ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/man/man1/pcomb.1
Revision: 1.1
Committed: Tue Mar 11 19:20:21 2003 UTC (21 years, 2 months ago) by greg
Branch: MAIN
CVS Tags: rad3R5
Log Message:
Added documentation to repository

File Contents

# Content
1 .\" RCSid "$Id"
2 .TH PCOMB 1 8/31/96 RADIANCE
3 .SH NAME
4 pcomb - combine RADIANCE pictures.
5 .SH SYNOPSIS
6 .B pcomb
7 [
8 .B -w
9 ][
10 .B "\-x xres"
11 ][
12 .B "\-y yres"
13 ][
14 .B "\-f file"
15 ][
16 .B "\-e expr"
17 ]
18 [
19 [
20 .B -o
21 ][
22 .B "\-s factor"
23 ][
24 .B "\-c r g b"
25 ]
26 .B "input .."
27 ]
28 .SH DESCRIPTION
29 .I Pcomb
30 combines equal-sized RADIANCE pictures and sends the result to the
31 standard output.
32 By default, the result is just a linear combination of
33 the input pictures multiplied by
34 .I \-s
35 and
36 .I \-c
37 coefficients,
38 but an arbitrary mapping can be assigned with the
39 .I \-e
40 and
41 .I \-f
42 options.
43 Negative coefficients and functions are allowed, and
44 .I pcomb
45 will produce color values of zero where they would be negative.
46 .PP
47 The variables
48 .I ro,
49 .I go
50 and
51 .I bo
52 specify the red, green and blue output values, respectively.
53 Alternatively, the single variable
54 .I lo
55 can be used to specify a brightness value for black and white output.
56 The predefined functions
57 .I ri(n),
58 .I gi(n)
59 and
60 .I bi(n)
61 give the red, green and blue input values for
62 picture
63 .I n.
64 To access a pixel that is nearby the current one, these functions
65 also accept optional x and y offsets.
66 For example,
67 .I ri(3,-2,1)
68 would return the red component of the pixel from picture 3
69 that is left 2 and up 1 from the current position.
70 Although x offsets may be as large as width of the picture,
71 y offsets are limited to a small window (+/- 8 pixels) due to efficiency
72 considerations.
73 However, it is not usually necessary to worry about this problem --
74 if the requested offset is not available, the next best pixel is
75 returned instead.
76 .PP
77 For additional convenience, the function
78 .I li(n)
79 is defined as the input brightness for picture
80 .I n.
81 This function also accepts x and y offsets.
82 .PP
83 The constant
84 .I nfiles
85 gives the number of input files present,
86 and
87 .I WE
88 gives the white efficacy (lumens/brightness) for pixel values.
89 The variables
90 .I x
91 and
92 .I y
93 give the current output pixel location for use in
94 spatially dependent functions, the constants
95 .I xmax
96 and
97 .I ymax
98 give the input resolution, and the constants
99 .I xres
100 and
101 .I yres
102 give the output resolution (usually the same, but see below).
103 The constant functions
104 .I "re(n), ge(n), be(n),"
105 and
106 .I le(n)
107 give the exposure values for picture
108 .I n,
109 and
110 .I pa(n)
111 gives the corresponding pixel aspect ratio.
112 Finally, for pictures with stored view parameters,
113 the functions
114 .I "Ox(n), Oy(n)"
115 and
116 .I Oz(n)
117 return the ray origin in world coordinates for the current pixel
118 in picture
119 .I n,
120 and
121 .I "Dx(n), Dy(n)"
122 and
123 .I Dz(n)
124 return the normalized ray direction.
125 In addition, the function
126 .I T(n)
127 returns the distance from the origin to the aft clipping plane
128 (or zero if there is no aft plane), and the function
129 .I S(n)
130 returns the solid angle of the current pixel in steradians
131 (always zero for parallel views).
132 If the current pixel is outside the view region,
133 .I T(n)
134 will return a negative value, and
135 .I S(n)
136 will return zero.
137 .PP
138 The
139 .I \-w
140 option can be used to suppress warning messages about invalid
141 calculations.
142 The
143 .I \-o
144 option indicates that original pixel values are to be used for the next
145 picture, undoing any previous exposure changes or color correction.
146 .PP
147 The
148 .I \-x
149 and
150 .I \-y
151 options can be used to specify the desired output resolution,
152 .I xres
153 and
154 .I yres,
155 and can be expressions involving other constants such as
156 .I xmax
157 and
158 .I ymax.
159 The constants
160 .I xres
161 and
162 .I yres
163 may also be specified in a file or expression.
164 The default output resolution is the same as the input resolution.
165 .PP
166 The
167 .I \-x
168 and
169 .I \-y
170 options must be present if there are no input files, when
171 the definitions of
172 .I ro,
173 .I go
174 and
175 .I bo
176 will be used to compute each output pixel.
177 This is useful for producing simple test pictures for various
178 purposes.
179 (Theoretically, one could write a complete renderer using just the
180 functional language...)
181 .PP
182 The standard input can be specified with a hyphen ('-').
183 A command that produces a RADIANCE picture can be given in place of a file
184 by preceeding it with an exclamation point ('!').
185 .SH EXAMPLES
186 To produce a picture showing the difference between pic1 and pic2:
187 .IP "" .2i
188 pcomb -e 'ro=ri(1)-ri(2);go=gi(1)-gi(2);bo=bi(1)-bi(2)' pic1 pic2 > diff
189 .PP
190 Or, more efficiently:
191 .IP "" .2i
192 pcomb pic1 -s -1 pic2 > diff
193 .PP
194 To precompute the gamma correction for a picture:
195 .IP "" .2i
196 pcomb -e 'ro=ri(1)^.4;go=gi(1)^.4;bo=bi(1)^.4' pic > pic.gam
197 .PP
198 To perform some special filtering:
199 .IP "" .2i
200 pcomb -f myfilt.cal -x xmax/2 -y ymax/2 input.pic > filtered.pic
201 .PP
202 To make a picture of a dot:
203 .IP "" .2i
204 pcomb -x 100 -y 100 -e 'ro=b;go=b;bo=b;b=if((x-50)^2+(y-50)^2-25^2,0,1)' > dot
205 .SH AUTHOR
206 Greg Ward
207 .SH "SEE ALSO"
208 calc(1), getinfo(1), pcompos(1), pfilt(1), rpict(1)