ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/man/man1/genBSDF.1
Revision: 1.18
Committed: Sun Apr 5 01:32:01 2015 UTC (10 years, 1 month ago) by greg
Branch: MAIN
CVS Tags: rad5R0
Changes since 1.17: +3 -3 lines
Log Message:
Added color rendering to tensor tree and minor fixes to Klems color rendering

File Contents

# User Rev Content
1 greg 1.18 .\" RCSid $Id: genBSDF.1,v 1.17 2015/04/02 16:40:31 greg Exp $
2 greg 1.1 .TH GENBSDF 1 9/3/2010 RADIANCE
3     .SH NAME
4     genBSDF - generate BSDF description from Radiance or MGF input
5     .SH SYNOPSIS
6     .B genBSDF
7     [
8     .B "\-c Nsamp"
9     ][
10     .B "\-n Nproc"
11     ][
12 greg 1.10 .B "\-r 'rcontrib opts...'"
13 greg 1.4 ][
14 greg 1.14 .B "\-W"
15     ][
16 greg 1.15 .B "\-s 'x=string;y=string'"
17 greg 1.14 ][
18 greg 1.6 .B "\-t{3|4} Nlog2"
19     ][
20 greg 1.17 .B "{+|-}C"
21     ][
22 greg 1.3 .B "{+|-}forward"
23     ][
24     .B "{+|-}backward"
25     ][
26 greg 1.1 .B "{+|-}mgf"
27     ][
28 greg 1.7 .B "{+|-}geom unit"
29 greg 1.1 ][
30     .B "\-dim Xmin Xmax Ymin Ymax Zmin Zmax"
31     ]
32     [
33     .B "geom .."
34     ]
35     .SH DESCRIPTION
36     .I GenBSDF
37 greg 1.3 computes a bidirectional scattering distribution function from
38 greg 1.1 a Radiance or MGF scene description given on the input.
39     The program assumes the input is in Radiance format unless the
40     .I \+mgf
41     option is specified.
42     The output conforms to the LBNL Window 6 XML standard for BSDF data,
43     and will include an MGF representation of the input geometry if the
44     .I \+geom
45 greg 1.7 option is given, followed by one of "meter," "foot," "inch,"
46     "centimeter," or "millimeter," depending on the scene units.
47     The default is to include the provided geometry,
48     which is assumed to be in meters.
49     Geometry output can be supressed with the
50     .I \-geom
51     option, which must also be followed by one of the above length units.
52 greg 1.1 .PP
53 greg 1.3 Normally,
54     .I genBSDF
55     computes components needed by a backwards ray-tracing process,
56     .I \+backward.
57     If both forward and backward (front and back) distributions are needed, the
58     .I \+forward
59     option may be given.
60     To turn off backward components, use the
61     .I \-backward
62     option.
63 greg 1.12 Computing both components takes about twice as long as one component, but
64     is recommended when rays will be impinging from either side.
65 greg 1.3 .PP
66 greg 1.17 The
67     .I \+C
68     option specifies that the output XML should include color information,
69     which is interpreted by the rendering programs.
70 greg 1.18 The default option
71     .I \-C
72 greg 1.17 reduces all BSDF data to grayscale.
73     .PP
74 greg 1.1 The geometry must fit a rectangular profile, whose width is along the X-axis,
75     height is in the Y-axis, and depth is in the Z-axis.
76     The positive Z-axis points into the room, and the input geometry should
77     not extend into the room.
78     (I.e., it should not contain any positive Z values, since the putative
79     emitting surface is assumed to lie at Z=0.)\0
80     The entire window system should be modeled, including sills and
81     edge geometry anticipated in the final installation, otherwise
82     accuracy will be impaired.
83     Similarly, materials in the description should be carefully measured.
84     .PP
85     Normally, the input geometry will be positioned according to its actual
86     bounding box, but this may be overridden with the
87     .I \-dim
88     option.
89     Use this in cases where the fenestration system is designed to fit a
90     smaller (or larger) opening or is offset somehow.
91     .PP
92     The variance in the results may be reduced by increasing the number of
93     samples per incident direction using the
94     .I \-c
95     option.
96 greg 1.9 This value defaults to 2000 samples distributed over the incoming plane
97 greg 1.1 for each of the 145 Klems hemisphere directions.
98     .PP
99 greg 1.11 On multi-core machines, processing time may be reduced by the
100 greg 1.1 .I \-n
101     option, which specifies the number of simultaneous
102     processes to run in
103 greg 1.10 .I rcontrib(1).
104 greg 1.4 The
105     .I \-r
106     option may be used to specify a set of quoted arguments to be
107     included on the
108 greg 1.10 .I rcontrib
109 greg 1.4 command line.
110 greg 1.6 .PP
111     The
112 greg 1.14 .I \-W
113 greg 1.15 option is passed to
114     .I wrapBSDF(1)
115     to prepare the XML file for WINDOW6.
116     Any
117     .I \-s
118     parameters are passed to the
119 greg 1.14 .I \-f
120 greg 1.15 option of
121     .I wrapBSDF,
122     controlling XML fields such as
123     the Manufacturer (e.g., -s m=MF) and device Name (e.g, -s n=NM).
124 greg 1.14 .PP
125     The
126 greg 1.6 .I \-t4
127     mode computes a non-uniform BSDF represented as a rank 4 tensor tree,
128     suitable for use in the Radiance rendering tools.
129     The parameter given to this option is the log to the base 2 of the
130     sampling resolution in each dimension, and must be an integer.
131     The
132     .I \-c
133     setting should be adjusted so that an appropriate number of samples
134     lands in each region.
135     A
136     .I \-t4
137     parameter of 5 corresponds to 32x32 or 1024 output regions, so a
138     .I \-c
139 greg 1.9 setting of 10240 would provide 10 samples per region on average.
140 greg 1.6 Increasing the resolution to 6 corresponds to 64x64 or 4096
141     regions, so the
142     .I \-c
143     setting would need to be increased by a factor of 4 to provide
144     the same accuracy in each region.
145     .PP
146     The
147     .I \-t3
148     mode is similar to
149     .I \-t4
150     but computes a rank 3 tensor tree rather than rank 4.
151     This provides a much faster computation, but only works
152     in special circumstances.
153     Specifically, do NOT use this option if the system is not in fact isotropic.
154     I.e., only use
155     .I \-t3
156     when you are certain that the system has a high degree of radial symmetry.
157     Again, the parameter to this option sets the maximum resolution as
158     a power of 2 in each dimension, but in this case there is one less
159     dimension being sampled.
160 greg 1.1 .SH EXAMPLE
161     To create a BSDF description including geometry from a set of venetian blinds:
162     .IP "" .2i
163 greg 1.2 genblinds blind_white blind1 .07 3 1.5 30 40 | xform -rz -90 -rx 90 > blind1.rad
164 greg 1.1 .br
165 greg 1.4 genBSDF -r @rtc.opt blind_white.mat glazing.rad blind1.rad > blind1.xml
166 greg 1.6 .PP
167     To create a non-uniform, anisotropic BSDF distribution with a maximum
168     resolution of 128x128 from the same description:
169     .IP "" .2i
170     genBSDF -r @rtc.opt -t4 7 -c 160000 blind_white.mat glazing.rad blind1.rad > blind12.xml
171     .SH NOTES
172     The variable resolution (tensor tree) BSDF representation is not supported
173     by all software and applicatons, and should be used with caution.
174     It provides practical, high-resolution data for use in the
175     Radiance rendering programs, but does not work in the matrix formulation
176     of the daylight coefficient method for example.
177     Also, third party tools generally expect or require a fixed number of sample
178     directions using the Klems directions or similar.
179 greg 1.1 .SH AUTHOR
180     Greg Ward
181     .SH "SEE ALSO"
182 greg 1.13 dctimestep(1), gendaymtx(1), genklemsamp(1), genskyvec(1), mkillum(1),
183 greg 1.16 pkgBSDF(1), rcontrib(1), rfluxmtx(1), rmtxop(1), rtrace(1) wrapBSDF(1)