2i |
275 |
|
Compute the absolute and relative differences between melanopic and photopic values |
276 |
|
in a spectral image: |
277 |
|
.IP "" .2i |
278 |
< |
rcomb -fa -C MY -e "abs(x):if(x,x,-x)" |
278 |
> |
rcomb -C MY -e "abs(x):if(x,x,-x)" |
279 |
|
-e "co(p)=select(p,abs(ci(1,1)-ci(1,2)),(ci(1,1)-ci(1,2))/ci(1,2))" |
280 |
< |
input_spec.hsr > compare.mtx |
280 |
> |
input_spec.hsr -fa > compare.mtx |
281 |
|
.PP |
282 |
|
Concatenate a spectral flux coefficient matrix with a spectral sky |
283 |
|
matrix to compute a set of melanopic lux values: |
342 |
|
.I rcomb, |
343 |
|
and should instead be handled by |
344 |
|
.I pfilt(1). |
345 |
+ |
.PP |
346 |
+ |
Similar to |
347 |
+ |
.I rmtxop, |
348 |
+ |
all calculations are peformed internally using 32-bit floating-point, |
349 |
+ |
so there is little benefit in either reading or writing 64-bit double |
350 |
+ |
data. |
351 |
+ |
This may be overridden at compile time using the macro |
352 |
+ |
"-DDTrmx_native=DTdouble". |
353 |
|
.SH BUGS |
354 |
|
The |
355 |
|
.I rcomb |
360 |
|
Greg Ward |
361 |
|
.SH "SEE ALSO" |
362 |
|
dctimestep(1), icalc(1), getinfo(1), pcomb(1), pfilt(1), |
363 |
< |
ra_xyze(1), rcalc(1), |
363 |
> |
pvsum(1), ra_rgbe(1), ra_xyze(1), rcalc(1), |
364 |
|
rcollate(1), rcontrib(1), rcrop(1), rfluxmtx(1), |
365 |
|
rmtxop(1), rtpict(1), rtrace(1), vwrays(1) |