
Integrated Lighting System
Design And Visualisation.

"The simulation and presentation of lighting effects."

RADIANCE USERS MANUAL

VOLUME TWO

SIMON CRONE

ARCHITECTURAL DISSERTATION

NOVEMBER 1992

Architectural Dissertation 599 November 1992

INTEGRATED LIGHTING SYSTEM

 DESIGN AND VISUALISATION.

The simulation and presentation of lighting effects.

Volume Two

RADIANCE USERS MANUAL

Simon Michael Dalrymple Crone.

Tutor Neville D'Cruz

Co Tutor Terry McMinn

Preface

This users manual is intended to provide a concise condensed version of the

documentation that is available with the RADIANCE program. It contains

information gathered from the RADIANCE Users Manual (Draft), the RADIANCE

reference manual, the RADIANCE UNIX manual pages, correspondence with the

author, (Greg Ward at LBL) and much personal experience.

0

Contents

PREFACE ...

CONTENTS ... 0

1.0 INTRODUCTION TO THE LBL'S RADIANCE PACKAGE. ... 3

2.0 SCENE DESCRIPTION INPUT REQUIREMENTS. .. 4

2.1. GENERAL FILE SPECIFICATION. .. 4

2.2. 3D GEOMETRY .. 7

2.2.1. Polygon ... 7

2.2.2. Sphere ... 8

2.2.3. Bubble ... 9

2.2.4. Cone.. 9

2.2.5. Cup ... 10

2.2.6. Cylinder .. 10

2.2.7. Tube .. 10

2.2.8. Ring... 10

2.2.9. Source. .. 11

2.2.1Ø. Instance. ... 12

2.3. MATERIAL ASSIGNMENTS. .. 12

2.3.1. Normal materials... 12

2.3.1.1. Plastic ... 13

2.3.1.2. Metal .. 14

2.3.1.3. Trans... 14

2.3.1.4. Mirror ... 16

2.3.2. Lights .. 16

2.3.2.1. Light ... 17

2.3.2.2. Spotlight.. 17

2.3.2.3. Illum ... 18

2.3.2.4. Glow ... 19

2.3.3. Dielectric materials ... 20

2.3.3.1. Dielectric .. 20

2.3.3.2. Interface .. 21

2.3.3.3. Glass ... 22

1

2.3.4. BRDF materials... 23

2.4. PATTERN MODIFIERS. ... 23

2.4.1. Material Transformations .. 24

2.4.2. Procedural Patterns... 24

2.4.2.1. Colorfunc .. 24

2.4.2.2. Brightfunc ... 26

2.4.3. Data mapping patterns. ... 28

2.4.3.1. Colordata... 29

2.4.3.2. Brightdata ... 29

2.4.3.3. Colorpict ... 29

2.4.4. Text Patterns ... 31

2.4.4.1. Colortext ... 32

2.4.4.2. Brighttext .. 33

2.5. TEXTURE MODIFIERS.. 34

2.5.1. Texfunc.. 34

2.5.2. Texdata ... 36

2.6. MISCELLANEOUS PRIMITIVE TYPES. ... 39

2.6.1. Antimatter ... 39

2.6.2. Prism1 and Prism2 .. 40

2.6.3. Mixfunc ... 40

2.6.4. Mixdata ... 41

2.6.5. Mixtext .. 41

3. RADIANCE LIGHT SPECIFICATIONS ... 43

3.1. CALCULATING RADIANCE VALUES ... 43

3.2. USING IES DISTRIBUTION DATA .. 45

3.2.1. Customisation of IES files.. 47

3.3. DAYLIGHTING.. 49

4. IMAGE RENDERING... 51

4.1. OCONV .. 51

4.2. RVIEW ... 51

4.3. RPICT .. 54

4.4. PFILT... 56

5. REFERENCES... 58

2

APPENDIX A... 59

3

1.0 Introduction to the LBL's RADIANCE Package.

RADIANCE is a computer software package developed by the Lighting Systems

Research group at Lawrence Berkeley Laboratory under the direction of Greg

Ward. It is a research tool for accurately calculating and predicting the visible

radiation in a space. The program uses three dimensional (3D) geometric

models as input, to generate spectral radiance values in the form of photo

realistic images. The package though is more than just a photo-realistic

renderer.

By using accurate input into the program, such as manufacturers photometric

data for specific lighting fixtures, designers are able to confidently evaluate their

designs without the risk of being led astray by visually appealing yet totally

inaccurate images. The RADIANCE software package is of most use when

dealing with innovative, experimental lighting designs. The program can

account for both specular and diffuse interreflections thus allowing both the

designer and client a genuine view of a finished space.

There are three steps to producing such an image.

1) The first involves creating or converting a three dimensional description of

a physical environment or scene (ie an office interior; rooms, furniture lights etc

) into simple geometric elements that can be interpreted by the RADIANCE

package. Such elements include polygons, spheres, cylinders and cones.

2) These must then be assigned a specific material or property, for example

metal, glass, wood, marble etc. This second step also includes the setting up of

specific light sources, their strength, type and distribution if necessary.

3) The final step is to render the scene to produce an image. This image

may then be "cleaned", "analysed", and "filtered" in a variety of ways depending

on the required application. This process is of course an iterative one. The

designer can easily go back and change the geometry or material specifications

until the required design has been reached.

4

2.0 Scene description Input requirements.

Scene description (3D geometry and material properties) is passed to the

RADIANCE program in the form of any number of text files. These files specify

the size, position, shape and material type. These files can be created by hand

or produced by another program (a CAD package and converter etc).

2.1. General file specification.

All scene description files have the same format, that is a combination of

individual primitives or building blocks. For example a material primitive

may be defined (say, as a red material), then an object primitive may be

defined (say, as a polygon) that uses the previously defined material (ie

producing a red polygon primitive).

All scene primitives have the following format:

An optional comment

modifier type identifier

n A number (n) of string arguments.

Ø A number (Ø) of integer arguments (not used at present)

n A number (n) of real (decimal) arguments

The modifier must be either the word void or a name (ie. an identifier)

of a previously defined primitive. The word void is used when the

primitive does not need to be modified by any other primitive.

The type must be one of RADIANCE's primitive types. They can be either

material types (eg plastic, glass, metal etc), object types (eg polygons,

spheres, cones etc) or one of the special types (eg pattern, material or

mixture).

The identifier is simply a unique name with which to label the primitive.

This name can then be used as a modifier in the subsequent definition of

any primitive.

5

One special kind of primitive type is alias. This type allows any number

of identifiers to be defined to the one modifier.

The format is simply,

modifier alias identifier

reference

where the reference is a previously defined identifier

(ie object or material primitive). The alias type is basically used to copy

a primitives definition to a new name.

The number (n) and type of string and real arguments (ie words or

numbers separated by spaces following the initial n) depends upon the

primitives type. The string arguments are usually file names and

transformation information. The integer arguments are not currently used

by the RADIANCE program and as such is always Ø. The real arguments

are always numbers.

There are a few simple rules that must be followed in the description of a

scene.

An object primitive must have at least one material primitive. (ie an object

must be made from a material).

A modifier must be defined before it can be used.

Only the most recent definition of a modifier will be used. (ie if the same

name (identifier) has been used to label two different primitives only the

second definition will apply to any following primitives. Thus it is possible

to redefine an identifier once it has been used).

A comment line must begin with a hash sign # and end with a return.

Any line that begins with an exclamation mark ! will be treated as a

command and executed. The executed program's output will then be

taken as input into the RADIANCE program.

An example of a Basic RADIANCE Primitive description:

6

(Explanations in brackets are not part of the scene description).

A red material definition <-(Comment)

(modifier) (type) (identifier)

void plastic red_material

Ø <-(No string arguments)

Ø

5 1 Ø Ø Ø Ø <-(Five numeric arguments

specifying the colour red

(1 Ø Ø for RGB), reflectance

(Ø) and roughness (Ø))

A copy of the red material <-(Comment)

(modifier) (type) (identifier)

void alias red_material_copy

red_material <-(reference)

A red sphere called ball <-(Comment)

(modifier) (type) (identifier)

red_material sphere ball

Ø <-(No string arguments)

Ø

4 Ø Ø Ø 1 <-(four arguments specifying

position (Ø,Ø,Ø) & radius (1))

A red cylinder called pipe <-(Comment)

red_material_copy cylinder pipe

Ø <-(No string arguments)

Ø

7

7 Ø Ø Ø <-(Seven arguments

Ø Ø 2 specifying start point (Ø,Ø,Ø),

1 end point (Ø,Ø,2) & diameter

(1))

2.2. 3D Geometry

The easiest way to create RADIANCE scene geometry is by using a 3D

CAD system and importing the geometry through a conversion program.

If this is not possible RADIANCE provides a number of object creation

programs which can be used to create simple scenes. The description of

all of these programs is beyond the scope of this manual. The other

alternative, albeit a slow one, is to enter the geometry straight into a text

editor.

RADIANCE uses a right handed coordinate system. That is the z vector

or axis points up, the x vector or axis points east with the y vector or axis

pointing north. The choice of units is totally up to the designer so long as

the values are kept within a reasonable range (about 1Ø-5 and 1Ø8

in size).

RADIANCE requires the user to be aware of the direction of each objects

surface normal. The surface normal specifies the front of the object ie the

side that it will be viewed from. An easy way to tell the surface normal

direction is to use a right hand rule. By following the sequential direction

of points around an object (ie clockwise or anti-clockwise) with the index

and middle finger, the thumb then is pointing in the direction of the

surface normal.

A scene is made up from a combination of simple geometry types.

RADIANCE uses the following object primitive types.

2.2.1. Polygon

Polygons are specified by a list of three dimensional vertices.

These vertices proceed in a counter-clockwise direction when

viewed from the front (ie into the surface normal). The last vertex

8

is connected to the first automatically. Holes may be included in a

polygon by using internal vertices connected to the outer perimeter

by coincident edges or seams.

Figure 1. Example of coincident edges or seam.

The polygon primitive:

modifier polygon identifier
Ø
Ø
n x1 y1 z1 <-(vertex one)

x2 y2 z2 <-(vertex two)
......
xn yn zn <-(vertex n)

Example:

red_material polygon ground_plate
Ø
Ø
12

Ø Ø Ø
1Ø Ø Ø
1Ø 1Ø Ø
Ø 1Ø Ø

There is no limit to the number of vertices. Self intersecting
polygons, (such as bow ties) should be avoided.

2.2.2. Sphere

9

A sphere is simply defined as a centre point and a radius. The

surface normal of a sphere points away from the centre.

The sphere primitive:

modifier sphere identifier
Ø
Ø
4 x y x <-(centre point)

r <-(radius)

Example:

red_material sphere ball
Ø
Ø
4 Ø 1Ø Ø

1

2.2.3. Bubble

A bubble is a sphere whose surface normal points towards its

centre. It can be thought of as a hollow sphere.

2.2.4. Cone

A cone is a cylinder with differing end diameters. One of the ends

may be a point. It is specified by two endpoints of its central axis

and a starting and ending radii.

The cone primitive:

modifier cone identifier
Ø
Ø
8 xØ yØ zØ <-(starting point)

x1 y1 z1 <-(ending point)
rØ r1 <-(starting radius

 & ending radius)

Example:

red_material cone megaphone
Ø

10

Ø
8 Ø Ø Ø

5 Ø Ø
1 3

2.2.5. Cup

A cup is simply a cone whose surface normal points inward. ie a

hollow cone.

2.2.6. Cylinder

A cylinder is similar to a cone, but its starting and ending radius are

equal.

The cylinder primitive:

modifier cylinder identifier
Ø
Ø
7 xØ yØ zØ <-(starting point)

x1 y1 z1 <-(ending point)
r <-(radius)

Example:

red_material cylinder wand
Ø
Ø
7 Ø Ø Ø

5 Ø Ø
1

2.2.7. Tube

A tube is a cylinder whose surface normal points inward.

2.2.8. Ring.

A ring is a circular disk defined by a centre point, a surface normal

direction vector and an inner and outer radius. The sequence of

the two radii does not matter and one of the radii may be zero.

11

The ring primitive:

modifier ring identifier
Ø
Ø
8 xØ yØ zØ <-(starting point)

x1 y1 z1 <-(normal vector)
rØ r1 <-(inner radius

 & outer radius)

Example:

red_material ring dinner_plate
Ø
Ø
8 Ø Ø Ø

Ø Ø 1
1 Ø

2.2.9. Source.

A source is a special type of geometric primitive type. It is not

really a surface but more of a direction in the form of a disk. It is

used to represent objects (usually lights) that are very distant. A

source is described by a direction to its centre and by the number

of degrees subtended by its disk. It can be thought of as the sky

hemisphere.

The source primitive:

modifier source identifier
Ø
Ø (direction vector to
4 x y z <- object centre)

angle <-(angle subtended by
disk)

Example:

red_material source sunsetsky
Ø
Ø
4 Ø Ø 1

18Ø

12

2.2.1Ø. Instance.

The instance primitive type is used for making multiple copies of

previously defined primitives. It is different from the alias type as it

makes copies of geometric objects, not just material definitions. An

instance uses a previously converted scene description (called an

octree see section 3.1) and transformation information (see

section 2.4.1 xform). Instancing can quickly create a large

complicated or repetitive scene from the one simple object (eg.

Instancing one seat to create a theatre auditorium) without using

the same amount of memory.

The instance primitive:

modifier instance identifier
n + octree transformation <-(octree name
Ø & any no of
Ø trans)

Example:

void instance small_tree _copy
2 tree -s .5 t 1Ø Ø Ø <-(Scales and
Ø shifts the new
Ø copy of a tree)

2.3. Material Assignments.

In order to create a realistic image all scene geometry must be assigned a

material. This material, which can be a combination of a number of other

materials, determines how light will interact with the geometric surface.

RADIANCE offers four classes of materials:

2.3.1. Normal materials

Normal materials can be classed as either plastic, metal, trans or

mirror. They are defined as having a diffuse and specular

component, a colour and a roughness factor. A purely specular

material would have a roughness factor of Ø. A totally diffuse

13

material is treated as a Lambertian surface. The mirror type is a

special case.

2.3.1.1. Plastic

Plastic is a material with uncoloured highlights. It is defined

by a red green and blue reflectance value, a specularity

value and by a roughness value. A positive roughness

value will display highlights (uncoloured by the materials

modifier) but not show any reflections from other objects.

The plastic primitive:

modifier plastic identifier
Ø
Ø
5 R G B <-(Colour)

spec rough <-(specularity &
 roughness)

Example:

void plastic gloss_white_paint
Ø
Ø
5 1 1 1

.Ø3 .Ø1

Acceptable values:

colour [Ø:1],[Ø:1],[Ø:1] Min Ø, Max 1

black - white

specularity [Ø:1] Min Ø, Sug. max

Ø.Ø7

matte - satin

roughness [Ø:1] Min Ø, Sug. max

Ø.Ø2

polished - low gloss

14

2.3.1.2. Metal

The metal material is similar to plastic except that its

highlights are modified by the material colour.

The metal primitive:

modifier metal identifier
Ø
Ø
5 R G B <-(Colour)

spec rough <-(specularity &
 roughness)

Example:

void metal brass

Ø
Ø
5 .68 .27 .ØØ2

.95 Ø

Acceptable values:

colour [Ø:1],[Ø:1],[Ø:1] Min Ø, Max 1
Ø-1ØØ% reflectance

specularity [Ø:1] Sug Min
Ø.5, Max 1

dirty - clean

roughness [Ø:1] Min Ø,
Sug Max Ø.5

polished - roughened

2.3.1.3. Trans

The trans material is basically a translucent plastic. It takes

the same parameters as plastic as well as transmission

factor and a transmitted specularity value. The transmission

factor is the fraction of penetrating light that travels through

the material. The fraction of transmitted light that is not

15

diffusely scattered is the specular transmitted value. This

material is infinitely thin and will modify the colour of the

scattered light.

The trans primitive:

modifier trans identifier
Ø
Ø
5 R G B <-(Colour)

spec rough <-(specularity &
roughness)

trans tspec <-(transmission
& transmitted
specularity)

Example:

void trans lamp_shade
Ø
Ø
5 .7 .3 .2

Ø Ø.Ø5
.5 .5

Acceptable values:

colour [Ø:1],[Ø:1],[Ø:1] Min Ø, Max 1
black - white

specularity [Ø:1] Min Ø, Sug. max

Ø.Ø7

matte - satin

roughness [Ø:1] Min Ø, Sug. max

Ø.Ø2

polished - low gloss

transmission [Ø:1] Min Ø, Max 1

opaque - transparent

transmitted specularity [Ø:1] Min Ø, Max 1

16

diffuse - clear

2.3.1.4. Mirror

The mirror material is used to produce secondary source

reflections. It can only be used on planar surfaces (eg rings

and polygons) and is defined by red, green and blue

reflectance values. An optional string argument may be

included in the primitive to specify a different material to be

used for shading non-source rays.

The mirror primitive:

modifier mirror identifier

Ø + modifier <-(Optional)

Ø

3 R G B <-(Colour)

Example:

void mirror silver_mirror

Ø

Ø

3 1 1 1

Acceptable values:

colour [Ø:1],[Ø:1],[Ø:1] Min Ø, Max 1
black - silver

2.3.2. Lights

Lights are materials that are self-luminous or emissive surfaces.

They may be polygons, spheres, disks, sources or cylinders (

provided they are long enough). The variations of the light type

material are spotlight, illum and glow.

17

All the light types are defined by a red green and blue radiance

value. Ways of accurately obtaining these values are discussed in

section 3.Ø.

2.3.2.1. Light

The light primitive type is the basic material for light emitting

surfaces. Cones are currently not supported as light

sources. Modifiers (especially patterns) may be used to

specify a lights output distribution.

The light primitive:

modifier light identifier

Ø

Ø

3 R G B <-(radiance

 value)

Example:

void light light_bulb

Ø

Ø

3 128 128 128

Acceptable values:

colour (Ø:inf),(Ø:inf),(Ø:inf) Min Ø, Max

infinite

output brightness

2.3.2.2. Spotlight

The spotlight primitive type is used for self-luminous

surfaces that require a directed output. It is defined with

red, green and blue radiance values as well as an

orientation (output direction) vector and a full cone angle (

in degrees). The orientation vector determines the distance

18

of effective focus behind the source centre (ie the focal

length).

The spotlight primitive:

modifier spotlight identifier

Ø

Ø

3 R G B <-(radiance

 value)

angle <-(cone angle)

x y z <-(direction

 vector)

Example:

void spotlight spot_light

Ø

Ø

3 128 128 128

Acceptable values:

colour (Ø:inf),(Ø:inf),(Ø:inf) Min Ø,

Max infinite

output brightness

angle [Ø:36Ø] Min Ø, Max 36Ø

no shadows - always shadows

direction (-inf:inf),(-inf:inf),(-inf:inf) Min &

Max infinite

any aimed orientation

2.3.2.3. Illum

The illum primitive is used for secondary light sources with

broad distributions. The secondary light source is treated

like any other light primitive except when it is viewed

directly. It then takes on the characteristics of a different

19

material, or becomes invisible. They are of the most use

when dealing with brightly illuminated surfaces or windows.

The illum primitive:

modifier illum identifier

1 modifier <-(new material)

Ø

3 R G B <-(radiance

 value)

Example:

void illum window

1 glass

Ø

3 12 12 12

Acceptable values:

colour (Ø:inf),(Ø:inf),(Ø:inf) Min Ø,Max

infinite

output brightness

2.3.2.4. Glow

The glow primitive is used for surfaces that are self-

luminous, but limited in their effect. The material is defined

with red, green and blue radiance values and also a

maximum radius for shadow testing.(ie any object that is

outside the radius will not cast a shadow from this source).

The glow primitive:

modifier glow identifier

Ø

Ø

4 R G B <-(radiance value)

maxrad <-(maximum radius)

20

Example:

void glow aquarium

Ø

Ø

4 12 12 12 15ØØ

Acceptable values:

colour (Ø:inf),(Ø:inf),(Ø:inf) Min Ø,

Max infinite

output brightness

maximum radius [Ø:inf) Min Ø,

Max Infinite

no shadows - always shadows

2.3.3. Dielectric materials

A dielectric material is a transparent material that refracts and

reflects light, such as water or crystal. The material thus has an

index of refraction and a specific spectral absorbance RADIANCE

has a number of dielectric primitive types such as the interface

type and glass type.

2.3.3.1. Dielectric

The dielectric primitive is as described above. It is defined

by the red, green and blue transmission in each wave length

and by its index of refraction. An optional parameter, the

Hartmann constant, (which is usually zero) describes how

the index of refraction changes as a function of wavelength.

A pattern will only modify the refracted value.

The dielectric primitive:

modifier dielectric identifier

Ø

Ø

5 R G B <-(transmission

21

 value)

n Hc <-(refraction

index & Hartmann

constant)

Example:

void dielectric crystal

Ø

Ø

5 .5 .5 .5 1.5 Ø

Acceptable values:

transmission [Ø:1],[Ø:1],[Ø:1] Min Ø,

 Max Ø

black - transparent

refractive index (1:2> Min 1, Sug max

 2

vacuum - diamond

Hartmann's constant <-2Ø:3Ø> Min -2Ø,

Max 3Ø

negative dispersion - positive dispersion

2.3.3.2. Interface

The interface primitive type is a boundary between two

dielectrics (ie water and crystal). Ordinary dielectics are

surrounded by a vacuum. The interface is defined by two

sets of transmission and refractive indexes, the first being

the inside, the second the outside.

The interface primitive:

modifier interface identifier

Ø

Ø

8 R1 G2 B3 <-(transmission

22

value 1)

n1 <-(refraction

index 1)

R2 G2 B2 <-(transmission

value 2)

n2 <-(refraction

index 2)

Example:

void dielectric surface
Ø

Ø

8 .5 .5 .5 1.5

.7 .7 .7 1.9

Acceptable values:

interior transmission [Ø:1],[Ø:1],[Ø:1] Min

Ø, Max 1

black - transparent

interior refractive index (1:2> Min 1, Max 2

vacuum - diamond

exterior transmission [Ø:1],[Ø:1],[Ø:1] Min

Ø, Max 1

black - transparent

exterior refractive index (1:2> Min 1, Max 2

vacuum - diamond

2.3.3.3. Glass

The glass type primitive is a specially modified dielectric.

The material has been optimised to only produce one

reflected ray and one transmitted ray through a single thin

surface. In this way internal reflections are avoided. The

glass type has a standard refractive index of 1.52 and all

that is needed to be defined is the transmission at normal

incidence.

23

The glass primitive:

modifier glass identifier

Ø

Ø

3 R1 G1 B1 <-(transmission

value 1)

Example:

void glass glass_window

Ø

Ø

3 .96 .96 .96

Acceptable values:

transmission [Ø:1],[Ø:1],[Ø:1] Min Ø,

 Max 1

black - transparent

2.3.4. BRDF materials

BRDF materials are primitive types with bidirectional

reflectance distribution functions (thus BRDF's). They are

specific plastic like materials that get accurate specular

distributions from either procedurally defined functions or

from data files. As such they are beyond the scope of this

manual. Information on the BRDF materials may be found in

the RADIANCE Reference manual.

2.4. Pattern modifiers.

A pattern is defined as a perturbation (shift) in a materials colour. It

effects the reflectance or transmittance properties of an object. There are

two ways of specifying a pattern. They are either through a procedural

function (ie a mathematical calculation based upon RADIANCE

information or random functions) or through a coordinate mapping of data

24

from files (ie the shift in colour is dependent upon the data in one or a

number of files).

2.4.1. Material Transformations

Patterns as well as textures often need transformations to scale,

move and rotate defined materials onto an objects surface. The

transformations available are the ones provided by XFORM. The

ones most commonly used to transform materials are:

-t x y z translate the material along the vector x y z.

-rx (ry, rz) degrees Rotate the material degrees about an axis.

-s factor Scale the material by a factor.

2.4.2. Procedural Patterns

A procedural pattern as previously mentioned is a pattern that is

dependent upon a particular calculation. This calculation usually

takes values from the RADIANCE package, such as surface

normals or ray intersection points etc., and combines them into a

value that is then used to change the material's colour. The two

types of procedural pattern types are colofunc and brightfunc.

2.4.2.1. Colorfunc

The colorfunc type primitive will change the colour (the red

green and blue value) of a material. It is defined in terms

of a function file (where the calculation occurs) and

numerous arguments required by that function. The overall

changed colour values may also be scaled and

transformed.

The colorfunc primitive:

modifier colorfunc identifier

4 + red green blue funcfile

transformations

25

Ø

n A1 A2 A3 ... An

Example:

void colorfunc hundreds_and_ thousands

6 red green blue speckle.cal -s 1Ø

Ø

1 .Ø1

speckle.cal

-Start of function file --

{ Hundreds and thousands colour function

A1 = degree of spottyness. }

red = noise3a(Px/A1, Py/A1, Pz/A1);

green = noise3b(Px/A1, Py/A1, Pz/A1);

blue = noise3c(Px/A1, Py/A1, Pz/A1);

- EOF --

26

Figure 2. Hundreds and Thousands

Explanation:

A hundreds and thousands colour pattern is being described

through a procedural pattern. The string arguments red,

green and blue are returned from the calculation speckle.cal

and used to change the materials colour. The whole pattern

is then scaled by a factor of ten. The real argument, A1 is

also used in the calculation specifying a smoothness (in this

case, Ø.Ø1).

The Px, Py and Pz values found in the function file are

variable that are predefined as the intersection point of a

surface and a ray. The noise3a in the function file is a

predefined standard noise function. The file rayinit.cal

contains all the standard functions and defined variables.

This procedural pattern primitive will basically randomly

associate a colour to any surface that is defined with this

material.

2.4.2.2. Brightfunc

27

The brightfunc primitive type is the same as colorfunc

except that it only changes the brightness of the material

colour not the colour itself.

The brightfunc primitive:

modifier brightfunc identifier

2 + reflectance funcfile transformations

Ø

n A1 A2 A3 ... An

Example:

void brightfunc stripes

4 refl stripes.cal -s 1Ø

Ø

3 1 Ø.5 Ø.2

stripes.cal

-Start of function file ---

{ Stripes function

A1 = Brightness of stripe (Ø to 1)

A2 = Brightness of material (Ø to 1)

A3 = width of strip as fraction of unit length }

refl = if(A3 - frac(Px), A1, A2);

- EOF ---

28

Figure 3. Stripes.

Explanation:

This function file simply returns a reflectance value

brightness. If the x ray intersection point is inside a strip,

the function returns A1 (1), else it returns a A2 (.5). The

function works on a unit scale so that as the width specified

in A3 is Ø.2, then the strip width would be one fifth of the

unit length. The pattern is then transformed by scaling (-s

1Ø) so that in the end the pattern will have a strip 2 units

wide.

2.4.3. Data mapping patterns.

The primitive types brightdata and colordata are similar to

procedural functions in that they modify a materials reflectance or

transmittance. However instead of being defined procedurally their

patterns are defined in a data file. Colorpict is a special type of

colordata that takes a RADIANCE picture file as the input rather

than three separate data files.

29

2.4.3.1. Colordata

The primitive colordata uses three separate data files, one

for each colour, to modify a materials colour. This

interpolated data map is m-dimensional. The way that the

data is looked up and optionally filtered must be defined in

another separate file. This function file has the original red

green and blue colour values passed to it as parameters.

The colordata primitive:

modifier colordata identifier

7+m+ rfunc gfunc bfunc

rdatafile gdatafile bdatafile

funcfile x1 x2 ... xm transformations

Ø

n A1 A2 A3 ... An

See section 2.5.2 (texdata) for an example of using data

files.

2.4.3.2. Brightdata

The primitive type brightdata is similar to colordata except

that it is monochromatic. ie It only changes the brightness

of the material. As such only one data file is required.

The brightdata primitive.

modifier brightdata identifier

3 + m + rfunc datafile

funcfile x1 x2 ... xm transformations

Ø

n A1 A2 A3 ... An

2.4.3.3. Colorpict

The primitive colorpict as already mentioned uses a two-

dimensional image stored in RADIANCE picture format to

30

produce a coloured pattern (or picture). The dimensions of

the image are normalised so that the smaller dimension is

always one unit in length with the other dimension being the

ratio between the larger and the smaller. ie An image of

5ØØ x 388 would have the box coordinate size of (Ø, Ø) to

(1.48, 1). The colorpict type normally uses a predefined

function file called picture.cal. This function file always

maps the new picture pattern in the xy plane with its origin at

(Ø, Ø, Ø). Thus more often than not the picture must be

rotated, transformed and scaled. This file provides a

number of options for tiling and mapping the picture onto flat

surfaces depending upon the arguments specified on the

string argument line.

The options are:

pic_u & pic_v Straight forward picture mapping.

tile_u & tile_v Tiling of the picture

match_u & match_v Tiles, mirrors and matches edges

picture

RADIANCE also supplies a number of functions for mapping

a picture onto spheres, cylinders and other non flat

surfaces.

The colorpict primitive:

modifier colorpict identifier

7 + rfunc gfunc bfunc pictfile

funcfile x1 x2 ... xm transformations

Ø

n A1 A2 A3 ... An

Example.

void colorpict carpet_tiles

11 red green blue carpettile.pic

31

picture.cal tile_u tile_v -rz 9Ø -s 1Ø

Ø

1 1.48

Figure 4. Carpet tiles ?

Explanation.

This primitive produces a tiled carpet pattern from a

RADIANCE picture called carpettile.pic. Since the tile_u

and tile _v string arguments were supplied the picture will

repeatedly tile the picture image. The real argument (

1.48) specifies the height to width ratio of the tiles. The

picture pattern is then rotated 9Ø degrees around the z axis

and scaled by a factor of ten.

2.4.4. Text Patterns

Text patterns are primitive types that produce text. The text font is

defined by an auxiliary font file and the text may be defined as part

of the primitive or in an external file. There are two types of text

patterns.

32

2.4.4.1. Colortext

The colortext primitive is dichromayic writing in a polygonal

font. The size, orientation, aspect ratio and slant of the

characters are defined by right and down motion vectors.

The foreground colour , the background colour and upper

left origin for the text block must also be given to define the

material.

The colortext primitive:

modifier colortext identifier

2 fontfile textfile

Ø

15 Ox Oy Oz <-(Origin for text)

Rx Ry Rz <-(Direction of text)

Dx Dy Dz <-(Slope of text)

rfore gfore bfore <-(Foreground colour)

rback gback bback <-(Background colour)

Example.

void colortext page

2 helvet.fnt text.txt

Ø

15 Ø 1Ø Ø

1 Ø Ø

-.2 -1 Ø

Ø.2 Ø.3 Ø.8

1 1 1

33

Figure 5. Page.

Explanation.

The text is read in from the text.txt file and displayed in the

helvet.fnt font. The upper left corner of the text is defined at

(Ø 1Ø Ø). The text is orientated horizontally across the

page (1 Ø Ø) and has an aspect ratio of 1 as the R vector

is one unit across (1 Ø Ø) and D vector is one unit down (-

.2 -1 Ø). The characters are of one unit in size and slant

slightly forward as the bottom of the characters are .2 of a

unit behind the top (1 Ø Ø) vs (-Ø.2 -1 Ø). The font

colour is blue on a white background

2.4.4.2. Brighttext

The brighttext primitive is similar to the colortext primitive

except it is monochromatic.

The brighttext primitive:

modifier brighttext identifier

2 fontfile textfile

34

Ø

11 Ox Oy Oz <-(Origin for text)

Rx Ry Rz <-(Direction of text)

Dx Dy Dz <-(Slope of text)

foreground background <-(Brightness)

Example.

void brighttext page2

2 helvet.fnt text2.txt

Ø

11 Ø Ø Ø <-(Origin)

Ø 1Ø Ø <-(Rotation)

5 -.2 Ø <-(Slant)

.2 1 <-(Brightness)

Explanation.

The text is read in from the text2.txt file and displayed in the

helvet.fnt font. The upper left corner of the text is defined at

(Ø Ø Ø). The text is orientated vertically up the page (Ø

1Ø Ø) and has an aspect ratio of .5 as the R vector is ten

units (Ø 1Ø Ø) and D vector is one five units (5 -.2 Ø).

The characters are of ten units in size and slant slightly

forward as the bottom of the characters are .2 of a unit

behind the top (Ø 1Ø Ø) vs (5 -Ø.2 Ø). The font has a

brightness of .2 and is on a white background.

2.5. Texture Modifiers.

Where pattern modifiers alter (perturb) a material's colour, texture

modifiers perturb a material's surface normal. This perturbation may be

defined as a function or specified by data. A texture unlike a pattern

takes into account the direction of light that is illuminating the surface.

2.5.1. Texfunc

The texfunc primitive uses a function file to specify a procedural

texture. The function file, like all other function files, uses

35

predefined RADIANCE variables in calculations to shift a surface

normal.

The texfunc primitive:

modifier texfunc identifier

4 + xpert ypert zpert

funcfile trans

Ø

n A1 A2 ... An

Example.

void texfunc groove

4 xpert ypert zpert groove.cal

Ø

1 .1

Groove.cal

{-Groove function file --}

{ Groove function for a surface in the xy plane

origin at (Ø Ø Ø)

A1 = Width of horizontal (x axis) groove as fraction of

unit length.

}

xpert = Ø; { don't change the x normal }

zpert = Ø; { don't change the y normal }

ypert = if(A1/2 - frac(Py), { if ray in bottom grove }

Ø.5, { return +ve pert }

if(A1 - frac(Py), { if ray in top groove

}

-Ø.5, { return -ve pert }

Ø { else no pert }

)

);

36

{- EOF --}

Figure 6. Groovy Texture.

Explanation.

The values returned from the function file groove.cal are added to

the surface normal for each specific point of the surface. The

calculation checks if the y coordinate of the intersection point lies

within a grove. If it is then the y value of the normal vector is

changed. The function uses an if statement (if(a, b, c) - if a is

+ve, return b, else return c), which is defined in the rayinit.cal file.

2.5.2. Texdata

The texdata primitive type uses three data files to get the surface

normal perturbations rather than a function file.

The texdata primitive:

modifier texdata identifier

8 + xfunc yfunc zfunc <-(function args)

37

xdataf ydataf zdata <-(data file names)

fname xØ x1 ... xf <-(function file name)

Ø

n A1 A2 ... An <-(function file args)

The data file format.

N

beg1 end1 m1

beg2 end2 m2

....

begN endN mN

DATA

Where N - The number of dimensions in array

begx - The beginning coordinate value

endx - The ending coordinate value

mx - The size of the dimension array

All data is separated by white space and no comments are
allowed.

Example.

void texdata tile

9 pass_dx pass_dy pass_dz

xpert.dat ypert.dat zpert.dat

tex.cal frac(Px) frac(Py)

Ø

1 .5

Tex.cal

{-Basic texdata function file -----------------------------------}

pass_dx(dx, dy, dz) = dx * A1; { get x normal }

pass_dy(dx, dy, dz) = dy * A1; { get y normal }

pass_dz(dx, dy, dz) = dz * A1; { get z normal }

38

no_pert(dx, dy, dz) = Ø; { don't change normal }

{- EOF ---}

Xpert.dat (A simple text file)

2 <-(Number of dimensions of array)

Ø 1 4 <-(first dimension array size of 4)

Ø 1 4 <- (second dimension array size of 4)

-1 -1 1 -1 <-(Data for array [1][])

Ø Ø Ø Ø <- (Data for array [2][])

Ø Ø Ø Ø <- (....)

1 1 1 1 <- (Data for array [4][])

EOF

Ypert.dat (A simple text file)

2

Ø 1 4

Ø 1 4

-1 Ø Ø 1

-1 Ø Ø 1

-1 Ø Ø 1

-1 Ø Ø 1

EOF

Zpert.dat (A simple text file)

2

Ø 1 4

Ø 1 4

Ø Ø Ø Ø

Ø Ø Ø Ø

Ø Ø Ø Ø

Ø Ø Ø Ø

EOF

39

Figure 7. A Quilt texture

Explanation.

This texture primitive produces a bumpy quilt texture. The surface

normal data is read in from the three data files, one normal from

each file. The function file is used to manipulate and then return

the surface normal. The real argument in this example (A1)

determines the smoothness (or height) of the texture surface.

2.6. Miscellaneous primitive types.

RADIANCE also provides other primitive types that do not fall under any

of the above groups. They include the material types antimatter, prism1

and prism2 and the types mixfunc mixdata and mixtext for blending one or

more textures and patterns.

2.6.1. Antimatter

The primitive type anitmatter is a material that is able to "remove"

volumes from other volumes. A ray that passes into an anitmatter

40

object becomes blind to all the specified modifiers. The first string

argument (a modifier) will be used to shade the area between the

regular volume and the anitmatter volume. If this modifier is void,

then the anitmatter will appear completely invisible.

The antimatter primitive.

modifier antimatter identifier

N mod1 mod2 ... modN

Ø

Ø

2.6.2. Prism1 and Prism2

The primitive type prisms are materials for general light redirection

from prismatic glazing, generating secondary light sources. They

can only be used to modify planar surfaces and should not result in

light focusing or scattering. The string arguments specify the

coefficient for the redirected light and its direction. The prism2

type is identical to prism1 except that it provides for two ray

redirections rather than one.

The prism1 primitive.

modifier prism1 identifier

5 + ceof dx dy dz funcfile trans

Ø

n A1 A2 ... An

The prism2 primitive.

modifier prism2 identifier

5 + ceof1 dx1 dy1 dz1

coef2 dx2 dy2 dz2 funcfile trans

Ø

n A1 A2 ... An

2.6.3. Mixfunc

41

The mixfunc primitive mixes two modifiers procedurally. The

foreground and background arguments must be modifiers that have

been previously uniquely defined. The vname argument is the

coefficient defined in the funcfile that defines the influence of the

foreground (The background coefficient is 1-vname).

The mixfunc type.

modifier mixfunc identifier

4 + foreground background

vname funcfile trans

Ø

n A1 A2 ... An

2.6.4. Mixdata

The mixdata primitive is similar to mixfunc except that it combines

two or more modifiers using a data file instead of a calculation.

The mixdata primitive.

modifier mixdata identifier

5 + n + foreground background

func datafile funcfile

x1 x2 ... xn trans

Ø

m A1 A2 ... Am

2.6.5. Mixtext

The mixtext uses one modifier for the text foreground and one

modifier for the background.

The mixtext primitive.

modifier mixtext identifier

4 foreground background

fontfile textfile

Ø

42

9 Ox OY Oz

Rx Ry Rz

Dx Dy Dz

43

3. RADIANCE Light Specifications

The correct definition of light sources is critical to produce accurate images in

RADIANCE. RADIANCE is able to use manufactures data in terms of specific

distributions and lamp colour in its calculations.

RADIANCE, like most colour software only deals with a single band of red, green

and blue. Although the human eye is able to construct almost any colour from

combinations of these three colours, it is not the same as continuously sampling

the entire spectrum. It is thus possible for inaccuracies to enter the rendered

image. This RGB model is however, the easiest to emulate on current computer

hardware and thus the most widely accepted and utilised.

When the human eye views a scene that is lit by non heavily weighted colour

lights it automatically colour balances the scene as to appear white and natural.

Thus even if a number of particular frequencies are absent, such as some of the

higher (blue and violet) frequencies in an incandescent light source, the overall

scene still appears white. If no colour balancing occurs the scene no longer

looks natural. In RADIANCE there are two ways to colour balance an image.

The first is to use all white light sources and the second is to use the pfilt

program to filter the rendered image.

The RADIANCE package also provides a file called lamp.tab that contains useful

lamp information. This file is used by the lampcolor program and by the pfilt

program to obtain the RGB value of different lamps. The file defines lamp types,

chromaticity coordinates and depreciation lists.

3.1. Calculating radiance values

All RADIANCE light sources require three radiance values. One for red,

green and blue. To calculate the radiance value, the total initial lumen

value of the light and the total surface area of the light must be known.

This will produce one radiance value that is used for the red, green and

blue radiance values resulting in a white balanced light fixture.

The calculation is a four part one:

44

1. Convert the total lumen value of the lamp into watts by dividing the

lumens by 179. (watts)

2. Divide this value by Pi. (watts/steradian)

3 Divide the watts by the total emitting surface area of the lamp in

square meters. (watts/steradian/m2)

4. Compensate for fixtures and lumen depreciation by a factor of 5 to

2Ø %. (watts/steradians/m2)

Example.

A 75 watt GLS (general lighting service incandescent lamp) has a

radius of 3Ø mm a total initial lumen value of 96Ø.

Thus the radiance value for this white light source is..

power = 96Ø lumen / 179

= 56.471 watts

area = (.Ø3Ø)2 * Pi *4

= Ø.Ø1131 m2

radiance value = power / area / Pi

= 56.471 / Pi / Ø.Ø1131

= 15Ø.944 watts/steradian/m2

depreciation factor = 5%

Final radiance value = .95 * 15Ø.994

= 143.397 watts/steradian/m2

The RADIANCE package provides a program called lampcolor that does

this calculation for you. It asks for the total lumens, the geometry type of

45

the source, the type of lamp (from the lamp.tab file) etc. and produces

three radiance values (red, green and blue).

3.2. Using IES distribution data

As mentioned in the introduction, RADIANCE has the ability to use

manufactures' photometric data to provide accurate distributions of light

for their sources. The RADIANCE package comes with the standard IES (

Illuminating Engineering Society) data files for around 5Ø different

lighting fixtures. These data files can be converted straight into

RADIANCE scene descriptions by a program called ies2rad.

3.2.1 The ies2rad program

The ies2rad program produces a RADIANCE file, which contains

the light source geometry and a data file, which contains the light

distribution data. The light source geometry is always centred at

the origin, aimed in the negative z direction and orientated so that

the Ø degree plane is along the x axis, and as such must be

transformed to its final position.

Ies2rad usage:

ies2rad [options] inputfiles...

common options:

-l libdir Default path to look for ies data files.

-p predir Output subdirctory name.

-o outname Output file name (no extension)

-duntis Output dimension units.

-i rad Specify illum sphere for geometry (radius)

-t lamp Specify lamp type (use default for white
balanced lamp)

-m factor Multiplication factor

Example.

46

ies2rad -dm/1ØØØ -t default -o spot iesØ6

This converts the IES luminaire type iesØ6 (R-4Ø flood with

specular anodized reflector skirt: 45 degree cutoff) into a

RADIANCE geometry file spot.rad and a distribution data file

spot.dat with units in millimetres and using a colour balanced light.

The geometry file spot.rad:

ies2rad -dm/1ØØØ -t default

Dimensions in millimetres

#<IES #6, R-4Ø FLOOD WITH SPECULAR REFLECTOR

SKIRT; 45 DEG CUTOFF

#<LAMP=R-4Ø FLOOD

Ø watt luminaire, lamp*ballast factor = 1

void brightdata iesØ6_dist

4 flatcorr spot.dat source.cal src_theta

Ø

1 1

iesØ6_dist light iesØ6_light

Ø

Ø

3 19.1358 19.1358 19.1358

iesØ6_light polygon iesØ6.d

Ø

Ø

12

-114.3 -114.3 -Ø.25

-114.3 114.3 -Ø.25

114.3 114.3 -Ø.25

114.3 -114.3 -Ø.25

47

iesØ6_light polygon iesØ6.u

Ø

Ø

12

-114.3 -114.3 Ø.25

114.3 -114.3 Ø.25

114.3 114.3 Ø.25

-114.3 114.3 Ø.25

The distribution file spot.dat:

1

Ø Ø 21

Ø 5 15 25

35 45 55 65

75 85 9Ø 95

1Ø5 115 125 135

145 155 165 175

18Ø

7.3743 7.3743 5.64246 3.26257

1.31844 Ø.1229Ø5 Ø Ø

Ø Ø Ø Ø

Ø Ø Ø Ø

Ø Ø Ø Ø

Ø

3.2.1. Customisation of IES files

Because of the way that the IES specifies its basic light source

geometries, the physical representation of the specified lamp, often

is unsatisfactory. For instance the iesØ1 lamp type will produce six

polygons in the shape of a box to represent a spherical globe.

One way to overcome this is to specify a new geometry for the light

source and use the distribution data file produced by ies2rad. This

48

is a relatively straight forward process provided specific lamp

colours are not required. (A second technique is described later if

non white balanced lamp colours are desired.) The first step is to

define the new lamp geometry and replace the geometry created

by the ies2rad program. The next step is to calculate the total

surface area of this new light source. The final step is edit the

radiance values of the light primitive. The new values (red, green

and blue) are simply the reciprocal of the total surface area (in

meters) of the light source.

Example:

This example uses the same light distribution as above but instead

of a 228mm x 288mm light source it utilises a 14Ø mm diameter

disk (as a recessed down spot might look).

The modified geometry file myspot.rad:

ies2rad -dm/1ØØØ -t default

Dimensions in millimetres

#<IES #6, R-4Ø FLOOD WITH SPECULAR REFLECTOR

SKIRT; 45 DEG CUTOFF

#<LAMP=R-4Ø FLOOD

Ø watt luminaire, lamp*ballast factor = 1

void brightdata iesØ6_dist

4 flatcorr spot.dat source.cal src_theta

Ø

1 1

iesØ6_dist light iesØ6_light

Ø

Ø

3 64.96 64.96 64.96 <-(1/area of 14Ø dia disk)

iesØ6_light ring iesØ6.myspot

Ø

49

Ø

8

Ø Ø Ø

Ø Ø -1

7Ø Ø

If a spherical light geometry is required then the brightfunc

primitive must be slightly altered. In the above examples the

brightfunc modifier is dealing with flat sources and thus uses the

flatcorr string argument in its calculations. This must be changed

to corr when using a sphere as the light geometry.

When specific lamp geometry is required utilising different lamp

colours then the following technique can be used: Firstly the three

individual radiance values are obtained by using the lampcolor

program as described previously. Each of these values is then

multiplied by PI and divided by the maximun value found in the

second half of the IES distribution data file (in the spot.dat example

that value would be 7.3734). The result is then used as the final

radiance values for the source.

3.3. Daylighting

The RADIANCE package supplies a program called gensky that creates a

scene description for the CIE standard sky distribution. This description

can be for any time of the year, any where in the world using either a

sunny sky, with or without sun, or a cloudy sky. The material and surface

used for the sky are left up to the user.

The output sky distribution is given as a brightness function called

skyfunc. The x axis points east, the y axis points north and the z axis

corresponds to the zenith.

Usage: gensky month day hour [options]

gensky -ang altitude azimuth [options]

gensky -defaults

50

The gensky options are:

-s Standard CIE clear sky

+s Clear sky with sun.

-c Standard CIE overcast sky

+c Uniform cloudy sky

-g frl Average ground reflectance

-b brt Zenith brightness

-t trb Turbidity factor

-a lat Latitude in degrees north (-ve for south)

-o lon Longitude in degrees west

-m mer Standard meridian in degrees west of Greenwich

Example.

Hemispherical Blue Sky

Sunny with sun for Perth W.A

on 16th March, 1Ø:ØØ am

!gensky 3 16 1Ø +s -a -32 -o 115.6 -m 12Ø

skyfunc glow skyglow

Ø

Ø

4 .9 .9 1 Ø

skyglow source sky

Ø

Ø

4 Ø Ø 1 18Ø

51

4. Image Rendering

Once a scene has been fully defined in terms of its geometry and materials it

can be rendered into a two dimensional image. All that needs to be chosen is

the particular viewing point. RADIANCE uses the simulation technique of image-

oriented raytracing. This involves tracing a ray of light backwards from the

viewers eye position, to one or more sources, taking into effect specular

reflections, transmissions and all geometries. The reason for doing this in

reverse as opposed to the real world model, is that of all of the rays that are

reflected and refracted from a light source, only a very small number actually

enter the eye.

4.1. Oconv

To reduce the time taken to generate images, RADIANCE uses octrees to

sort the geometry in a scene. An octree recursively subdivides spaces

into nested octants or cubes which contain no more than a set number of

objects. When a ray is traced, intersection calculations are only

performed on those objects which lie in the cubes of the intercepting ray,

not across the whole scene and thus reducing the time required to render

a scene.

The oconv program is used to create an octree file from scene description

files. This octree file is then used as input for the rendering programs.

An octree may be frozen by using the -f option in the oconv program to

have its information stored in a binary format at the end of the octree file.

This enables the octree to be faster loading, machine independent and

not depend upon the original scene description files.

4.2. Rview

Rview is a ray-tracing rendering program for interactively viewing a scene

in perspective. It is used not as a final image renderer but as a device for

debugging scenes, for evaluating lighting and for setting viewing

parameters. It displays a rough image of the scene on the screen and

slowly increases its resolution. The users can interrupt this refining and

enter a command into a dialogue box to change a number of settings such

as the viewing type, size and magnification, the exposure or refinement

52

frame. Most of rview's command line options can be specified

interactively with the dialogue box set command, while running the

program.

Rview command line usage:

rview [options] octree <-(Renders interactive view)

rview -defaults <-(Lists default values)

Common rview options. (* denotes interactive (dialogue box)

command only)

Viewing Parameters.

*last file Load viewing parameters from file.

*aim [mag [x y z]] Zoom in by mag on specified point. If no

point is specified then the cursor is used to select

the view centre.

*view [file] Saves current viewing parameters to file. If file is

left out then rview prompts for the following view

settings.

-vtt View type. t can be either 'v' for perspective view,

'l' for parallel view, 'a' or 'h' for fish eye views.

-vp x y z Viewing point. (or centre point for parallel view)

-vd xd yd zd View direction vector.

-vu xd yd zd View up direction

-vh val Horizontal field of view in degrees.

-vv val Vertical field of view in degrees.

-vf file Get viewing parameters from a file.

Common program variables.

53

*set [var [val]] Changes or checks specified program

variables. If val is absent the current value of var

is displayed. If var is absent a list of all available

variables are displayed. The following variables

can be specified on the command line.

-ab N Sets the number of ambient bounces to N which

determines the number of diffuse bounces

calculated through an indirect calculation.

-av red green blue Set the ambient light value to a radiance of

red, green and blue to be used in place of an

indirect light calculation. Examples of quick ways

of calculating this are shown below.

Miscellaneous parameters.

*frame [xmin ymin xmax ymax] or [all]

Sets the frame for refinement. If the bounding box

coordinates are not given, the cursor is used to pick

the box boundaries. The frame all command will

reset the box to the total image size.

*exposure [spec] Adjusts the exposure. The spec value can

begin with either a '+' or '-' (specifying the a

number of fstops), or an '=' (specifying an

absolute value). If the '=' option is given without

the spec value or if the spec value is omitted

altogether then the cursor is used to pick a point

for normalisation.

*new Restarts the rendering of the image.

*quit Quit the program.

*^R Redraw the screen.

*write.[file] Write the current image to the file (at current

resolution).

54

Calculating the ambient light value.

Ambient light levels are specified when indirect calculations are not

required (ie when -ab is Ø see rpict). There are two ways for quickly

acquiring a rough estimate of ambient light values. The first is to select a

point using the interactive trace command that is half way between full

shadow and light shadow. The trace command returns the object

selected, its location, material and most importantly, its luminance value.

This value can then be used as the ambient value.

The second technique involves setting the -ab command line option to 1

at runtime. After a rough image has appeared set the ab value to Ø and

set the av values until the new sections of the image match the colour of

the original image. Use these values for the final rendering using rpict.

4.3. Rpict

Rpict is the program that produces a high resolution picture of a scene

from a given perspective. The image may take a few minutes or many

hours to generate depending on the resolution of the final picture and the

desired picture accuracy. The rpict program output is controlled by the

specification of a number of command line variables. These fall into

several categories such as views, resolution, direct and indirect

calculations.

Rpict usage;

rpict [options] octree > imagefile <-(Create image file)

rpict [-defaults] <-(List variable defaults)

Common rpict options.

Viewing parameters.

Rpict takes the same viewing variables as rview (see above).

Usually these viewing parameters are fine tuned in rview and

saved to a file. The rpict program then simply reads this file using

the -vf option.

55

Resolution parameters.

The horizontal and vertical resolution values determine the amount

of detail in the final image and as such heavily influence the

pictures rendering time. For large images it is possible to reduce

this time by using image plane sampling (-ps).

-x xres Specify x resolution.

-y yres Specify y resolution.

-ps size Sets the sample pixel spacing for adaptive

subdivision on the image plane.

-pj frac Sets the sample jitter to frac. This value, between

Ø and 1 is used when anti-aliasing by randomly

sampling over pixels.

Direct calculation parameters.

The direct calculation does not use any interreflected component

and as such should be provided with an ambient light level (as

described with rview). By the programs defaults, sources are

treated as if they emanate from a point. By jittering a ray to a

source by an amount proportional to the sources size, a more

accurate image results. This, however, requires that the image

plane sampling be set to zero thus resulting in longer rendering

times.

-av red green blue Sets the ambient values (as discussed

above)

-dj frac Sets direct jittering to frac. (between Ø and 1)

Indirect calculation parameters.

The indirect calculation uses an interreflected component for

ambient light. Each calculation produces a number of rays which

56

are stored and used for interpolation on nearby values. These

indirect illuminance values may be stored in a file which can be

shared for slightly faster renderings.

-ab N Sets the number of ambient bounces to N which

determines the number of diffuse bounces.

-af file Sets the ambient file to file.

Miscellaneous parameters.

-lr N Limit number of reflections to N.

-t sec Sets the time between progress reports.

-e file Sends progress reports (from -t) and error

messages to file instead of standard error.

The following table shows typical rpict values in relation to rendering

speed and accuracy.

Param Description Min Fast Accur Max Default

===== ============= ===========================

-ps pixel sampling 16 8 4 1 4

-pj anti-aliasing jitter Ø Ø.6 Ø.9 1 Ø.67

-dj source jitter Ø Ø Ø.7 1 Ø

4.4. Pfilt

The pfilt program performs anit-aliasing and scaling on an image file

produced by rpict. Other options include setting the exposure of the

image, colour balancing and creating star highlights around bright areas

of a picture.

Pfilt usage;

pfilt [options] [file]

57

Common pfilt options.

-x res Set the x resolution to xres. If a slash followed by

a real number is given for xres, then the new x

resolution will be set to the original resolution

divided by the real number.

-y yres Set the y resolution to yres (same as -x option).

-e exp Adjusts the exposure. The exp value can

begin with either a '+' or '-' (specifying the a

number of fstops), otherwise it is interpreted as a

straight multiplier.

-t lamp Colour balance the image as if the lamp fixture

type was used.

-r rad Use Gaussian filtering with a radius of rad to

provide highest quality images.

-n N Set number of star points for star pattern to N.

-h lvl Set the intensity for which areas will start to draw

star patterns.

Reducing the image resolution by two or three and using a Gaussian filter

radius of around .6 produces the highest quality anti-aliased image.

58

5. References

Greg Ward. "The RADIANCE 2.Ø Synthetic Imaging System Reference

Manual."

Lawrence Berkeley Laboratory.

Berkeley, California.

Cindy Larson "RADIANCE - Users Manual (Draft)"

Lawrence Berkeley Laboratory.

Berkeley, California. Nov 1991.

Greg Ward RADIANCE manual pages.

(Principle Author) Lawrence Berkeley Laboratory.

Berkeley, California.

John E. Kaufman "IES Lighting handbook, Reference volume."

Illuminating Engineering Society

New York. 1981

59

Appendix A

Location of files.

All execulables may be found in

/usr/local/bin

All library files, eg function files, picture files etc may be found

/usr/local/lib/ray

RADIANCE PROGRAM LIST.

aedimage - RADIANCE driver for AED 512 color graphics terminal

arch2rad - convert Architrion text file to RADIANCE description

calc - calculator

cnt - index counter

dayfact - compute illuminance and daylight factor on workplane

ev - evaluate expressions

falsecolor - make a false color RADIANCE picture

findglare - locate glare sources in a RADIANCE scene

genbox - generate a RADIANCE description of a box

genprism - generate a RADIANCE description of a prism

genrev - generate a RADIANCE description of surface of revolution

gensky - generate a RADIANCE description of the sky

gensurf - generate a RADIANCE description of a functional surface

genworm - generate a RADIANCE description of a functional worm

getbbox - compute bounding box for RADIANCE scene

getinfo - get header information from a RADIANCE file

glare - perform glare and visual comfort calculations

glarendx - calculate glare index

ies2rad - convert IES luminaire data to RADIANCE description

lam - laminate lines of multiple files

lampcolor - compute spectral radiance for diffuse emitter

lookamb - examine ambient file values

60

mkillum - compute illum sources for a RADIANCE scene

neat - neaten up output columns

normpat - normalize RADIANCE pictures for use as patterns.

oconv - create an octree from a RADIANCE scene description

pcomb - combine RADIANCE pictures.

pcompos - composite RADIANCE pictures.

pfilt - filter a RADIANCE picture

pflip - flip a RADIANCE picture.

pinterp - interpolate/extrapolate view from pictures

protate - rotate a RADIANCE picture.

psign - produce a RADIANCE picture from text.

pvalue - convert RADIANCE picture to/from alternate formats

ra_bn - convert RADIANCE picture to/from Barneyscan image

ra_pixar - convert RADIANCE picture to/from PIXAR picture

ra_ppm - convert RADIANCE picture to/from a Poskanzer Portable

 Pixmap

ra_pr - convert RADIANCE picture to/from pixrect rasterfile

ra_pr24 - convert RADIANCE picture to/from 24-bit rasterfile

ra_rgbe - change run-length encoding of a RADIANCE picture

ra_t16 - convert RADIANCE picture to/from Targa 16 or 24-bit image

 file

ra_t8 - convert RADIANCE picture to/from Targa 8-bit image file

ra_tiff - convert RADIANCE picture to/from a TIFF color or greyscale

 image

rcalc - record calculator

replmarks - replace triangular markers in a RADIANCE scene description

rpict - generate a RADIANCE picture

rtrace - trace rays in RADIANCE scene

rview - generate RADIANCE images interactively

thf2rad - convert GDS things file to RADIANCE description

total - sum up columns

ttyimage - RADIANCE driver for X window system

xform - transform a RADIANCE scene description

xglaresrc - display glare sources under X11

ximage - RADIANCE driver for X window system

xshowtrace - interactively show rays traced on RADIANCE image under X11

