| 1 |
.\" RCSid "$Id: pcomb.1,v 1.6 2005/03/01 22:55:21 greg Exp $" |
| 2 |
.TH PCOMB 1 8/31/96 RADIANCE |
| 3 |
.SH NAME |
| 4 |
pcomb - combine RADIANCE pictures |
| 5 |
.SH SYNOPSIS |
| 6 |
.B pcomb |
| 7 |
[ |
| 8 |
.B -h |
| 9 |
][ |
| 10 |
.B -w |
| 11 |
][ |
| 12 |
.B "\-x xres" |
| 13 |
][ |
| 14 |
.B "\-y yres" |
| 15 |
][ |
| 16 |
.B "\-f file" |
| 17 |
][ |
| 18 |
.B "\-e expr" |
| 19 |
] |
| 20 |
[ |
| 21 |
[ |
| 22 |
.B -o |
| 23 |
][ |
| 24 |
.B "\-s factor" |
| 25 |
][ |
| 26 |
.B "\-c r g b" |
| 27 |
] |
| 28 |
.B "input .." |
| 29 |
] |
| 30 |
.SH DESCRIPTION |
| 31 |
.I Pcomb |
| 32 |
combines equal-sized RADIANCE pictures and sends the result to the |
| 33 |
standard output. |
| 34 |
By default, the result is just a linear combination of |
| 35 |
the input pictures multiplied by |
| 36 |
.I \-s |
| 37 |
and |
| 38 |
.I \-c |
| 39 |
coefficients, |
| 40 |
but an arbitrary mapping can be assigned with the |
| 41 |
.I \-e |
| 42 |
and |
| 43 |
.I \-f |
| 44 |
options. |
| 45 |
Negative coefficients and functions are allowed, and |
| 46 |
.I pcomb |
| 47 |
will produce color values of zero where they would be negative. |
| 48 |
.PP |
| 49 |
The variables |
| 50 |
.I ro, |
| 51 |
.I go |
| 52 |
and |
| 53 |
.I bo |
| 54 |
specify the red, green and blue output values, respectively. |
| 55 |
Alternatively, the single variable |
| 56 |
.I lo |
| 57 |
can be used to specify a brightness value for black and white output. |
| 58 |
The predefined functions |
| 59 |
.I ri(n), |
| 60 |
.I gi(n) |
| 61 |
and |
| 62 |
.I bi(n) |
| 63 |
give the red, green and blue input values for |
| 64 |
picture |
| 65 |
.I n. |
| 66 |
To access a pixel that is nearby the current one, these functions |
| 67 |
also accept optional x and y offsets. |
| 68 |
For example, |
| 69 |
.I ri(3,-2,1) |
| 70 |
would return the red component of the pixel from picture 3 |
| 71 |
that is left 2 and up 1 from the current position. |
| 72 |
Although x offsets may be as large as width of the picture, |
| 73 |
y offsets are limited to a small window (+/- 32 pixels) due to efficiency |
| 74 |
considerations. |
| 75 |
However, it is not usually necessary to worry about this problem -- |
| 76 |
if the requested offset is not available, the next best pixel is |
| 77 |
returned instead. |
| 78 |
.PP |
| 79 |
For additional convenience, the function |
| 80 |
.I li(n) |
| 81 |
is defined as the input brightness for picture |
| 82 |
.I n. |
| 83 |
This function also accepts x and y offsets. |
| 84 |
.PP |
| 85 |
The constant |
| 86 |
.I nfiles |
| 87 |
gives the number of input files present, |
| 88 |
and |
| 89 |
.I WE |
| 90 |
gives the white efficacy (lumens/brightness) for pixel values, |
| 91 |
which may be used with the |
| 92 |
.I \-o |
| 93 |
option or the le(n) values to convert to absolute |
| 94 |
photometric units (see below). |
| 95 |
The variables |
| 96 |
.I x |
| 97 |
and |
| 98 |
.I y |
| 99 |
give the current output pixel location for use in |
| 100 |
spatially dependent functions, the constants |
| 101 |
.I xmax |
| 102 |
and |
| 103 |
.I ymax |
| 104 |
give the input resolution, and the constants |
| 105 |
.I xres |
| 106 |
and |
| 107 |
.I yres |
| 108 |
give the output resolution (usually the same, but see below). |
| 109 |
The constant functions |
| 110 |
.I "re(n), ge(n), be(n)," |
| 111 |
and |
| 112 |
.I le(n) |
| 113 |
give the exposure values for picture |
| 114 |
.I n, |
| 115 |
and |
| 116 |
.I pa(n) |
| 117 |
gives the corresponding pixel aspect ratio. |
| 118 |
Finally, for pictures with stored view parameters, |
| 119 |
the functions |
| 120 |
.I "Ox(n), Oy(n)" |
| 121 |
and |
| 122 |
.I Oz(n) |
| 123 |
return the ray origin in world coordinates for the current pixel |
| 124 |
in picture |
| 125 |
.I n, |
| 126 |
and |
| 127 |
.I "Dx(n), Dy(n)" |
| 128 |
and |
| 129 |
.I Dz(n) |
| 130 |
return the normalized ray direction. |
| 131 |
In addition, the function |
| 132 |
.I T(n) |
| 133 |
returns the distance from the origin to the aft clipping plane |
| 134 |
(or zero if there is no aft plane), and the function |
| 135 |
.I S(n) |
| 136 |
returns the solid angle of the current pixel in steradians |
| 137 |
(always zero for parallel views). |
| 138 |
If the current pixel is outside the view region, |
| 139 |
.I T(n) |
| 140 |
will return a negative value, and |
| 141 |
.I S(n) |
| 142 |
will return zero. |
| 143 |
.PP |
| 144 |
The |
| 145 |
.I \-h |
| 146 |
option may be used to reduce the information header size, which |
| 147 |
can grow disproportionately after multiple runs of |
| 148 |
.I pcomb |
| 149 |
and/or |
| 150 |
.I pcompos(1). |
| 151 |
The |
| 152 |
.I \-w |
| 153 |
option can be used to suppress warning messages about invalid |
| 154 |
calculations. |
| 155 |
The |
| 156 |
.I \-o |
| 157 |
option indicates that original pixel values are to be used for the next |
| 158 |
picture, undoing any previous exposure changes or color correction. |
| 159 |
.PP |
| 160 |
The |
| 161 |
.I \-x |
| 162 |
and |
| 163 |
.I \-y |
| 164 |
options can be used to specify the desired output resolution, |
| 165 |
.I xres |
| 166 |
and |
| 167 |
.I yres, |
| 168 |
and can be expressions involving other constants such as |
| 169 |
.I xmax |
| 170 |
and |
| 171 |
.I ymax. |
| 172 |
The constants |
| 173 |
.I xres |
| 174 |
and |
| 175 |
.I yres |
| 176 |
may also be specified in a file or expression. |
| 177 |
The default output resolution is the same as the input resolution. |
| 178 |
.PP |
| 179 |
The |
| 180 |
.I \-x |
| 181 |
and |
| 182 |
.I \-y |
| 183 |
options must be present if there are no input files, when |
| 184 |
the definitions of |
| 185 |
.I ro, |
| 186 |
.I go |
| 187 |
and |
| 188 |
.I bo |
| 189 |
will be used to compute each output pixel. |
| 190 |
This is useful for producing simple test pictures for various |
| 191 |
purposes. |
| 192 |
(Theoretically, one could write a complete renderer using just the |
| 193 |
functional language...) |
| 194 |
.PP |
| 195 |
The standard input can be specified with a hyphen ('-'). |
| 196 |
A command that produces a RADIANCE picture can be given in place of a file |
| 197 |
by preceeding it with an exclamation point ('!'). |
| 198 |
.SH EXAMPLES |
| 199 |
To produce a picture showing the difference between pic1 and pic2: |
| 200 |
.IP "" .2i |
| 201 |
pcomb -e 'ro=ri(1)-ri(2);go=gi(1)-gi(2);bo=bi(1)-bi(2)' pic1 pic2 > diff |
| 202 |
.PP |
| 203 |
Or, more efficiently: |
| 204 |
.IP "" .2i |
| 205 |
pcomb pic1 -s -1 pic2 > diff |
| 206 |
.PP |
| 207 |
To precompute the gamma correction for a picture: |
| 208 |
.IP "" .2i |
| 209 |
pcomb -e 'ro=ri(1)^.4;go=gi(1)^.4;bo=bi(1)^.4' pic > pic.gam |
| 210 |
.PP |
| 211 |
To perform some special filtering: |
| 212 |
.IP "" .2i |
| 213 |
pcomb -f myfilt.cal -x xmax/2 -y ymax/2 input.pic > filtered.pic |
| 214 |
.PP |
| 215 |
To make a picture of a dot: |
| 216 |
.IP "" .2i |
| 217 |
pcomb -x 100 -y 100 -e 'ro=b;go=b;bo=b;b=if((x-50)^2+(y-50)^2-25^2,0,1)' > dot |
| 218 |
.SH AUTHOR |
| 219 |
Greg Ward |
| 220 |
.SH "SEE ALSO" |
| 221 |
getinfo(1), icalc(1), pcompos(1), pfilt(1), rpict(1) |