ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/man/man1/pcond.1
Revision: 1.2
Committed: Tue Dec 9 15:59:06 2003 UTC (20 years, 5 months ago) by greg
Branch: MAIN
CVS Tags: rad3R7P2, rad3R7P1, rad3R6, rad3R6P1, rad3R8
Changes since 1.1: +1 -1 lines
Log Message:
Fixed RCSid specification

File Contents

# User Rev Content
1 greg 1.2 .\" RCSid "$Id$"
2 greg 1.1 .TH PCOND 1 10/27/98 RADIANCE
3     .SH NAME
4     pcond - condition a RADIANCE picture for output
5     .SH SYNOPSIS
6     .B pcond
7     [
8     .B options
9     ]
10     .B input
11     [
12     .B output
13     ]
14     .SH DESCRIPTION
15     .I Pcond
16     conditions a Radiance picture for output to a display or hard copy
17     device.
18     If the dynamic range of the scene exceeds that of the display (as is
19     usually the case),
20     .I pcond
21     will compress the dynamic range of the picture such that both
22     dark and bright regions are visible.
23     In addition, certain limitations in human vision may be mimicked in
24     order to provide an appearance similar to the experience one might
25     have in the actual scene.
26     .PP
27     Command line switches turn flags off and on, changing program behavior.
28     A switch given by itself toggles the flag from off to on or on to
29     off depending on its previous state.
30     A switch followed by a '+' turns the option on explicitly.
31     A switch followed by a '-' turns the option off.
32     The default is all switches off.
33     Other options specify output device parameters in order to get more
34     accurate color and contrast.
35     .TP 10n
36     .BI -h [+-]
37     Mimic human visual response in the output.
38     The goal of this process is to produce output that correlates
39     strongly with a person's subjective impression of a scene.
40     This switch is a bundle of the
41     .I \-a,
42     .I \-v,
43     .I \-s
44     and
45     .I \-c
46     options.
47     .TP
48     .BI -a [+-]
49     Defocus darker regions of the image to simulate human visual acuity loss.
50     This option will not affect well-lit scenes.
51     .TP
52     .BI -v [+-]
53     Add veiling glare due to very bright regions in the image.
54     This simulates internal scattering in the human eye, which
55     results in a loss of visible contrast near bright sources.
56     .TP
57     .BI -s [+-]
58     Use the human contrast sensitivity function in determining the
59     exposure for the image.
60     A darker scene will have relatively lower exposure with lower
61     contrast than a well-lit scene.
62     .TP
63     .BI -c [+-]
64     If parts of the image are in the mesopic or scotopic range where
65     the cone photoreceptors lose their efficiency, this switch will
66     cause a corresponding loss of color visibility in the output and a
67     shift to a scotopic (blue-dominant) response function.
68     .TP
69     .BI -w [+-]
70     Use a center-weighted average for the exposure rather than the
71     default uniform average.
72     This may improve the exposure for scenes with high or low peripheral
73     brightness.
74     .TP
75     .BI -i \ fixfrac
76     Set the relative importance of fixation points to
77     .I fixfrac,
78     which is a value between 0 and 1.
79     If
80     .I fixfrac
81     is zero (the default), then no fixation points are used in
82     determining the local or global adaptation.
83     If
84     .I fixfrac
85     is greater than zero, then a list of fixation points is read from
86     the standard input.
87     These points are given as tab-separated (x,y) picture
88     coordinates, such as those produced by the
89     .I \-op
90     option of
91     .I ximage(1).
92     The foveal samples about these fixation points will then be weighted
93     together with the global averaging scheme such that the fixations receive
94     .I fixfrac
95     of the total weight.
96     If
97     .I fixfrac
98     is one, then only the fixation points are considered for
99     adaptation.
100     .TP
101     .BI -I [+-]
102     Rather than computing a histogram of foveal samples from the source picture,
103     use the precomputed histogram provided on the standard input.
104     This data should be given in pairs of the base-10 logarithm of
105     world luminance and a count for each bin in ascending order, as
106     computed by the
107     .I phisto(1)
108     script.
109     This option is useful for producing identical exposures of multiple
110     pictures (as in an animation), and provides greater control
111     over the histogram computation.
112     .TP
113     .BI -l [+-]
114     Use a linear response function rather than the standard dynamic
115     range compression algorithm.
116     This will prevent the loss of usable physical values in the output
117     picture, although some parts of the resulting image may be too
118     dark or too bright to see.
119     .TP
120     .BI -e \ expval
121     Set the exposure adjustment for the picture to
122     .I expval.
123     This may either be a real multiplier, or a (fractional) number of
124     f-stops preceeded by a '+' or '-'.
125     This option implies a linear response (see the
126     .I \-l
127     option above).
128     .TP
129     .BI -u \ Ldmax
130     Specifies the top of the luminance range for the target output device.
131     That is, the luminance (in candelas/m^2) for an output pixel value
132     of (R,G,B)=(1,1,1).
133     The default value is 100 cd/m^2.
134     .TP
135     .BI -d \ Lddyn
136     Specifies the dynamic range for the target output device, which is
137     the ratio of the maximum and minimum usable display luminances.
138     The default value is 32.
139     .TP
140     .BI -p " xr yr xg yg xb yb xw yw"
141     Specifies the RGB primaries for the target output device.
142     These are the 1931 CIE (x,y) chromaticity values for red, green,
143     blue and white, respectively.
144     .TP
145     .BI -f \ macbeth.cal
146     Use the given output file from
147     .I macbethcal(1)
148     to precorrect the color and contrast for the target output device.
149     This does a more thorough job than a simple primary correction
150     using the
151     .I \-p
152     option.
153     Only one of
154     .I \-f
155     or
156     .I \-p
157     may be given.
158     .TP
159     .BI -x \ mapfile
160     Put out the final mapping from world luminance to display luminance to
161     .I mapfile.
162     This file will contain values from the minimum usable world
163     luminance to the maximum (in candelas/m^2) in one column, and their
164     corresponding display luminance values (also in candelas/m^2) in the
165     second column.
166     This file may be used for debugging purposes, or to plot the mapping
167     function created by
168     .I pcond.
169     .SH EXAMPLES
170     To display an image as a person might perceive it
171     in the actual scene:
172     .IP "" .2i
173     pcond -h final.pic > display.pic
174     .br
175     ximage display.pic ; rm display.pic &
176     .PP
177     To do the same on a 24-bit display with known primary values:
178     .IP "" .2i
179     setenv DISPLAY_PRIMARIES ".580 .340 .281 .570 .153 .079 .333 .333"
180     .br
181     pcond -h -p $DISPLAY_PRIMARIES final.pic | ximage &
182     .PP
183     To prepare a picture to be sent to a film recorder destined eventually
184     for a slide projector with a minimum and maximum screen luminance of
185     1.5 and 125 candelas/m^2, respectively:
186     .IP "" .2i
187     pcond -d 83 -u 125 final.pic > film.pic
188     .PP
189     To do the same if the output colors of the standard image
190     "ray/lib/lib/macbeth_spec.pic" have been measured:
191     .IP "" .2i
192     macbethcal -c mbfilm.xyY > film.cal
193     .br
194     pcond -d 83 -u 125 -f film.cal final.pic > film.pic
195     .PP
196     To further tweak the exposure to bring out certain areas indicated by
197     dragging the right mouse button over them in
198     .I ximage:
199     .IP "" .2i
200     ximage -op -t 75 final.pic | pcond -i .5 -d 83 -u 125 -f film.cal
201     final.pic > film.pic
202     .PP
203     To use a histogram computed on every 10th animation frame:
204     .IP "" .2i
205     phisto frame*0.pic > global.hist
206     .br
207     pcond -I -s -c frame0352.pic < global.hist | ra_tiff - frame0352.tif
208     .SH REFERENCE
209     Greg Ward Larson, Holly Rushmeier, Christine Piatko,
210     ``A Visibility Matching Tone Reproduction Operator for High Dynamic Range
211     Scenes,''
212     .I "IEEE Transactions on Visualization and Computer Graphics",
213     December 1997.
214     .PP
215     http://www.sgi.com/Technology/pixformat/Larsonetal.html
216     .SH AUTHOR
217     Greg Ward Larson
218     .SH "SEE ALSO"
219     getinfo(1), macbethcal(1), normtiff(1),
220     pcompos(1), pflip(1), phisto(1), pinterp(1),
221     pvalue(1), protate(1), ra_xyze(1), rad(1), rpict(1), ximage(1)