ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/man/man1/genBSDF.1
Revision: 1.19
Committed: Fri Sep 16 17:54:56 2016 UTC (8 years, 8 months ago) by greg
Branch: MAIN
Changes since 1.18: +13 -1 lines
Log Message:
Added -recover option to genBSDF at Lars Grobe's request

File Contents

# User Rev Content
1 greg 1.19 .\" RCSid $Id: genBSDF.1,v 1.18 2015/04/05 01:32:01 greg Exp $
2 greg 1.1 .TH GENBSDF 1 9/3/2010 RADIANCE
3     .SH NAME
4     genBSDF - generate BSDF description from Radiance or MGF input
5     .SH SYNOPSIS
6     .B genBSDF
7     [
8     .B "\-c Nsamp"
9     ][
10     .B "\-n Nproc"
11     ][
12 greg 1.10 .B "\-r 'rcontrib opts...'"
13 greg 1.4 ][
14 greg 1.14 .B "\-W"
15     ][
16 greg 1.15 .B "\-s 'x=string;y=string'"
17 greg 1.14 ][
18 greg 1.6 .B "\-t{3|4} Nlog2"
19     ][
20 greg 1.17 .B "{+|-}C"
21     ][
22 greg 1.3 .B "{+|-}forward"
23     ][
24     .B "{+|-}backward"
25     ][
26 greg 1.1 .B "{+|-}mgf"
27     ][
28 greg 1.7 .B "{+|-}geom unit"
29 greg 1.1 ][
30     .B "\-dim Xmin Xmax Ymin Ymax Zmin Zmax"
31     ]
32     [
33     .B "geom .."
34     ]
35 greg 1.19 .br
36     or
37     .br
38     .B genBSDF
39     .B "\-recover tempdir"
40 greg 1.1 .SH DESCRIPTION
41     .I GenBSDF
42 greg 1.3 computes a bidirectional scattering distribution function from
43 greg 1.1 a Radiance or MGF scene description given on the input.
44     The program assumes the input is in Radiance format unless the
45     .I \+mgf
46     option is specified.
47     The output conforms to the LBNL Window 6 XML standard for BSDF data,
48     and will include an MGF representation of the input geometry if the
49     .I \+geom
50 greg 1.7 option is given, followed by one of "meter," "foot," "inch,"
51     "centimeter," or "millimeter," depending on the scene units.
52     The default is to include the provided geometry,
53     which is assumed to be in meters.
54     Geometry output can be supressed with the
55     .I \-geom
56     option, which must also be followed by one of the above length units.
57 greg 1.1 .PP
58 greg 1.3 Normally,
59     .I genBSDF
60     computes components needed by a backwards ray-tracing process,
61     .I \+backward.
62     If both forward and backward (front and back) distributions are needed, the
63     .I \+forward
64     option may be given.
65     To turn off backward components, use the
66     .I \-backward
67     option.
68 greg 1.12 Computing both components takes about twice as long as one component, but
69     is recommended when rays will be impinging from either side.
70 greg 1.3 .PP
71 greg 1.17 The
72     .I \+C
73     option specifies that the output XML should include color information,
74     which is interpreted by the rendering programs.
75 greg 1.18 The default option
76     .I \-C
77 greg 1.17 reduces all BSDF data to grayscale.
78     .PP
79 greg 1.1 The geometry must fit a rectangular profile, whose width is along the X-axis,
80     height is in the Y-axis, and depth is in the Z-axis.
81     The positive Z-axis points into the room, and the input geometry should
82     not extend into the room.
83     (I.e., it should not contain any positive Z values, since the putative
84     emitting surface is assumed to lie at Z=0.)\0
85     The entire window system should be modeled, including sills and
86     edge geometry anticipated in the final installation, otherwise
87     accuracy will be impaired.
88     Similarly, materials in the description should be carefully measured.
89     .PP
90     Normally, the input geometry will be positioned according to its actual
91     bounding box, but this may be overridden with the
92     .I \-dim
93     option.
94     Use this in cases where the fenestration system is designed to fit a
95     smaller (or larger) opening or is offset somehow.
96     .PP
97     The variance in the results may be reduced by increasing the number of
98     samples per incident direction using the
99     .I \-c
100     option.
101 greg 1.9 This value defaults to 2000 samples distributed over the incoming plane
102 greg 1.1 for each of the 145 Klems hemisphere directions.
103     .PP
104 greg 1.11 On multi-core machines, processing time may be reduced by the
105 greg 1.1 .I \-n
106     option, which specifies the number of simultaneous
107     processes to run in
108 greg 1.10 .I rcontrib(1).
109 greg 1.4 The
110     .I \-r
111     option may be used to specify a set of quoted arguments to be
112     included on the
113 greg 1.10 .I rcontrib
114 greg 1.4 command line.
115 greg 1.6 .PP
116     The
117 greg 1.14 .I \-W
118 greg 1.15 option is passed to
119     .I wrapBSDF(1)
120     to prepare the XML file for WINDOW6.
121     Any
122     .I \-s
123     parameters are passed to the
124 greg 1.14 .I \-f
125 greg 1.15 option of
126     .I wrapBSDF,
127     controlling XML fields such as
128     the Manufacturer (e.g., -s m=MF) and device Name (e.g, -s n=NM).
129 greg 1.14 .PP
130     The
131 greg 1.6 .I \-t4
132     mode computes a non-uniform BSDF represented as a rank 4 tensor tree,
133     suitable for use in the Radiance rendering tools.
134     The parameter given to this option is the log to the base 2 of the
135     sampling resolution in each dimension, and must be an integer.
136     The
137     .I \-c
138     setting should be adjusted so that an appropriate number of samples
139     lands in each region.
140     A
141     .I \-t4
142     parameter of 5 corresponds to 32x32 or 1024 output regions, so a
143     .I \-c
144 greg 1.9 setting of 10240 would provide 10 samples per region on average.
145 greg 1.6 Increasing the resolution to 6 corresponds to 64x64 or 4096
146     regions, so the
147     .I \-c
148     setting would need to be increased by a factor of 4 to provide
149     the same accuracy in each region.
150     .PP
151     The
152     .I \-t3
153     mode is similar to
154     .I \-t4
155     but computes a rank 3 tensor tree rather than rank 4.
156     This provides a much faster computation, but only works
157     in special circumstances.
158     Specifically, do NOT use this option if the system is not in fact isotropic.
159     I.e., only use
160     .I \-t3
161     when you are certain that the system has a high degree of radial symmetry.
162     Again, the parameter to this option sets the maximum resolution as
163     a power of 2 in each dimension, but in this case there is one less
164     dimension being sampled.
165 greg 1.19 .PP
166     The
167     .I \-recover
168     option is available for continuing calculations that were killed by
169     the system or the user.
170     Unfortunately, genBSDF puts its temporary files in a directory
171     that is often cleaned up after reboot, so this may not always work.
172 greg 1.1 .SH EXAMPLE
173     To create a BSDF description including geometry from a set of venetian blinds:
174     .IP "" .2i
175 greg 1.2 genblinds blind_white blind1 .07 3 1.5 30 40 | xform -rz -90 -rx 90 > blind1.rad
176 greg 1.1 .br
177 greg 1.4 genBSDF -r @rtc.opt blind_white.mat glazing.rad blind1.rad > blind1.xml
178 greg 1.6 .PP
179     To create a non-uniform, anisotropic BSDF distribution with a maximum
180     resolution of 128x128 from the same description:
181     .IP "" .2i
182     genBSDF -r @rtc.opt -t4 7 -c 160000 blind_white.mat glazing.rad blind1.rad > blind12.xml
183     .SH NOTES
184     The variable resolution (tensor tree) BSDF representation is not supported
185     by all software and applicatons, and should be used with caution.
186     It provides practical, high-resolution data for use in the
187     Radiance rendering programs, but does not work in the matrix formulation
188     of the daylight coefficient method for example.
189     Also, third party tools generally expect or require a fixed number of sample
190     directions using the Klems directions or similar.
191 greg 1.1 .SH AUTHOR
192     Greg Ward
193     .SH "SEE ALSO"
194 greg 1.13 dctimestep(1), gendaymtx(1), genklemsamp(1), genskyvec(1), mkillum(1),
195 greg 1.16 pkgBSDF(1), rcontrib(1), rfluxmtx(1), rmtxop(1), rtrace(1) wrapBSDF(1)