1 |
.\" RCSid "$Id: pcomb.1,v 1.19 2023/12/12 16:31:45 greg Exp $" |
2 |
.TH PCOMB 1 8/31/96 RADIANCE |
3 |
.SH NAME |
4 |
pcomb - combine RADIANCE pictures and/or float matrices |
5 |
.SH SYNOPSIS |
6 |
.B pcomb |
7 |
[ |
8 |
.B -h |
9 |
][ |
10 |
.B -w |
11 |
][ |
12 |
.B -ff |
13 |
][ |
14 |
.B "\-x xres" |
15 |
][ |
16 |
.B "\-y yres" |
17 |
][ |
18 |
.B "\-f file" |
19 |
][ |
20 |
.B "\-e expr" |
21 |
] |
22 |
[ |
23 |
[ |
24 |
.B -o |
25 |
][ |
26 |
.B "\-s factor" |
27 |
][ |
28 |
.B "\-c r g b" |
29 |
] |
30 |
.B "input .." |
31 |
] |
32 |
.SH DESCRIPTION |
33 |
.I Pcomb |
34 |
combines equal-sized RADIANCE pictures or raw float matrices |
35 |
and sends the result to the standard output. |
36 |
By default, the result is just a linear combination of |
37 |
the input pixels multiplied by |
38 |
.I \-s |
39 |
and |
40 |
.I \-c |
41 |
coefficients, |
42 |
but an arbitrary mapping can be assigned with the |
43 |
.I \-e |
44 |
and |
45 |
.I \-f |
46 |
options, similar to |
47 |
.I rcalc(1). |
48 |
(The variable and function definitions in each |
49 |
.I \-f source |
50 |
file are read and compiled from the RADIANCE library |
51 |
where it is found.)\0 |
52 |
Negative coefficients and functions are allowed, and |
53 |
.I pcomb |
54 |
will produce color values of zero where they would be negative |
55 |
unless the |
56 |
.I \-ff |
57 |
option is used to specify floating-point matrix output. |
58 |
.PP |
59 |
The variables |
60 |
.I ro, |
61 |
.I go |
62 |
and |
63 |
.I bo |
64 |
specify the red, green and blue output values, respectively. |
65 |
Alternatively, the single variable |
66 |
.I lo |
67 |
can be used to specify a brightness value for black and white output. |
68 |
The predefined functions |
69 |
.I ri(n), |
70 |
.I gi(n) |
71 |
and |
72 |
.I bi(n) |
73 |
give the red, green and blue values for |
74 |
input |
75 |
.I n. |
76 |
To access a pixel that is nearby the current one, these functions |
77 |
also accept optional x and y offsets. |
78 |
For example, |
79 |
.I ri(3,-2,1) |
80 |
would return the red component of the pixel from input 3 |
81 |
that is left 2 and up 1 from the current position. |
82 |
Although x offsets may be as large as width of the input, |
83 |
y offsets are limited to a small window (+/- 32 pixels) due to efficiency |
84 |
considerations. |
85 |
However, it is not usually necessary to worry about this problem -- |
86 |
if the requested offset is not available, the next best pixel is |
87 |
returned instead. |
88 |
.PP |
89 |
For additional convenience, the function |
90 |
.I li(n) |
91 |
is defined as the input brightness for input |
92 |
.I n. |
93 |
This function also accepts x and y offsets. |
94 |
.PP |
95 |
The constant |
96 |
.I nfiles |
97 |
gives the number of input files present, |
98 |
and |
99 |
.I WE |
100 |
gives the white efficacy (lumens/brightness) for pixel values, |
101 |
which may be used with the |
102 |
.I \-o |
103 |
option or the le(n) values to convert to absolute |
104 |
photometric units (see below). |
105 |
The variables |
106 |
.I x |
107 |
and |
108 |
.I y |
109 |
give the current output pixel location for use in |
110 |
spatially dependent functions, the constants |
111 |
.I xmax |
112 |
and |
113 |
.I ymax |
114 |
give the input resolution, and the constants |
115 |
.I xres |
116 |
and |
117 |
.I yres |
118 |
give the output resolution (usually the same, but see below). |
119 |
The constant functions |
120 |
.I "re(n), ge(n), be(n)," |
121 |
and |
122 |
.I le(n) |
123 |
give the exposure values for input |
124 |
.I n, |
125 |
and |
126 |
.I pa(n) |
127 |
gives the corresponding pixel aspect ratio. |
128 |
Exposure values will be set to 1.0 for inputs with the |
129 |
.I \-o |
130 |
option set. |
131 |
Finally, for inputs with stored view parameters, |
132 |
the functions |
133 |
.I "Ox(n), Oy(n)" |
134 |
and |
135 |
.I Oz(n) |
136 |
return the ray origin in world coordinates for the current pixel |
137 |
in input |
138 |
.I n, |
139 |
and |
140 |
.I "Dx(n), Dy(n)" |
141 |
and |
142 |
.I Dz(n) |
143 |
return the normalized ray direction. |
144 |
In addition, the function |
145 |
.I T(n) |
146 |
returns the distance from the origin to the aft clipping plane |
147 |
(or zero if there is no aft plane), and the function |
148 |
.I S(n) |
149 |
returns the solid angle of the current pixel in steradians |
150 |
(always zero for parallel views). |
151 |
If the current pixel is outside the view region, |
152 |
.I T(n) |
153 |
will return a negative value, and |
154 |
.I S(n) |
155 |
will return zero. |
156 |
The first input input with a view is assumed to correspond to the |
157 |
view of the output, which is written into the header. |
158 |
.PP |
159 |
The |
160 |
.I \-h |
161 |
option may be used to reduce the information header size, which |
162 |
can grow disproportionately after multiple runs of |
163 |
.I pcomb |
164 |
and/or |
165 |
.I pcompos(1). |
166 |
The |
167 |
.I \-w |
168 |
option can be used to suppress warning messages about invalid |
169 |
calculations. |
170 |
The |
171 |
.I \-o |
172 |
option indicates that original pixel values are to be used for the next |
173 |
input, undoing any previous exposure changes or color correction. |
174 |
.PP |
175 |
The |
176 |
.I \-x |
177 |
and |
178 |
.I \-y |
179 |
options can be used to specify the desired output resolution, |
180 |
.I xres |
181 |
and |
182 |
.I yres, |
183 |
and can be expressions involving other constants such as |
184 |
.I xmax |
185 |
and |
186 |
.I ymax. |
187 |
The constants |
188 |
.I xres |
189 |
and |
190 |
.I yres |
191 |
may also be specified in a file or expression. |
192 |
The default output resolution is the same as the input resolution. |
193 |
.PP |
194 |
The |
195 |
.I \-x |
196 |
and |
197 |
.I \-y |
198 |
options must be present if there are no input files, when |
199 |
the definitions of |
200 |
.I ro, |
201 |
.I go |
202 |
and |
203 |
.I bo |
204 |
will be used to compute each output pixel. |
205 |
This is useful for producing simple test inputs for various |
206 |
purposes. |
207 |
(Theoretically, one could write a complete renderer using just the |
208 |
functional language...) |
209 |
.PP |
210 |
The standard input can be specified with a hyphen ('-'). |
211 |
A command that produces a RADIANCE picture or float matrix |
212 |
can be given in place of a file |
213 |
by preceeding it with an exclamation point ('!'). |
214 |
.SH EXAMPLES |
215 |
To produce a picture showing the difference between pic1 and pic2: |
216 |
.IP "" .2i |
217 |
pcomb \-e "ro=ri(1)\-ri(2);go=gi(1)\-gi(2);bo=bi(1)\-bi(2)" pic1 pic2 > diff |
218 |
.PP |
219 |
Or, more efficiently: |
220 |
.IP "" .2i |
221 |
pcomb pic1 \-s \-1 pic2 > diff |
222 |
.PP |
223 |
To precompute the gamma correction for a picture: |
224 |
.IP "" .2i |
225 |
pcomb \-e "ro=ri(1)^.4;go=gi(1)^.4;bo=bi(1)^.4" inp.hdr > gam.hdr |
226 |
.PP |
227 |
To perform some special filtering: |
228 |
.IP "" .2i |
229 |
pcomb \-f myfilt.cal \-x xmax/2 \-y ymax/2 input.hdr > filtered.hdr |
230 |
.PP |
231 |
To make a picture of a dot: |
232 |
.IP "" .2i |
233 |
pcomb \-x 100 \-y 100 \-e "ro=b;go=b;bo=b;b=if((x-50)^2+(y-50)^2\-25^2,0,1)" > dot |
234 |
.PP |
235 |
Use a depth buffer to superimpose 3-D gridlines on rendered image: |
236 |
.IP "" .2i |
237 |
rcollate -hi -ff -o 3000x3000 raw_orig.zbf |
238 |
| pcomb -e "frac(x):x-floor(x);EPS:.0001" |
239 |
-e "t=gi(2);Px=Ox(1)+t*Dx(1)-EPS;Py=Oy(1)+t*Dy(1)-EPS;Pz=Oz(1)+t*Dz(1)-EPS" |
240 |
-e "Rg:0;Gg:0;Bg:1;gsiz:0.03" |
241 |
-e "ingr=gsiz-min(frac(Px),frac(Py),frac(Pz))" |
242 |
-e "ro=if(ingr,Rg,ri(1));go=if(ingr,Gg,gi(1));bo=if(ingr,Bg,bi(1))" |
243 |
raw_orig.hdr - > trans_def_grid.hdr |
244 |
.SH ENVIRONMENT |
245 |
RAYPATH the directories to check for auxiliary files. |
246 |
.SH AUTHOR |
247 |
Greg Ward |
248 |
.SH "SEE ALSO" |
249 |
getinfo(1), icalc(1), pcompos(1), pfilt(1), pvalue(1), pvsum(1), rcalc(1), |
250 |
rcollate(1), rcomb(1), rmtxop(1), rpict(1) |