| 1 | greg | 1.1 | .\" RCSid "$Id" | 
| 2 |  |  | .TH PCOMB 1 8/31/96 RADIANCE | 
| 3 |  |  | .SH NAME | 
| 4 | greg | 1.2 | pcomb - combine RADIANCE pictures | 
| 5 | greg | 1.1 | .SH SYNOPSIS | 
| 6 |  |  | .B pcomb | 
| 7 |  |  | [ | 
| 8 |  |  | .B -w | 
| 9 |  |  | ][ | 
| 10 |  |  | .B "\-x xres" | 
| 11 |  |  | ][ | 
| 12 |  |  | .B "\-y yres" | 
| 13 |  |  | ][ | 
| 14 |  |  | .B "\-f file" | 
| 15 |  |  | ][ | 
| 16 |  |  | .B "\-e expr" | 
| 17 |  |  | ] | 
| 18 |  |  | [ | 
| 19 |  |  | [ | 
| 20 |  |  | .B -o | 
| 21 |  |  | ][ | 
| 22 |  |  | .B "\-s factor" | 
| 23 |  |  | ][ | 
| 24 |  |  | .B "\-c r g b" | 
| 25 |  |  | ] | 
| 26 |  |  | .B "input .." | 
| 27 |  |  | ] | 
| 28 |  |  | .SH DESCRIPTION | 
| 29 |  |  | .I Pcomb | 
| 30 |  |  | combines equal-sized RADIANCE pictures and sends the result to the | 
| 31 |  |  | standard output. | 
| 32 |  |  | By default, the result is just a linear combination of | 
| 33 |  |  | the input pictures multiplied by | 
| 34 |  |  | .I \-s | 
| 35 |  |  | and | 
| 36 |  |  | .I \-c | 
| 37 |  |  | coefficients, | 
| 38 |  |  | but an arbitrary mapping can be assigned with the | 
| 39 |  |  | .I \-e | 
| 40 |  |  | and | 
| 41 |  |  | .I \-f | 
| 42 |  |  | options. | 
| 43 |  |  | Negative coefficients and functions are allowed, and | 
| 44 |  |  | .I pcomb | 
| 45 |  |  | will produce color values of zero where they would be negative. | 
| 46 |  |  | .PP | 
| 47 |  |  | The variables | 
| 48 |  |  | .I ro, | 
| 49 |  |  | .I go | 
| 50 |  |  | and | 
| 51 |  |  | .I bo | 
| 52 |  |  | specify the red, green and blue output values, respectively. | 
| 53 |  |  | Alternatively, the single variable | 
| 54 |  |  | .I lo | 
| 55 |  |  | can be used to specify a brightness value for black and white output. | 
| 56 |  |  | The predefined functions | 
| 57 |  |  | .I ri(n), | 
| 58 |  |  | .I gi(n) | 
| 59 |  |  | and | 
| 60 |  |  | .I bi(n) | 
| 61 |  |  | give the red, green and blue input values for | 
| 62 |  |  | picture | 
| 63 |  |  | .I n. | 
| 64 |  |  | To access a pixel that is nearby the current one, these functions | 
| 65 |  |  | also accept optional x and y offsets. | 
| 66 |  |  | For example, | 
| 67 |  |  | .I ri(3,-2,1) | 
| 68 |  |  | would return the red component of the pixel from picture 3 | 
| 69 |  |  | that is left 2 and up 1 from the current position. | 
| 70 |  |  | Although x offsets may be as large as width of the picture, | 
| 71 |  |  | y offsets are limited to a small window (+/- 8 pixels) due to efficiency | 
| 72 |  |  | considerations. | 
| 73 |  |  | However, it is not usually necessary to worry about this problem -- | 
| 74 |  |  | if the requested offset is not available, the next best pixel is | 
| 75 |  |  | returned instead. | 
| 76 |  |  | .PP | 
| 77 |  |  | For additional convenience, the function | 
| 78 |  |  | .I li(n) | 
| 79 |  |  | is defined as the input brightness for picture | 
| 80 |  |  | .I n. | 
| 81 |  |  | This function also accepts x and y offsets. | 
| 82 |  |  | .PP | 
| 83 |  |  | The constant | 
| 84 |  |  | .I nfiles | 
| 85 |  |  | gives the number of input files present, | 
| 86 |  |  | and | 
| 87 |  |  | .I WE | 
| 88 |  |  | gives the white efficacy (lumens/brightness) for pixel values. | 
| 89 |  |  | The variables | 
| 90 |  |  | .I x | 
| 91 |  |  | and | 
| 92 |  |  | .I y | 
| 93 |  |  | give the current output pixel location for use in | 
| 94 |  |  | spatially dependent functions, the constants | 
| 95 |  |  | .I xmax | 
| 96 |  |  | and | 
| 97 |  |  | .I ymax | 
| 98 |  |  | give the input resolution, and the constants | 
| 99 |  |  | .I xres | 
| 100 |  |  | and | 
| 101 |  |  | .I yres | 
| 102 |  |  | give the output resolution (usually the same, but see below). | 
| 103 |  |  | The constant functions | 
| 104 |  |  | .I "re(n), ge(n), be(n)," | 
| 105 |  |  | and | 
| 106 |  |  | .I le(n) | 
| 107 |  |  | give the exposure values for picture | 
| 108 |  |  | .I n, | 
| 109 |  |  | and | 
| 110 |  |  | .I pa(n) | 
| 111 |  |  | gives the corresponding pixel aspect ratio. | 
| 112 |  |  | Finally, for pictures with stored view parameters, | 
| 113 |  |  | the functions | 
| 114 |  |  | .I "Ox(n), Oy(n)" | 
| 115 |  |  | and | 
| 116 |  |  | .I Oz(n) | 
| 117 |  |  | return the ray origin in world coordinates for the current pixel | 
| 118 |  |  | in picture | 
| 119 |  |  | .I n, | 
| 120 |  |  | and | 
| 121 |  |  | .I "Dx(n), Dy(n)" | 
| 122 |  |  | and | 
| 123 |  |  | .I Dz(n) | 
| 124 |  |  | return the normalized ray direction. | 
| 125 |  |  | In addition, the function | 
| 126 |  |  | .I T(n) | 
| 127 |  |  | returns the distance from the origin to the aft clipping plane | 
| 128 |  |  | (or zero if there is no aft plane), and the function | 
| 129 |  |  | .I S(n) | 
| 130 |  |  | returns the solid angle of the current pixel in steradians | 
| 131 |  |  | (always zero for parallel views). | 
| 132 |  |  | If the current pixel is outside the view region, | 
| 133 |  |  | .I T(n) | 
| 134 |  |  | will return a negative value, and | 
| 135 |  |  | .I S(n) | 
| 136 |  |  | will return zero. | 
| 137 |  |  | .PP | 
| 138 |  |  | The | 
| 139 |  |  | .I \-w | 
| 140 |  |  | option can be used to suppress warning messages about invalid | 
| 141 |  |  | calculations. | 
| 142 |  |  | The | 
| 143 |  |  | .I \-o | 
| 144 |  |  | option indicates that original pixel values are to be used for the next | 
| 145 |  |  | picture, undoing any previous exposure changes or color correction. | 
| 146 |  |  | .PP | 
| 147 |  |  | The | 
| 148 |  |  | .I \-x | 
| 149 |  |  | and | 
| 150 |  |  | .I \-y | 
| 151 |  |  | options can be used to specify the desired output resolution, | 
| 152 |  |  | .I xres | 
| 153 |  |  | and | 
| 154 |  |  | .I yres, | 
| 155 |  |  | and can be expressions involving other constants such as | 
| 156 |  |  | .I xmax | 
| 157 |  |  | and | 
| 158 |  |  | .I ymax. | 
| 159 |  |  | The constants | 
| 160 |  |  | .I xres | 
| 161 |  |  | and | 
| 162 |  |  | .I yres | 
| 163 |  |  | may also be specified in a file or expression. | 
| 164 |  |  | The default output resolution is the same as the input resolution. | 
| 165 |  |  | .PP | 
| 166 |  |  | The | 
| 167 |  |  | .I \-x | 
| 168 |  |  | and | 
| 169 |  |  | .I \-y | 
| 170 |  |  | options must be present if there are no input files, when | 
| 171 |  |  | the definitions of | 
| 172 |  |  | .I ro, | 
| 173 |  |  | .I go | 
| 174 |  |  | and | 
| 175 |  |  | .I bo | 
| 176 |  |  | will be used to compute each output pixel. | 
| 177 |  |  | This is useful for producing simple test pictures for various | 
| 178 |  |  | purposes. | 
| 179 |  |  | (Theoretically, one could write a complete renderer using just the | 
| 180 |  |  | functional language...) | 
| 181 |  |  | .PP | 
| 182 |  |  | The standard input can be specified with a hyphen ('-'). | 
| 183 |  |  | A command that produces a RADIANCE picture can be given in place of a file | 
| 184 |  |  | by preceeding it with an exclamation point ('!'). | 
| 185 |  |  | .SH EXAMPLES | 
| 186 |  |  | To produce a picture showing the difference between pic1 and pic2: | 
| 187 |  |  | .IP "" .2i | 
| 188 |  |  | pcomb -e 'ro=ri(1)-ri(2);go=gi(1)-gi(2);bo=bi(1)-bi(2)' pic1 pic2 > diff | 
| 189 |  |  | .PP | 
| 190 |  |  | Or, more efficiently: | 
| 191 |  |  | .IP "" .2i | 
| 192 |  |  | pcomb pic1 -s -1 pic2 > diff | 
| 193 |  |  | .PP | 
| 194 |  |  | To precompute the gamma correction for a picture: | 
| 195 |  |  | .IP "" .2i | 
| 196 |  |  | pcomb -e 'ro=ri(1)^.4;go=gi(1)^.4;bo=bi(1)^.4' pic > pic.gam | 
| 197 |  |  | .PP | 
| 198 |  |  | To perform some special filtering: | 
| 199 |  |  | .IP "" .2i | 
| 200 |  |  | pcomb -f myfilt.cal -x xmax/2 -y ymax/2 input.pic > filtered.pic | 
| 201 |  |  | .PP | 
| 202 |  |  | To make a picture of a dot: | 
| 203 |  |  | .IP "" .2i | 
| 204 |  |  | pcomb -x 100 -y 100 -e 'ro=b;go=b;bo=b;b=if((x-50)^2+(y-50)^2-25^2,0,1)' > dot | 
| 205 |  |  | .SH AUTHOR | 
| 206 |  |  | Greg Ward | 
| 207 |  |  | .SH "SEE ALSO" | 
| 208 |  |  | calc(1), getinfo(1), pcompos(1), pfilt(1), rpict(1) |