ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/man/man1/pcomb.1
Revision: 1.11
Committed: Fri May 4 23:56:49 2018 UTC (7 years ago) by greg
Branch: MAIN
CVS Tags: rad5R2, rad5R3
Changes since 1.10: +6 -1 lines
Log Message:
Added search to -f for genrev, gensurf, genworm, bsdf2klems, bsdf2ttree, & pcomb

File Contents

# User Rev Content
1 greg 1.11 .\" RCSid "$Id: pcomb.1,v 1.10 2018/02/05 20:07:17 greg Exp $"
2 greg 1.1 .TH PCOMB 1 8/31/96 RADIANCE
3     .SH NAME
4 greg 1.2 pcomb - combine RADIANCE pictures
5 greg 1.1 .SH SYNOPSIS
6     .B pcomb
7     [
8 greg 1.7 .B -h
9     ][
10 greg 1.1 .B -w
11     ][
12     .B "\-x xres"
13     ][
14     .B "\-y yres"
15     ][
16     .B "\-f file"
17     ][
18     .B "\-e expr"
19     ]
20     [
21     [
22     .B -o
23     ][
24     .B "\-s factor"
25     ][
26     .B "\-c r g b"
27     ]
28     .B "input .."
29     ]
30     .SH DESCRIPTION
31     .I Pcomb
32     combines equal-sized RADIANCE pictures and sends the result to the
33     standard output.
34     By default, the result is just a linear combination of
35     the input pictures multiplied by
36     .I \-s
37     and
38     .I \-c
39     coefficients,
40     but an arbitrary mapping can be assigned with the
41     .I \-e
42     and
43     .I \-f
44     options.
45 greg 1.11 The variable and function definitions in each
46     .I \-f source
47     file are read and compiled from the RADIANCE library where it is found.
48 greg 1.1 Negative coefficients and functions are allowed, and
49     .I pcomb
50     will produce color values of zero where they would be negative.
51     .PP
52     The variables
53     .I ro,
54     .I go
55     and
56     .I bo
57     specify the red, green and blue output values, respectively.
58     Alternatively, the single variable
59     .I lo
60     can be used to specify a brightness value for black and white output.
61     The predefined functions
62     .I ri(n),
63     .I gi(n)
64     and
65     .I bi(n)
66     give the red, green and blue input values for
67     picture
68     .I n.
69     To access a pixel that is nearby the current one, these functions
70     also accept optional x and y offsets.
71     For example,
72     .I ri(3,-2,1)
73     would return the red component of the pixel from picture 3
74     that is left 2 and up 1 from the current position.
75     Although x offsets may be as large as width of the picture,
76 greg 1.6 y offsets are limited to a small window (+/- 32 pixels) due to efficiency
77 greg 1.1 considerations.
78     However, it is not usually necessary to worry about this problem --
79     if the requested offset is not available, the next best pixel is
80     returned instead.
81     .PP
82     For additional convenience, the function
83     .I li(n)
84     is defined as the input brightness for picture
85     .I n.
86     This function also accepts x and y offsets.
87     .PP
88     The constant
89     .I nfiles
90     gives the number of input files present,
91     and
92     .I WE
93 greg 1.3 gives the white efficacy (lumens/brightness) for pixel values,
94     which may be used with the
95     .I \-o
96     option or the le(n) values to convert to absolute
97     photometric units (see below).
98 greg 1.1 The variables
99     .I x
100     and
101     .I y
102     give the current output pixel location for use in
103     spatially dependent functions, the constants
104     .I xmax
105     and
106     .I ymax
107     give the input resolution, and the constants
108     .I xres
109     and
110     .I yres
111     give the output resolution (usually the same, but see below).
112     The constant functions
113     .I "re(n), ge(n), be(n),"
114     and
115     .I le(n)
116     give the exposure values for picture
117     .I n,
118     and
119     .I pa(n)
120     gives the corresponding pixel aspect ratio.
121     Finally, for pictures with stored view parameters,
122     the functions
123     .I "Ox(n), Oy(n)"
124     and
125     .I Oz(n)
126     return the ray origin in world coordinates for the current pixel
127     in picture
128     .I n,
129     and
130     .I "Dx(n), Dy(n)"
131     and
132     .I Dz(n)
133     return the normalized ray direction.
134     In addition, the function
135     .I T(n)
136     returns the distance from the origin to the aft clipping plane
137     (or zero if there is no aft plane), and the function
138     .I S(n)
139     returns the solid angle of the current pixel in steradians
140     (always zero for parallel views).
141     If the current pixel is outside the view region,
142     .I T(n)
143     will return a negative value, and
144     .I S(n)
145     will return zero.
146 greg 1.10 The first input picture with a view is assumed to correspond to the
147     view of the output picture, which is written into the header.
148 greg 1.1 .PP
149     The
150 greg 1.7 .I \-h
151     option may be used to reduce the information header size, which
152     can grow disproportionately after multiple runs of
153     .I pcomb
154     and/or
155     .I pcompos(1).
156     The
157 greg 1.1 .I \-w
158     option can be used to suppress warning messages about invalid
159     calculations.
160     The
161     .I \-o
162     option indicates that original pixel values are to be used for the next
163     picture, undoing any previous exposure changes or color correction.
164     .PP
165     The
166     .I \-x
167     and
168     .I \-y
169     options can be used to specify the desired output resolution,
170     .I xres
171     and
172     .I yres,
173     and can be expressions involving other constants such as
174     .I xmax
175     and
176     .I ymax.
177     The constants
178     .I xres
179     and
180     .I yres
181     may also be specified in a file or expression.
182     The default output resolution is the same as the input resolution.
183     .PP
184     The
185     .I \-x
186     and
187     .I \-y
188     options must be present if there are no input files, when
189     the definitions of
190     .I ro,
191     .I go
192     and
193     .I bo
194     will be used to compute each output pixel.
195     This is useful for producing simple test pictures for various
196     purposes.
197     (Theoretically, one could write a complete renderer using just the
198     functional language...)
199     .PP
200     The standard input can be specified with a hyphen ('-').
201     A command that produces a RADIANCE picture can be given in place of a file
202     by preceeding it with an exclamation point ('!').
203     .SH EXAMPLES
204     To produce a picture showing the difference between pic1 and pic2:
205     .IP "" .2i
206 greg 1.8 pcomb \-e 'ro=ri(1)\-ri(2);go=gi(1)\-gi(2);bo=bi(1)\-bi(2)' pic1 pic2 > diff
207 greg 1.1 .PP
208     Or, more efficiently:
209     .IP "" .2i
210 greg 1.8 pcomb pic1 \-s \-1 pic2 > diff
211 greg 1.1 .PP
212     To precompute the gamma correction for a picture:
213     .IP "" .2i
214 greg 1.9 pcomb \-e 'ro=ri(1)^.4;go=gi(1)^.4;bo=bi(1)^.4' inp.hdr > gam.hdr
215 greg 1.1 .PP
216     To perform some special filtering:
217     .IP "" .2i
218 greg 1.9 pcomb \-f myfilt.cal \-x xmax/2 \-y ymax/2 input.hdr > filtered.hdr
219 greg 1.1 .PP
220     To make a picture of a dot:
221     .IP "" .2i
222 greg 1.8 pcomb \-x 100 \-y 100 \-e 'ro=b;go=b;bo=b;b=if((x-50)^2+(y-50)^2\-25^2,0,1)' > dot
223 greg 1.11 .SH ENVIRONMENT
224     RAYPATH the directories to check for auxiliary files.
225 greg 1.1 .SH AUTHOR
226     Greg Ward
227     .SH "SEE ALSO"
228 greg 1.5 getinfo(1), icalc(1), pcompos(1), pfilt(1), rpict(1)