ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/man/man1/gendaymtx.1
Revision: 1.10
Committed: Tue Jun 25 00:09:45 2019 UTC (5 years, 10 months ago) by greg
Branch: MAIN
Changes since 1.9: +11 -1 lines
Log Message:
Added gendaymtx -A option to efficiently compute average skies

File Contents

# User Rev Content
1 greg 1.10 .\" RCSid $Id: gendaymtx.1,v 1.9 2019/05/28 15:19:17 greg Exp $
2 greg 1.1 .TH GENDAYMTX 1 01/19/13 RADIANCE
3     .SH NAME
4     gendaymtx - generate an annual Perez sky matrix from a weather tape
5     .SH SYNOPSIS
6     .B gendaymtx
7     [
8     .B "\-v"
9     ][
10 greg 1.6 .B "\-h"
11     ][
12 greg 1.10 .B "\-A"
13     ][
14 greg 1.1 .B "\-d|\-s"
15     ][
16 greg 1.2 .B "\-r deg"
17     ][
18 greg 1.1 .B "\-m N"
19     ][
20     .B "\-g r g b"
21     ][
22     .B "\-c r g b"
23     ][
24     .B "-o{f|d}"
25 greg 1.4 ][
26     .B "-O{0|1}"
27 greg 1.1 ]
28     [
29     .B "tape.wea"
30     ]
31     .SH DESCRIPTION
32     .I Gendaymtx
33     takes a weather tape as input and produces a matrix of sky patch
34     values using the Perez all-weather model.
35     The weather tape is assumed to be in the simple ASCII format understood
36     by DAYSIM, which contains a short header with the site parameters followed
37     by the month, day, standard time, direct normal and diffuse horizontal
38     irradiance values, one time step per line.
39     Each time step line is used to compute a column in the output matrix,
40     where rows correspond to sky patch positions, starting with 0 for
41     the ground and continuing to 145 for the zenith using the default
42     .I "\-m 1"
43     parameter setting.
44     .PP
45     Increasing the
46     .I \-m
47     parameter, typically by factors of two, yields a higher resolution
48     sky using the Reinhart patch subdivision.
49     For example, setting
50     .I "\-m 4"
51     yields a sky with 2305 patches plus one patch for the ground.
52     Each matrix entry is in fact three values, corresponding to
53     red green and blue radiance channels (watts/sr/meter^2).
54     Thus, an hourly weather tape for an entire year would
55     yield 8760x3 (26280) values per output line (row).
56     .PP
57     The
58 greg 1.10 .I \-A
59     option tells
60     .I gendaymtx
61     to generate a single column corresponding to an average sky
62     computed over all the input time steps, rather than one
63     column per time step.
64     .PP
65     The
66 greg 1.1 .I \-c
67     option may be used to specify a color for the sky.
68 greg 1.7 The gray value should equal 1 for proper energy balance.
69 greg 1.1 The default sky color is
70     .I "\-c 0.960 1.004 1.118".
71     Similarly, the
72     .I \-g
73     option may be used to specify a ground color.
74     The default value is
75     .I "\-g 0.2 0.2 0.2"
76     corresponding to a 20% gray.
77     .PP
78     The
79     .I \-d
80 greg 1.9 option may be used to produce a sun-only matrix, with no sky contributions,
81     and the ground patch also set to zero.
82 greg 1.1 Alternatively, the
83     .I \-s
84 greg 1.9 option may be used to exclude any direct solar component from the output,
85     with the rest of the sky and ground patch unaffected.
86 greg 1.8 If there is a sun in the description,
87     .I gendaymtx
88     will include its contribution in the four nearest sky patches,
89     distributing energy according to centroid proximity.
90 greg 1.1 .PP
91 greg 1.3 By default,
92     .I gendaymtx
93     assumes the positive Y-axis points north such that the first sky patch
94     is in the Y-axis direction on the horizon, the second patch is just
95     west of that, and so on spiraling around to the final patch near the zenith.
96 greg 1.1 The
97 greg 1.2 .I \-r
98     (or
99     .I \-rz)
100     option rotates the sky the specified number of degrees counter-clockwise
101 greg 1.3 about the zenith, i.e., west of north.
102 greg 1.2 This is in keeping with the effect of passing the output of
103     .I gensky(1)
104     or
105     .I gendaylit(1)
106     through
107     .I xform(1)
108     using a similar transform.
109     .PP
110     The
111 greg 1.1 .I \-of
112     or
113     .I \-od
114     option may be used to specify binary float or double output, respectively.
115     This is much faster to write and to read, and is therefore preferred on
116     systems that support it.
117     (MS Windows is not one of them.)\0
118 greg 1.4 The
119     .I \-O1
120     option specifies that output should be total solar radiance rather
121     than visible radiance.
122 greg 1.6 The
123     .I \-h
124     option prevents the output of the usual header information.
125 greg 1.1 Finally, the
126     .I \-v
127     option will enable verbose reporting, which is mostly useful for
128     finding out how many time steps are actually in the weather tape.
129     .SH EXAMPLES
130     Produce an uncolored Tregenza sky matrix without solar direct:
131     .IP "" .2i
132     gendaymtx -m 1 -c 1 1 1 -s Detroit.wea > Detroit.mtx
133     .PP
134     Produce an hourly, annual Reinhart sky matrix
135     with 2306 patches including solar contributions
136     and send float output to
137     .I dctimestep(1)
138     to compute a sensor value matrix:
139     .IP "" .2i
140     gendaymtx -m 4 -of VancouverBC.wea | dctimestep -if -n 8760 DCoef.mtx > res.dat
141     .SH AUTHORS
142     Ian Ashdown wrote most of the code,
143     based on Jean-Jacques Delaunay's original gendaylit(1) implementation.
144     Greg Ward wrote the final parameter parsing and weather tape conversion.
145     .SH "SEE ALSO"
146 greg 1.5 dctimestep(1), genBSDF(1), gendaylit(1), gensky(1), genskyvec(1),
147     rcollate(1), rcontrib(1), xform(1)