
RADIANCE

User's Manual

DRAFT

Lighting Systems Research Group
Lawrence Berkeley Laboratory

Berkeley, California

Cindy Larson
November 5, 1991

Acknowledgements

Greg Ward Program Manager
Principal Author

Francis Rubinstein Program Manager

Sam Berman Principal Investigator

Rudy Verderber Group Leader

Steve Selkowitz Program Leader

Robert Clear Technical Advisor

Charles Ehrlich Technical Advisor

Paul Heckbert Technical Advisor

Cindy Larson Documentation

Anat Grynberg Program Validation

Jennifer Schuman CAD Interfaces

Ning Zhang CAD Interfaces

This work was supported by the Assistant Secretary of
Conservation and Renewable Energy, Office of Building
Energy Research and Development, Buildings
Equipment Division of the U.S. Department of Energy
under Contract No. DE-AC-03-76SF00098.

IMPORTANT NOTICE

This draft user's manual was never completed, and contains some
information that is out of date or inaccurate. It was written to go
with Radiance release 1.4, and contains no information about
important changes and additions, such as the rad interface.
However, we felt that it contained enough useful ideas to distribute
it as is, anyway. Please don't blame us if one or two examples here
do not work as claimed. Cindy Larson volunteered her time writing
this, and has never been compensated for it.

Look for the book by Greg Ward, Rob Shakespeare, Charles Ehrlich,
John Mardaljevic, Peter Apian-Bennewitz and Erich Phillips as a final
reference. The book will be published by Morgan Kaufmann in early
1998, and is entitled, Rendering with Radiance: The Art and Science
of Lighting Visualization. This book will include version 3.1 of
Radiance and all of the latest manual pages on CD-ROM. If you have
questions on how to find this book, contact:

radiance-request@radsite.lbl.gov

Introduction to Radiance..1
Radiance Capabilities...2
System Requirements..5
Using this Manual..6

Radiance Installation..8
Getting Started..8

Scene Descriptions...9
Introduction..9
Basic Format of Input Files ..9
Materials...12
Surfaces ..14
Instances...22
Textures..23
Patterns...24
Mixtures..26
Antimatter...26
Light Sources...27
Importing from CAD Systems..31
Tutorial Example ...32

Input Files...35
Materials..35
Surfaces ...37
Instances..56
Textures...56
Patterns..57
Light Sources..60

Image Generation...67
Introduction..67
Scene Compilation...67
Batch...69
Interactive...71
Other Lighting Calculations ...73
Tutorial Example ...74

Scene Compilation..74
Batch..75
Interactive..75
Other Lighting Calculations ..76

Image Manipulation..77
Introduction..77
Image Display & Conversion..77
Image Processing Filters...78
Other Utilities ...79
Tutorial Example ...80

Image Display & Conversion...80
Image Processing Filters..80
Other Utilities ..80

Advanced Topics..81
Introduction..81
Auxiliary Files..81
Using Make ...82
Simulation Options..84
Animation ...84
Tutorial Example ...85

Coordinate Mapping...85
Textures...86
Instancing...88

Glossary ...93
Terms...97
Programs..101

Introduction to Radiance

Introduction to Radiance

Radiance is a software package for accurately calculating and
displaying lighting. The program takes a scene description with light
sources, sun, sky, buildings, rooms, furniture, etc. and produces
spectral radiance values which can be collected in a "photo-
accurate" color image. As a lighting design tool, Radiance
represents a significant advance in the state of the art. Since
Radiance is a research tool, it lacks many of the user-friendly
features found in commercial software packages. However,
Radiance is more versatile than other lighting simulations and faster
than other ray tracing programs, with some important capabilities
not found in either.

By simulating the behavior of light, Radiance calculates radiance (or
luminance) and predicts the appearance of any geometrically
described scene, usually an architectural space. The software fulfills
the traditional role of a renderer, except that this renderer provides
an accurate simulation of lighting from lamp photometric data and
advanced surface reflectance models which can correctly account
for both diffuse and specular interreflection in complicated spaces.
Because the calculations are accurate, they can be used for making
design decisions, and the images produced by Radiance provide a
client with a genuine preview of how the design will appear when it
is completed.

Radiance was written for lighting designers who want to produce
energy efficient designs that require some innovation, and are
hampered by the limitations of conventional methods. When
designers want to use fixtures with unusual distributions, non-
standard fixture placements, indirect lighting, task lighting, or
daylighting, they currently have to draw solely on their own
resources and experience to create a good solution. Radiance allows
lighting designers, engineers, architects, and their clients to
visualize their solutions to these more difficult problems during the
design phase, and to try out alternative designs and novel
approaches without risk.

You might say "This sounds great, but why not just use conventional
CAD rendering systems?" The problem with current computer aided
drafting (CAD) software is that it produces images that are not
predictive of lighting. For example, a few CAD systems will calculate

- 1 - 3/6/92 Draft

Introduction to Radiance

shadows from a small number of light sources, but they will not
consider light source distributions or interreflections between
objects. Commercial lighting programs, on the other hand, are
incapable of simulating realistic spaces in their full detail. Some of
the more advanced lighting programs calculate interreflection only
in limited circumstances such as empty rectangular spaces, and they
do not account for obstructions (such as partitions), color, and the
effect of non-Lambertian surfaces (such as metal and glass). Since
all the subtleties of lighting and reflections the viewer normally
associates with real scenes are present in the final images, there can
be a very strong psychological impact when viewing a computer
graphic image generated by Radiance.

Lighting simulation is typically a two or three step process. The first
step is describing the geometry, which is usually done within a CAD
system. Note that this step may already have been carried out by
the architect, so only a small extra effort is required on the part of
the lighting designer. The second step, if it was not included in the
geometric description, is the addition of materials and fixtures from
libraries and manufacturer's catalogs to complete the model for the
simulation software. The third step is running the lighting
simulation program and evaluating the output. As a result of this
evaluation, the designer will probably return to step two and, in
some cases, will go all the way back to step one for another
iteration. This process continues until the designer and client are
satisfied that the choice and layout of the lighting system will
provide the level and quality of illumination desired for the space.

Radiance has been compared to scale model measurements and
different lighting calculation programs in validation studies and
comparisons of empty rooms and diffuse surfaces that show good
correlation with measured data and conventional lighting
simulations. The program's accuracy has also been verified for
unempty spaces, but more work is needed in the validation of non-
Lambertian surfaces. Radiance is capable of going beyond the
limitations of other programs and the simple cases presented in this
documentation.

Radiance Capabilities

Radiance uses the simulation technique called image-oriented ray
tracing, which is particularly well-suited to computer graphics and

- 2 - 3/6/92 Draft

Introduction to Radiance

visualization. The path of light is tracked from its presumed
destination to one or more sources, taking into account specular
reflection, transmission, and virtually any geometry. Following light
paths in reverse is a much more efficient approach than tracing
them from the light sources, because only a minute percentage of
the photons that are emitted enter a viewer's eyes. If light were
followed from the sources, most of the calculation would be wasted
on rays that do not contribute to the desired image.

The input to the program is the scene geometry, which describes the
location and shape of every surface, and the materials, which
describe how light interacts with each surface. Rays are followed
from the viewpoint into the scene, and then are traced to other
surfaces and light sources to calculate luminance. In this way, ray
tracing calculates luminance directly, which is ideal for the
visualization of illuminated spaces since images are just collections
of luminance values. Lighting calculation based on illuminance must
convert to luminance prior to display, which results in a significant
loss of information. Recent advances in ray tracing techniques have
resulted in a complete lighting calculation that incorporates diffuse
interreflection and daylight. Since the quality of the images created
by Radiance depends on the number of rays traced, a large number
of operations must be performed to produce a high-quality image.

The three main Radiance programs use ray tracing to calculate
luminance and then (1) display images interactively with RVIEW, or
(2) produce picture files in batch mode with RPICT, or (3) compute
specific values for other purposes with RTRACE. Numerous other
programs provide "filtering" (translation) within and between
various formats, image processing and display functions, procedural
object generation, light distribution calculation, and so forth.

- 3 - 3/6/92 Draft

Introduction to Radiance

Scene
Description

Octree

Auxiliary
Files

Generator xform

oconv

rtrace

rpict

rview

Picture

Image

Other
Values

pvalue

Driver

Filter

The Radiance system allows the user to describe a scene and
generate images based on three basic surface types: polygons,
spheres, and cones. From these primitive shapes, compound
surfaces of arbitrary complexity can be constructed and then
manipulated and displayed. Through a process called instancing,
hierarchical scenes containing millions of surfaces have been
constructed. The interface to Radiance is command-based for
maximum flexibility. Input files are created by CAD programs, text
editors, and object generator programs. There is a library of useful
generators to make prisms, patches, and so on, and objects such as
furniture and light sources are provided. The UNIX utility can be
used to automate scene creation and rendering, and several other
bundled programs simplify the creation of custom generators.
Import programs for a few popular CAD systems are provided.

Basic Radiance material types include composite, metal, glass, and
self-luminous surfaces. Each material type describes the basic
interaction of light with a surface, and variable parameters
determine things such as color, polish, refractive index, and
intensity. To these materials one can add procedural and scanned
textures and patterns that add local variations to the surface

- 4 - 3/6/92 Draft

Introduction to Radiance

orientation, color or intensity. By increasing the realism of the
reflection model in this way, the viewer gets a much better feel for
the lighting present in a space.

The Radiance system is composed of a few dozen C programs that
have been compiled and run on DEC and Sun workstations, Apple
Mac II's (under A/UX), CRAY's, and a number of other UNIX
machines. The software was developed at Lawrence Berkeley
Laboratory (LBL), and has been in use since 1987 by the
Architecture Department at the University of California at Berkeley,
which augments its computer modeling courses with rendering and
simulation.

The computer aided drafting (CAD) system used most frequently to
produce geometric descriptions for Radiance is GDS (Graphical
Design System) from McDonnell Douglas, because it happens to be
installed on the UCB Architecture Department machines. Although
it takes little effort to write translators from other CAD formats,
limited access to these systems has curtailed LBL's translator
development.

System Requirements

Radiance is used by architectural and engineering firms that have
the necessary computer equipment and expertise, and a desire to
produce better designs. Radiance is best suited for color UNIX
workstations, but it will work on any machine running the UNIX
operating system including IBM's running AIX, and Macintoshes
running A/UX. Ideally, a computer system for the prediction of
lighting should consist of a color workstation with a pointer device
such as a tablet or mouse, optional input devices such as scanners
or frame grabbers for obtaining material properties and textures,
and optional output devices such as color printers or film recorders
for recording simulation results. The platform must have enough
memory and computing power to provide good interactive response
time and reasonable turnaround of large batch jobs. The system
should have access to large amounts of secondary storage such as
bulletin boards and CD-ROM catalogs to aid in the development of
building descriptions.

- 5 - 3/6/92 Draft

Introduction to Radiance

Radiance includes C source code for compiling on BSD or AT&T
UNIX platforms, and has been compiled for the following hardware
platforms:

• Sun 3, Sun 4 workstations
• DECstation running ULTRIX
• Silicon Graphics IRIS
• Mac II running A/UX

Radiance currently supports the following graphics interfaces:

• X11 8-bit color or greyscale and 24-bit color displays
• X10 8-bit color or greyscale displays
• SunView 8-bit color or greyscale
• NeWS color or greyscale
• AED 512 color graphics terminal

Radiance comes with translators for the following file types:

• GDS Things File
• IES Luminaire Data
• Sun 8 and 24-bit Rasterfiles
• Architrion Text File
• AutoCAD DXF (next release)
• Targa 8, 16, 24 and 32-bit images

Using this Manual

Since the Radiance system requires complete scene descriptions
before images can be generated and then manipulated, this manual
follows this same basic organization:

Scene Descriptions
Image Generation (Rendering)
Image Manipulation
Advanced Topics

Readers who are already familiar with the basic capabilities of
Radiance and would like to learn more about using more
sophisticated features will find examples throughout this document,
and may benefit from a special section devoted entirely to advanced
topics (such as auxiliary files, simulation options, and animation).

- 6 - 3/6/92 Draft

Introduction to Radiance

Tutorial examples have been provided at the end of the Scene
Description, Image Generation, and Image Manipulation sections for
readers who are interested in getting started with Radiance.

Glossary, Terms, and Programs sections are included at the end of
this document to help the reader understand some of the technical
terminology used in this document, as well as some of the basic
concepts required for understanding ray tracing in general and
Radiance in particular. Since this user's manual does not contain
detailed descriptions of how to use the various hardware platforms,
operating systems, graphics interfaces, and translators, it is
expected that readers already have a working knowledge of the
systems they are using to run Radiance.

It is recommended that readers use the Radiance Reference Manual
as a complete guide to Radiance commands and input primitives,
since this user's manual does not include descriptions of all
commands and primitives.

- 7 - 3/6/92 Draft

Radiance Installation

Radiance Installation

Getting Started

The most current release of the Radiance synthetic imaging system
is the fourth release, Version 1.3, and it includes all source files.

You may want to start by reading the basic Radiance Reference
Manual documentation contained in "doc/ray.1". Use troff with the
"-ms" macro package. Individual manual pages may be found in the
subdirectory "doc/man1". Use the "-man" macro package for these
documents. If you have a question, the answer is probably in one of
these manuals, but you must read everything very carefully. Also,
read the file called "doc/notes/ReleaseNotes".

The executables in bin.sun3 should be installed on all Sun 3
machines, those in bin.sun4 on Sun 4 machines, bin.IRIS on SGI Iris,
and bin.DEC on DECstations, and bin.mac on MacIntoshes running
A/UX 2.0. Not all of the programs in the source directory have been
compiled on every machine, and not all are documented in the
manual pages. In general, the documentation of the source is non-
existent. If the binaries for your hardware are not present, you will
have to compile the programs yourself; check the Makefiles
carefully before compiling. The X drivers in this distribution work
with X10R4 and X11Rany.

The files in the "lib" subdirectory should be installed in
"/usr/local/lib/ray". If this location is different on your system,
you will have to define RAYPATH to override the default, or change
the LIBDIR variable in "src/rt/Makefile" and rebuild the renderers.
RAYPATH is an environment variable, similar to PATH, that tells the
programs where and in what order to look for auxiliary files. The
default RAYPATH in this distribution is ":/usr/local/lib/ray" which
searches in the current directory, then "/usr/local/lib/ray".

The first thing you should do is run the script in this directory called
"RUNME" that requests you to provide some information about your
use of Radiance. It will take only a moment to provide some basic
information from and e-mail it back.

Good luck!

- 8 - 7/10/97 Draft

Scene Descriptions

Scene Descriptions

Introduction

The first step in creating any Radiance images is to describe the
scene you are designing using three basic geometric shapes:
polygons, spheres, and cones. You can choose to either describe
your scene mathematically for Radiance, or import this information
to Radiance from a CAD system. It is most efficient to use a CAD
system to create the descriptions of building and room geometries
used by Radiance, if you have access to a CAD system capable of
describing your scene. CAD descriptions are translated into
Radiance input with the addition of material and light source
descriptions, which you will need to define. Radiance can then be
used to quickly and interactively view the scene from different
perspectives, and can render high-quality images which can be
displayed on the screen or on hardcopy devices such as film
recorders and color printers for client evaluations and
presentations.

The best way to get started with Radiance is to envision a scene you
would like to describe, and either use a CAD system to sketch it out
in three-dimensions, or start jotting down some notes on paper.
The minimum requirements for creating a Radiance scene are a light
source, a type of material, a surface, and a view. As you read the
examples and tutorial example in this manual, think about your own
scene and what you'll need to do to describe it for Radiance in terms
of input files, materials, surfaces, textures, patterns, and light
sources. The best way to appreciate Radiance's capabilities is to see
how it can be used to bring your ideas to life!

Basic Format of Input Files

Input to the Radiance program comes from one or more object
description files. These files specify the location, size, shape, and
makeup of the objects and sources in the scene. The object
descriptions can be created directly with a text editor, although this
process is time consuming. Object libraries and object generators
make the work go faster, but a three-dimensional graphics editor or
CAD system is really needed to make the input process user-

- 9 - 7/10/97 Draft

Scene Descriptions

friendly. It's a good idea to understand how to read and understand
Radiance input files in any event, since even scenes developed on
CAD systems will require some additional work (such as defining
materials and light sources) before they can be used by Radiance.

Primitives are the basic building blocks of Radiance input files,
which combine together to make up the scene description. All the
materials you plan to use in your scene will need to be defined as
primitives, according to a specific input format, and all the surfaces
that describe objects in your scene also need to be defined as
primitives. It helps to start thinking in advance about how you plan
to organize your primitives together into Radiance input files, since
good organization early on when you describe the scene can make
the task of generating images much easier later on. For example,
you might decide to put all the material definitions together in a file
called "materials", so you can easily find the materials you've
defined together in one place when you decide to add, change, or
delete materials from your scene description.

A Radiance scene description file lists
the materials and surfaces that are
used to create a specific scene.
Radiance scene descriptions represent
the scene in three-dimensional
Cartesian (x,y,z rectilinear)
coordinates. The scene description
file is stored in ascii text, according to
the format shown here. For a more
complete description of Radiance

Primitive Format
modifier type identifier
n S1 S2 S3 ... Sn
0
m R1 R2 R3 ... Rm

Primitive Example
void plastic fireplace_stone
0
0
5 .6 .05 .02 0 0

primitives, refer to the Radiance Reference Manual.

Modifiers are either the word "void", which indicates no modifier,
or some previously defined primitive identifier. (The most recent
definition of a modifier is the one used, and later definitions do not
cause relinking of loaded primitives. Thus, the same identifier can
be used repeatedly, and each new definition will apply to the
primitives following it.)

The type can be the material type (eg: plastic, metal, glass) or
surface type (eg: sphere, polygon, cone, cylinder), as well as one of
a few other type categories (pattern, texture, or mixture), and the
identifier is the name of the primitive being described.

- 10 - 7/10/97 Draft

Scene Descriptions

String arguments (words) are listed next (S1,S2,S3,...Sn) for variable
names, file names, or transformations being used, preceeded by the
number (n) of arguments there are. No integer arguments are yet
being used by Radiance, so the next line is always zero. Real
arguments are always numeric (eg: red, blue, green, specularity,
roughness), and are listed last (R1,R2,R3,...Rm), preceeded by the
number (m) of real arguments to be listed.

Note: Coordinate Systems & Units

Radiance uses a right-handed coordinate system, which
means this is the only real restriction on the definition of
world coordinates.

z

x

y

Dimensions are in whatever units the user desires. The
units can be thought of as meters, inches, feet, microns,
or anything else, but they must be used consistently
within a given scene. It is also important to keep to
reasonable values (ie: between 10-5 and 108 in
magnitude) to avoid calculation anomolies. However, it
will be much easier to use other Radiance programs if a
few conventions are followed.

First, the z-vector should be the pointing in the zenith
(up) direction. Second, if there is a North direction, it
should be aligned with the y-axis if possible (which
implies that the x-axis would point East). Finally, when
creating a separate object file, it is best to place the
origin at the most logical point for rotation, and explain
the dimensions and units in a comment at the beginning
of the file.

- 11 - 7/10/97 Draft

Scene Descriptions

Comments are preceeded by a pound sign, '#', and continue to the
end of the line.

Aliases can be defined for modifiers
(material, pattern, or texture) that
have the same characteristics as
another (such as the materials xzbrick
and yzbrick, which are both the exact
same brick color, specularity, and
roughness). Aliases relate identifiers
that share identical attributes but are
identified by different names and may
have different modifiers, and can be
used to organize identifiers referring
to the same thing in different places.
It's important to remember to fully

Alias Format

Comment

modifier alias identifier reference

Alias Example

Cabin porch material definition
(the same as fireplace material)

void alias yzbrick
xzbrick

specify the required data in the primitive for the reference part of
the alias, so there will be some data to be referred to somewhere
(and not just an alias primitive).

Inline commands are useful for
quickly and easily generating
complicated objects with many
surfaces (instead of manually
determining and specifying every
vertex), and placing objects correctly

Command Format

Comment

!command

within the scene, among other things. Inline commands must begin
with an exclamation point, '!', in order to be identified as
commands. These commands are executed by the shell, and their
output is read as input to the program. The command must not try
to read from its standard input, or confusion will result. A
command may be continued over multiple lines using a backslash,
'\', to escape the newline.

The formats for Radiance primitives may look a bit strange at first,
but will become familiar to you as you gain experience using them.

Materials

When the scene geometry is being described, the user must be
prepared to assign material names to each surface. The definition

- 12 - 7/10/97 Draft

Scene Descriptions

of these materials will determine how each surface interacts with
light. Radiance provides several material types for this purpose; the
four basic classes of surface types supported are: light, normal,
dielectric, and BRDF (bidirectional reflectance distribution
function).

Light The basic type of emissive surfaces source is simply
called light. Variations are provided for efficient
modeling of spotlights, called spotlight; secondary
emitters, called illum; and weak sources, called
glow. A light source can be a polygon, a sphere, a
disk, or a source.

Normal A normal surface is typically metal or plastic. It
has a diffuse and specular component, and a color.
A roughness factor is also given. If the material is
purely specular and has a roughness of zero, it is a
mirror. If the material is purely diffuse, it is
Lambertian. Most real materials are neither purely
specular nor purely diffuse. Metal differs from
plastic in that its specular component is influenced
by the metal's color. A variation called trans is
translucent.

Dielectric A dielectric material, such as crystal or water, has
an index of refraction and a spectral absorbence.
Snell's laws and Fresnel's equations are used to
compute the reflected and transmitted components
and directions. A variation of dielectric called glass
is optimized for efficient computation of thin glass
surfaces such as windows, and another variation
used to describe the surface between two dielectric
materials (such as between crystal and water) is
called interface.

BRDF Materials with arbitrary bidirectional reflectance
distribution functions (BRDF's) can be modeled as
one of four types. Plasfunc is used for a plastic-like
material (white highlights) whose specular BRDF can
be described as a function. Metfunc is identical
except that the highlights will be given the material's
color. Likewise, plasdata and metdata are used for
BRDF's with white and colored highlights, based on
data file input.

- 13 - 7/10/97 Draft

Scene Descriptions

Examples of material name
assignments to Radiance are given for
a type of plastic called "red_plastic",
and a type of glass called
"window_glass". Once a material
name has been defined to Radiance, it
may be used as many times as it's
needed in the scene description by
simply using the material name as a
modifier to a surface. The number of

Plastic
This defines a plastic type of
material called red_plastic
with Red=.7, Blue=.06,
Green=.08, Specularity=.05
and Roughness=.005

void plastic red_plastic
0
0
5 .7 .06 .08 .05 .005

parameters required for each material definition should always
immediately preceed those parameters; the number five (5) shows
up on the plastic example, right before the five required real
parameters, and the number three (3) appears immediately before
the three color transmission parameters in the glass example.

Any of the above materials can be
modified by a set of textures and
patterns to simulate a broad range of
light interactions. For example,
plastic can take on the appearance of
any paint, paper, ceramic, or wood
simply by varying parameters and
applying optional textures and
patterns. A texture modifies the
surface normal direction. A pattern
modifies the surface color. Textures

Glass
This defines a glass type of
material called
window_glass with Red
transmission=.96, Green
transmission=.96, and
Blue transmission=.96

void glass window_glass
0
0
3 .96 .96 .96

and patterns are defined as functions of the surface normal,
intersection point, and ray direction. The functions are stored in
separate files which are read in and interpreted as necessary.
Source distributions are implemented as light patterns, for example
(please refer to the section on light sources).

Surfaces

At the lowest level, Radiance models polygons, spheres and cones.
From these basic boundary representations (surfaces), varied and
complicated shapes can be produced. An object is a collection of
one or more surfaces contained in a seperate description file. In
addition to these geometric entities, there is a special type for
distant sources, called source. Surface normals need to be
considered when describing objects, since their description to

- 14 - 7/10/97 Draft

Scene Descriptions

Radiance defines how the object is viewed (where the "front" of the
object is). The "front" of an object is typically the side it is viewed
from.

It's also very important to follow the right-hand rule to put vertices
in the proper order on polygons, since mistakes can create very
unusual and undesirable self-intersecting polygons that look
something like bowties!

Note: Right Hand Rule

A method for determining or specifying the surface
normal direction (the thumb) from the curved direction
of vertices across the other two dimensions of space
(our fingers). In the following illustration, vertices
entered in the circular direction shown (counter-
clockwise) would result in a surface normal pointing out
of the page in the y-direction.

z

x
y

Most users will be familiar with polygonal representations of
objects. Providing a variety of surface types (ie: spheres, cones, &
polygons) reduces both the user's time entering complicated object
approximations and the program time required for the extra
surfaces.

- 15 - 7/10/97 Draft

Scene Descriptions

Polygons Polygons are specified as a list of at least three
coordinate triplets. These vertices must lie in the
same plane to be interpreted correctly. The order in
which they are listed defines the surface normal
orientation. A polygon can be concave or convex,
and there is no upper limit to the number of
vertices. Self-intersecting polygons should be
avoided.

Spheres A sphere is defined as a center point and a radius.
By default, the surface normal points away from the
center. Spheres with inward pointing normals are
specified as bubbles.

Cones In the family of cones, several surface shapes are
represented. A cylinder has a starting point, an
ending point, and a radius. A ring has a center, a
normal direction, and an inner and outer radius. A
cone has a starting point and a radius, and an
ending point and a radius. A tube is a cylinder
whose surface normal is directed inwards rather
than outwards. A cup is an inverted cone.

Sources A light source is represented as a very distant disc.
It is not really a surface, but a direction and an
angular diameter.

Scenes are composed of many objects, and these objects may in turn
contain many objects. This hierarchy is constructed through the
simple mechanism of command expansion. When the program
comes across a command in a scene file, it executes the command
and interprets the output as more scene input. The ability to have a
command within a scene file also simplifies the use of generator
programs. Rather than including the output of a program that
produces a box, for example, the command itself can be included in
the scene file. Changes are straightforward, and the scene
description is more compact.

The ability to move, rotate, and scale objects is essential to the
creation of complex environments. XFORM allows these simple
transformations, along with the mirroring of objects about any axis,
and the generation of object arrays. Arbitrary transformations such
as non-uniform scaling and skewing are not allowed simply because
they don't make sense for all surface types. The main XFORM
options are:

-t x y z Translate the scene along the vector x y z. Since most
objects generated by Radiance start out at the origin,
they need to be repositioned to their final location.

- 16 - 7/10/97 Draft

Scene Descriptions

-rx degrees (ry,rz) Rotate the scene degrees about the x axis
(respectively y or z axis). An object created at the
origin may not be facing the correct direction, and
might even be on its side, requiring rotation to lift it
up or swivel it into place.

-s factor Scale the scene by factor. The conversion factor
between inches and feet is .08333 feet equals one
inch.

-mx,my,mz Mirror the scene respectively about the yz, xz, xy
plane. Rather than recreating an object that shares
some kind of symmetry with an existing object (such
as doors that open different directions), it's easier to
use the mirror option of xform.

Mirroring a Door with xform

xform Command for Mirroring Door

This command is executed from inside a file, and mirrors the
contents of the file called "door" about the y-axis, with a
translation of 1.375 inches in the y-direction, to account for
the thickness of the door.

!xform -my -t 0 1.375 0 door

If the file name "door" was left out in the example above, xform
would try to read from standard input all the expected data, and
would then undoubtedly confuse the user with unusual results.

The specialized programs designed to create certain classes of
objects are called generators. Their primary task is to simplify the
task of entering descriptions of common or complex objects, and
they are useful as inline commands in input files. Some examples of
generators are:

- 17 - 7/10/97 Draft

Scene Descriptions

GENBOX Creates a parallelopiped with sharp, beveled, or
rounded corners.

GENPRISM Produces a Radiance scene description of a prism (an
extruded polygon).

GENREV Creates a surface of revolution using cones.

GENSKY Creates a sky for use in daylighting calculations or
outdoor simulation.

GENSURF Creates an arbitrary curved surface patch by
breaking a parametric function into polygons.

GENWORM Creates a three-dimensional curve of varying
thickness made up of cones and spheres.

When we want to describe a three-dimensional wall that contains a
window, we can use either genbox or genprism to help us create the
wall. Using genbox, we would build four boxes that surround the
window and whose outer edges correspond to the perimeter edges
of our wall. We'll need to issue four seperate genbox commands,
one for each of the boxes in the wall. Genbox commands require
specification of the material type and an identifying name for the
surface being described, as well as the (x,y,z) size dimensions.

Building a Wall with genbox

genbox command example

This is the genbox command for creating the first of four
boxes that together form a wall with a window.

!genbox wood_panel top_wall 2 .2 .333 | xform -t 0 0 .667

- 18 - 7/10/97 Draft

Scene Descriptions

Note: Coinciding Surfaces

When Radiance surfaces coincide, so that two or more
surfaces are located on top of one another, interesting
and often undesirable effects can result when the objects
have different modifiers (eg: different materials and
patterns).

There is no problem in assigning different surfaces the
same coordinates, as long as this "bleed-through" at the
intersection is acceptable. For example, it is generally a
good idea to place furniture up off the floor and away
from walls, and the concrete foundation a little bit
separate from the floor, but boxes created with genbox
for a fireplace can be placed right on top of each other,
since they share the same materials and patterns.

Using genprism to build our wall, we would build one prism that
surrounds the window. Genprism requires specification of the
material type and an identifying name for the surface being
described, as well as the number of vertices to be entered, the
vertices themselves (x,y), and finally an extrusion vector (-l option,
for "length") that provides genprism with information about the
missing (z) dimension. The order of the vertices and the extrusion
vector determines the surface orientations, according to the right-
hand rule (where the right thumb points in the direction of the
surface normal as the right hand fingers curl around with the
vertices).

Building a Wall with genprism

- 19 - 7/10/97 Draft

Scene Descriptions

genprism command example

!genprism wood_panel wall 10 0 1 0 0 2 0 2 1 .8 1 \
.8 .333 1.2 .333 1.2 .667 .8 .667 .8 1 -l 0 0 -.2

Creating Curved Surface with genrev

z

Genrev is very useful for generating surfaces of revolution that
contain radial symmetry, such as glasses and vases. Surfaces are
always rotated around the z-axis with genrev, and the surface is
described in terms of z(t), the radius r(t) where t is an independent
variable, and the number of segments. The example shown above
consists of eight segments.

Gensurf could also be used to build a wall, although using gensurf to
create such a rectangular object would be a tricky task; gensurf is
better suited to curved surface patches. Any curved surface that
can be defined parametrically can be built with gensurf, using (s,t)
curved coordinates that might mean there are more than one "x"
value for any given "y" value. Since gensurf allows the user to
create as many sub-sections as desired along the s-axis and t-axis,
it's very useful for subdividing surfaces automatically, as is
sometimes desirable for large light sources. The "-s" option in the
genrev command indicates that smoothing is desired for the
generated curve, so the ridges between segments don't show up as
sharp corners.

- 20 - 7/10/97 Draft

Scene Descriptions

Creating Curved Surfaces with gensurf

(s,t)=(0,0)

(0,1)

(1,0)

(1,1)

s

t

We'll use gensurf in the tutorial example at the end of this section to
allow us to subdivide illuminated windows, and in the tutorial
example at the end of the Advanced Topics chapter to generate a
bumpy ground surface around the cabin. The surfaces gensurf is
capable of creating are only limited by one's imagination (and
mathematical prowess).

Note: Hermite Curves

Hermite functions are
useful for specifying
curves to generator
functions. With a hermite
curve function in
Radiance, we only have to
specify the starting point,
end point, starting

Hermite Function
Hermite Curve Arguments
p0, p1 - start & end points
r0, r1 - start & end direction
t - independent
parameter (0 to 1)

hermite (p0, p1, r0, r1, t)

- 21 - 7/10/97 Draft

Scene Descriptions

direction vector, and ending direction vector. The
specifics for a hermite curve are predefined for us.

Each hermite function can be used to describe a curve
containing up to one inflection point, where the second
derivative changes sign (positive to negative, or vice
versa).

Example Hermite
Curves

p0

p1

r0

r1 p0 p1

r0

r1

p0 p1

r0

r1

The genworm command is very handy for creating curved elongated
surfaces, given a formula of some kind describing the path and
radius of the curve. To create a cylindrical shape that curves like a
quarter-circle, one must first be familiar with the formulas for a
unit circle. The number of segments must be decided upon for all
genworm creations, since the genworm curves are not perfectly
smooth. The higher the number of segments, the greater the
realism and the more time required for generating the image.

Creating Curved Surface with genworm

1

1

Radius = .25"

y

x

y

x
π

π/2

3π/2

unit circle:

x=cos
y=sin

- 22 - 7/10/97 Draft

Scene Descriptions

genworm Command Example

!genworm brass right_bend 'cos(t*PI/2 + PI/2)+1'\
'sin(t*PI/2 + PI/2) + 1' '0' .25 5

NOTE: Hierarchy

In a hierarchy, the XFORM
command is used to read
other scene files,
transforming them to new
positions. These scene
files may contain other
XFORM commands, thus
producing a tree of

Hierarchy Example
In a file called "tableset":
A table with four chairs
!xform table
!xform -t 0 2 0 -a 4 -rz 90 chair

In the main scene file:
A row of 5 tables with chairs
!xform -a 5 -t 10 0 0 tableset

transformations. XFORM can also be used to create
arrays of objects, such as furniture or light sources.

If desired, XFORM may be used to expand all commands,
creating a "flat" scene description.

Instances

Instancing is a way to construct complicated or repetitive scenes by
taking an object that has been described once and duplicating it as
many times as are required, such as creating a forest by defining
one pine tree and selecting locations for duplicate pine trees to be
placed in the scene. Using this technique tells Radiance that these
objects are identical, except that they are placed in different
locations and possibly consist of different material types.

Instancing helps to minimize memory requirements. Although the
limit to the number of surfaces in the expanded geometric model is
large -- around 18,000, depending on memory -- it is not infinite.
Since the same objects are repeated many times throughout the
space, instances can share the data of those objects, requiring
memory for only individual transformations. Using hierarchical
instancing (instances that in turn contain other instances), scenes

- 23 - 7/10/97 Draft

Scene Descriptions

with hundreds of billions of primitives can be modeled. Although
rendering time does increase with the scene complexity, it is a sub-
linear relationship O(n1/3) such that an image with 1,000 surfaces
takes roughly twice as long as a scene with 125 surfaces, and a
scene with 8,000 surfaces takes four times as long as a scene with
125 surfaces.

Instancing is accomplished by creating
an octree of the object which is
repeated in the scene, so that
subsequent instances of that object
refer back to the same octree. For the
pine tree forest example, an octree for
the pine tree would be created (called
"tree.oct" in this case), and the
locations of each instance of the pine
tree would be defined in primitives.

Instancing Example
Planting a couple of trees
(both from tree.oct)

void instance first_tree
9 tree.oct -rz 50 -s .9\

-t 35 -10 -1.5
0
0

void instance second_tree
9 tree.oct -rz 125 -s .8\

-t -8 20 -1.5
0
0

Each tree can be rotated a different
amount about the z-axis with the "-rz"
option, and scaled with the "-s" option before being placed with the
translation coordinates ("-t" option) desired.

Slightly different rotations and sizes of trees help provide the scene
with some diversity in its trees, so it's not too apparent that all the
trees are actually identical to each other.

Textures

Textures add important visual detail to surfaces without adding
substantially to the model complexity. We define a texture as a
perturbation of the surface normal (as opposed to a perturbation of
the material color), giving the object the appearance of having a
bumpy surface that could be felt if touched. A texture affects the
illumination and highlights of an object. There are two types of
textures: texfunc, and texdata.

texfunc is the most commonly used type of texture. It uses a
functional procedure to give surfaces a bumpy (non-
smooth) appearance.

texdata can be used if you have a data file corresponding to
surface normal perturbations of a surface.

- 24 - 7/10/97 Draft

Scene Descriptions

Patterns

We define a pattern as a perturbation of the material color (as
opposed to a perturbation of the surface normal). A pattern affects
the reflectance (or transmittance) of an object. Radiance provides
several means for pattern specification. A procedural pattern is
given as a formula that defines the pattern's value in terms of the
current intersection point, ray direction, surface normal, distance,
etc. Patterns may also be scanned from photographs or video. The
coordinate mapping for a pattern is determined by the user, and
mappings from rectangular images to rectangles, cylinders, and
spheres are provided.

There are three general classes of pattern types used by Radiance:
functions, data, and text.

Functions Brightfunc and colorfunc describe patterns as
functional procedures. Brightfunc changes the
overall reflectance variable for an object, while
colorfunc changes the colors (red, green, and blue).

Data Brightdata and colordata take information from
data files (rather than from functional procedures) to
change the overall reflectance colors of an object.
Colorpict is the same as colordata, but it takes a
Radiance picture file as input, rather than three data
files.

Text Brighttext and colortext produce text (eg: page
from a book) when the text and font are specified.
Brighttext requires foreground and background
reflectivity, while colortext requires foreground and
background color.

Note: Auxiliary Files

There are several auxiliary files which are useful for
creating patterns; these files are stored in the system
Radiance directory (/usr/local/lib/ray, on most
machines).

- 25 - 7/10/97 Draft

Scene Descriptions

This example of a ground material
modified by a pattern called
"needlepat" shows how a data
function can be used to modify a
material. The needle pattern called
"needlepat" is taken from a picture
file called "forestfl.pic", which is a
scanned image. The "picture.cal" file
is used to specify how the picture file
will be used, and contains different
variables for different options (such

Data Pattern Example
void colorpict needlepat
9 red green blue forestfl.pic
picture.cal\

match_u match_v -s 2
0
0

needlepat plastic groundmat
0
0
5 .5 .3 .2 0 0

as match_u and match_v for tiling so the edges match). The scaling
for this data pattern has been set to 2 with the "-s" option. Note
how the modifier "void" is now used for the pattern called
"needlepat", and the material in turn uses "needlepat" for its
modifier.

If we now added a functional pattern
called "filthy" to modify our forest
floor pattern so that the appearance
of regularly spaced tiles would be
minimized, we would have a list of
modifiers influencing our final
"groundmat" material. The functional
pattern used to create dirty surfaces
can be scaled to whatever factor is
desired with the "-s" option (2 in this
example), and the intensity of dirt can
be provided as a real argument (60%
dirt for "filthy"). The "needlepat"
modifier for our "groundmat"
material is in turn modified by the

A List of Modifiers
void brightfunc filthy
4 dirt dirt.cal -s 2
0
1 .6

filthy colorpict needlepat
9 red green blue forestfl.pic
picture.cal\

match_u match_v -s 2
0
0

needlepat plastic groundmat
0
0
5 .5 .3 .2 0 0

functional dirt pattern called "filthy", whose modifier is now "void",
since it is modified by nothing else.

This dirt brightness pattern is an extremely valuable companion to
any scanned-in pattern for introducing a more natural, uneven look.
The dirt pattern is based on a noise function, so it produces an
unpredictably varied pattern.

It's possible to have as large a string of modifiers as you wish
(within reason), so that patterns or textures modify other patterns
or textures that in turn modify some material.

- 26 - 7/10/97 Draft

Scene Descriptions

Note: Noise Functions

There are two basic types of noise functions available
that can be used to good effect with patterns. Fractal
noise is the rougher type of noise, that contains a lot of
high frequencies, while noise is smoother. Both types of
noise are useful for introducing an element of
randomness to the appearance of things, and both two-
dimensional and three-dimensional noise functions are
available for use with Radiance. (Look at "rayinit.cal" in
/usr/local/lib/ray to learn what functions are predefined
and find out variable names).

Mixtures

Mixtures allow the combination of textures and patterns in unique
and exciting ways (eg: weaving leather strips in burlap cloth)†. By
specifying in the mixture a coefficient that describes a combination
of patterns and textures, it's a lot easier to generate pattern and
texture combinations (by "toggling" them off or on) than it would
be if different pieces of polygons were pieced together, and some
effects can be produced that can't be produced any other way (such
as creating a "soft blend"). There are three basic types of mixtures:
mixfunc, mixdata, and mixtext.

mixfunc allows specification of a function that determines the
mixture coefficients.

mixdata takes information about the mixture from a data file.

mixtext handles mixtures of text, such as bumpy lettering on
a piece of wood.

Antimatter

Antimatter allows the "subtraction" or removal of one surface from
another. Once a surface has been defined as antimatter to another

† Radiance does not currently support the mixing of different materials (such as
glass and plastic, or two different plastics).

- 27 - 7/10/97 Draft

Scene Descriptions

type of surface, the subsequent intersection of these two surfaces
will result in a "hole" where the two surfaces meet, resulting in the
subtraction of a volume from the original surface.

This feature does not work with all material types (the trans
material type, specifically), and care must be taken to avoid
intersecting two or more antimatter surfaces in a scene (intersecting
antimatter surfaces don't work properly). Additionally, the
antimatter surface can't be used with a viewpoint located inside the
volume (simply ensure that the viewpoint is located elsewhere).

Antimatter can also be used to describe our previous example of a
three-dimensional wall containing a window; an antimatter window
can be placed inside a genbox-defined wall.

Building a Wall with Antimatter

Light Sources

Because light sources are critical to the illumination of a scene, they
are given special attention by the program. In general, a light
source is differentiated from other surfaces by its material type.
Currently polygons, spheres, and disks may be used for local
sources; area sources and odd shapes may be modeled with
polygonal meshes.

Distant light sources such as the sun are modeled as special cases.
A non-Lambertian source distribution (that doesn't emit light
equally in all directions) is another kind of special case.

- 28 - 7/10/97 Draft

Scene Descriptions

The generator program called gensky
creates a sky that can be used for
daylighting calculations or outdoor
simulations. Gensky can create a
Radiance scene description for the CIE
standard sky distribution at the given
date and time; for gensky, the x-axis
points east, the y-axis points north,
and the z-axis points up (towards the
zenith). The sky can be sunny with or
without sun, or cloudy. The materials
and surfaces used for describing the

gensky Example
Hemispherical Blue Sky

!gensky 4 1 14

skyfunc glow skyglow
0
0
4 .9 .9 1 0

skyglow source sky
0
0
4 0 0 1 180

sky are left up to the user; this example describes a simple
hemispherical blue sky. Since Radiance has defaults set for the San
Francisco bay area, longitude, lattitude and meridian information
need to be supplied for different locations.

IES lighting files are available to all Radiance users that contain
Radiance descriptions for a bunch of IES fixtures (and can be found
under /usr/local/lib/ray/source/ies). The files were converted
from standard format to Radiance using the "ies2rad" conversion
program (see Radiance Reference Manual). Lamp color was not
used in these files (all are white), because colored lights have to be
balanced before they can provide color-balanced renderings. Light
source colors are especially important when comparing
incandescents and fluorescents -- the natural color balancing in
your eyes compensates for this effect. The ies2rad program
converts one ies file (usually ending in ".ies") into a Radiance file
(ending ".rad"), and an auxiliary file used by Radiance (ending
".dat") that contains output distribution data.

If a light source is missing some frequency (part of the color
spectrum), it looks color-balanced, but not very colorful.
Incandescents can't render blue, violet, and purple very well
because they don't have as many higher frequencies (which
fluorescents do have). Color-balancing is the technique of seeing
lights that are not heavily weighted in blue, green, or any one color.
If color-balancing doesn't take place somewhere (in your eyes, on
camera film, with a software filter), the resulting images don't look
natural. Using all white instead of colored lights is kind of a cheat,
but Radiance doesn't have any easier way to color balance (other
than pfilt). Mixed source types require consideration of the colors

- 29 - 7/10/97 Draft

Scene Descriptions

of each contributing source, where converging areas show
gradiation.

Light Spectrum

Red VioletInfrared Ultraviolet

Visible Spectrum

Radiance uses a RGB (red, green, blue) color model. Our eyes have
receptors for these three colors. Three well-chosen colors will
represent almost all of the colors we're able to see, but it's still not
the same as representing all the full spectral content of the scene
(since we're only sampling three colors, instead of continuously
sampling the entire spectrum). An example showing how a light
source and surface can interact helps to illustrate this point.

This example of a light source
spectrum illustrates the situation
where a light source clearly shows a
deficiency in the blue range of the
spectrum when we look at a graph
showing its performance over the
entire visual spectrum. Even though

Example Source Spectrum

this dip shows up clearly on our graph, the light source will still
appear mostly white to Radiance, since its RGB values would be
something like (10,10,8).

An example surface that just happens
to have a reflectance peak in the blue
range would look blue under white
light, and might have RGB values
something like (.5,.5,.7), which don't
fully describe the striking peak in the
blue range that we can see when we
look at the entire visual spectrum.

Example Surface
Spectrum

- 30 - 7/10/97 Draft

Scene Descriptions

When our example surface is viewed
under our example light source, the
peak and the deficiency cancel each
other out, and the surface that should
appear bluish instead appears grey,
with RGB values on the order of
(5,5,5.6). This example illustrates the
point that taking only three color

Example Reflected
Spectrum

samples is inadequate; the RGB system is the best we have to work
with, but it's important to understand its limitations as well.

The file called "lamp.tab" (located under /usr/local/lib/ray)
contains all sorts of useful lamp information, including: lamp types,
xy chromaticity coordinates, and depreciation lists. This
information is useful for looking up the RGB values of different
types of lamps. For example, an incandescent lamp has an x-
chromaticity of .453 (Red) and a y-chromaticity of .405 (Green)
with a depreciation factor of .95. Since the chromaticity factors
have been normalized to one, the Blue value can be computed (Blue
= 1 - .453 - .405 = .152).

When you choose to determine your light source's radiance
yourself, without aid from the IES files, there is a four-step process
you can follow. Starting with the lumen value of the light source
you wish to describe to Radiance, you will need to convert the
lumens to watts (power), and divide by the area of the source. The
fourth and final step is compensating by some depreciation value.
The result from using this computation will be a light value you can
use for the RGB values in Radiance when you create your light
source primitive†.

† You can use about 15 lumens/watt for an incandescent source, as a general rule
of thumb. A 50 watt incandescent bulb is approximately equivalent to 500
lumens.

- 31 - 7/10/97 Draft

Scene Descriptions

Computing radiance

(1) Determine light output in lumens.
(2) Convert lumens to watts

(multiply by 1 watt / 179 lumens)
(3) Divide watts by emitting area of source

in square meters and by π,
resulting in final units of
watts/steradians/meter2 for R,G, & B.

(4) Compensate for fixtures and lumen depreciation
(in the range 5% to 20%).

An example of computing Radiance
for an incandescent bulb with output
of 860 lumens (which we looked up in
a manufacturer's table) will help
illustrate this process. We convert
our 860 lumens to watts in step two,
and divide the value in watts by 4π
and the area of a 3.5 inch sphere. Our

Example radiance
computation

(1) 860 lumens
(2) 860 *(1/179)=4.80 watts
(3) (4.80/(3.5"*
 (.0254 m/inch))2*4* π)/π

=15.4watts/steradian/meter2
(4) 14.5 w/sr/m2

final result of 15.4 w/sr/m2 is reduced to 14.5 w/sr/m2, to
compensate for lumen depreciation of the bulb and the fixture.

The computation outlined above is embodied in a program called
LAMPCOLOR for your convenience. LAMPCOLOR asks questions
about the lamp type, output and geometry and computes the
radiance value accordingly.

Importing from CAD Systems

Radiance typically operates in conjunction with a commercial
computer aided drafting (CAD) system, which is used to create the
scene geometry. An import program takes the CAD scene
description and converts it to the Radiance input format. Details
such as surface properties are added, analysis is performed, and
design modifications are made based on the result.

- 32 - 7/10/97 Draft

Scene Descriptions

Tutorial Example

We've chosen an example of a cabin in the woods for this tutorial,
which we'll start in this section and continue working on in the
following chapters. The floorplan is shown below, and some of the
pine forest surroundings are also shown. Since we'll need to
describe the scene before we can generate and manipulate images,
we'll be starting off by defining a few materials for the scene, setting
up the basic geometry (walls, the door, and windows), and
describing the basic setting of sky and ground surrounding the
cabin. Once we've gotten the basics defined, we'll also be
experimenting with patterns and textures in the cabin, and using
instancing to create a forest of pine trees.

This example is a fairly simple building structure, yet it will allow us
to learn the skills necessary to complete much more complex scene
descriptions. In the following chapters, we will be using this scene
description to learn about Radiance's image generation and image
manipulation capabilities.

- 33 - 7/10/97 Draft

Scene Descriptions

Cabin Floorplan

one inch = six feet

N

This floorplan shows a three room cabin, surrounded by pine trees.
The entrance to the cabin is the door on the north side of the
livingroom, next to the porch. The livingroom has three windows, a
fireplace on the eastern wall, and two interior doors on the western
wall which lead to the bedroom and the bathroom. The bedroom
has two windows, and the bathroom has one window. The overall
inside dimensions of the cabin are 18 feet by 27 feet.

- 34 - 7/10/97 Draft

Scene Descriptions

Cabin Floorplan
Coordinates

(0,11)

(0,0) (11.75,0) (27,0)

(26.25,5.5)

(26.25,8.5)

(27,18)

(18,21.5) (24,21.5)

(24,18.5)(18,18.5)

(0,18)

(12.25,14.25)

(6,11)
(11,11)

(6,13.75)

(12.25,0)
y

x

(feet)

(28.25,5.5)

(28.25,8.5)

(25,4)

(25,10)

One of the first things to determine is the axis orientation and scale
in our scene. The cabin was drafted in feet on a right-handed
Cartesian coordinate system that placed the origin (0,0,0) at the
floor in the most southwest corner of the cabin's interior for
convenience. The y-axis points north, the x-axis points east, and the
z-axis points up, out of the page, corresponding to the axes we'll
need to set when we describe the daylighting conditions using
gensky.

The cabin's roof slopes down on the north and south sides, so that
the east and west walls rise to an interior height (on the z-axis) of
17 feet. Coordinates for location of some key points in the scene
have been determined and written here for future reference when
we start generating surfaces.

- 35 - 7/10/97 Draft

Scene Descriptions

East Wall Coordinates

(-.5,0) (5.5,0) (18.5,0)

z

y

(feet)

(8.5,0)

(-.5,7.5)

(5.5,13.5)

(9,17)

(18.5,7.5)
(11,6.5) (17,6.5)

(17,2.5)(11,2.5)

(8.5,19)
(5.5,19) (9,18)

Input Files

We will be creating this scene description directly with a text editor.
It's a good idea to master the skills of working with the Radiance
input files, where the object descriptions are contained. We'll need
to put the material primitives and surface primitives into input files,
as well as information about the sky conditions and so forth.

Materials

We'll need to define the materials we
want to use for the foundation, walls,
floor, roof, and ceiling of our cabin,
as well as the porch, fireplace,
windows, doors, and furniture. We
can start a file that will contain only
cabin material primitives, and call it

Foundation Material
Cabin Foundation Material

void plastic concrete
0
0
5 .3 .3 .3 0 0

"materials". We'll add to this file as we think of new materials we

- 36 - 7/10/97 Draft

Scene Descriptions

may need along the way, and we can start by defining our material
for the foundation. Since we have no other identifiers yet defined,
the modifier for our foundation material must be void . We use
plastic as the material type, and name our material "concrete".
There are no string arguments for materials, so the next two entries
in our primitive are zeroes. All materials require five real
arguments for red, green, blue, specularity, and roughness; our
concrete's RGB color values are all equal for a grey tone, and about
a third the fullest color intensity one might find in a very white
material (.3). There is no specularity for this material (zero), and
likewise, we need not provide any roughness (also zero).

The material for our cabin floor will
have some shine, or specularity and
some roughness (to prevent a perfect
mirror-like shine). Since we don't
need to modify our wood floor
material by any previously defined
primitive, we'll start off again with a

Cabin Floor Material
Cabin Floor Material

void plastic wood_floor
0
0
5 .3 .15 .05 .02 .05

modifier of void . Plastic is again the best choice of material type
to create our wood floor, and we'll identify this material as
"wood_floor". The cabin walls and roof will be made of similar
types of wood material, with slightly different real arguments for
RGB color, specularity, and roughness.

We'll need brass material for the
metal fixtures in the cabin (such as
the door knobs), and brass provides
us with an interesting example of a
material that has lots of specularity
and no roughness. The material type
for brass is metal, and it's color is

Brass Material
Brass Material

void metal brass
0
0
5 .68 .27 .002 .95 0

mostly red with a little bit of green and hardly any blue at all.

The cabin's doors, windows, and roof
trim are all made up of a white enamel
material. This white enamel paint has
equal red, green, and blue arguments
(.5). There is some specularity (.02)
and roughness (.05), to provide the
material with the slightly glossy look

White Enamel Material
White Enamel

void plastic white_enamel
0
0
5 .5 .5 .5 .02 .05

of enamel paint.

- 37 - 7/10/97 Draft

Scene Descriptions

Since this same material is used for
many surfaces, we can create
primitives for these other material
identifiers with aliases that refer back
to our "white_enamel" material. This

Cabin Door Materials
Cabin Door Materials

void alias door_paint
white_enamel

example shows how we've created a primitive called "door_paint"
which will share all of its characteristics with "white_enamel".

The mirror surface on the bedroom
dresser has very high and equal red
green and blue values, since most light
hitting the mirror is reflected. The
specularity is very high (.9), and the
roughness is negligble, since we want
a shiny mirror. The material type

Dresser Mirror Material
Dresser Mirror

void metal mirror
0
0
5 .8 .8 .8 .9 0

we're using is metal this time, since metal has the properties we
desire in a mirror.

Surfaces

The cabin's foundation is a fairly
simple surface to generate, and since
it's shape is basically that of a box, we
can use the genbox command to build
the foundation for us. The material
for the foundation has already been
defined in our "materials" file as
concrete.

Foundation, Porch & Floor

Keeping in mind that the cabin walls
are 6 inches thick, and that our foundation will be set in by about .1
feet in each direction, we can determine the foundation dimensions.
Our generated box from genbox will end up sitting with one corner
on the origin, and will be sitting inside the interior of the cabin, so
we'll need to use xform to translate the box down a little more than
3 feet (so the concrete foundation doesn't show through the interior
floor), and back a bit in both the x-axis and y-axis directions to
allow for the thickness of the walls. The cabin's porch is another
simple box shape, and the floor can be modeled as a polygon.

- 38 - 7/10/97 Draft

Scene Descriptions

genbox Command for Building Foundation

!genbox concrete foundation 27.8 18.8 3 \
| xform -t -.4 -.4 -3.0001

We'll use genprism to build the cabin's
walls, starting with the south wall,
which has two windows. Genprism is
not the only generator capable of
building three-dimensional walls that
have windows, but it is the simplest
for us to work with.

South Wall

Once the principle for building a wall
is understood, is very easy to raise all
the rest of the cabin's walls in a similar fashion.

genprism for
southwall

(0,0) (27,0)

z

x

(feet)

(5,0) (17,0)

(11,2.5)
(5,2.5)

(5,6.5)
(11,6.5)

(17,2.5)

(17,6.5)

(25,2.5)

(25,6.5)

(0,8) (27,8)

Although we intend for this wall to end up standing, it's actually
starting out sitting on the floor of the cabin, since genprism accepts
all coordinates in (x,y) with z equal to zero. (The sketch above
shows the x-axis and z-axis directions of the wall once it's been
lifted up into place.) We'll need to specify that the thickness of the
wall will be 6 inches; this extrusion along the z-axis will be down,
into the page, since the wall's front face is in the up direction. This
can be verified using the right hand rule; our right hand's thumb

- 39 - 7/10/97 Draft

Scene Descriptions

(corresponding to the surface normal) points up, out of the page if
we curl our right hand fingers in the direction of the vertices shown
in the figure above (counterclockwise). Extrusion along the z-axis is
always in the opposite direction of the surface normal on genprism,
since all it's generated surfaces should have surface normals that
point outward (including both the interior and exterior wall
surfaces).

We will "lift" the southwall into place using the xform command to
translate the wall up along the z-axis by 6 inches, and to rotate the
wall by 90°. The rotation is positive, and this can be verified using
the right-hand rule (our right-hand fingers curl up with the lifting
wall, as our right-hand thumb points in the positive direction along
the x-axis). We will pipe the results of our genprism command into
the xform command, using the backslash, "\", to continue the
command over multiple lines. All other walls can be built in similar
fashion.

genprism Command for Building Southwall

!genprism wood_panel southwall 16 0 0 5 0 5 6.5 11 6.5 \
11 2.5 5 2.5 5 0 17 0 17 6.5 25 6.5 25 2.5 \
17 2.5 17 0 27 0 27 8 0 8 \
-l 0 0 -.5 | xform -t 0 0 .5 -rx 90

Windows for the cabin have already
been defined in a file called
"window.norm", so all we need to do
is place them in the window openings.
The window measures 2 feet in width
by 4 feet high, and we can be place
three of them side by side to create 4-
foot and 6-foot wide windows for the
northeast windows in the livingroom.
The xform command will do the work

North East Windows

of placing the window in the window opening for us. We need to
include the "-e" option to indicate we want inline commands to be
expanded, and the "-n" option to give the window a name. Since the
window is starting out sitting on the x-axis with it's lower left corner
at the origin, we'll need to rotate it 90° around the z-axis and
translate it to the starting coordinates for the window (27.5, 11, 0).
The x dimension of 27.5 is necessary to allow for placement of the

- 40 - 7/10/97 Draft

Scene Descriptions

window inside the wall correctly, since the thickness of the walls
needs to be taken into account. We can use xform's array option, "-
a", to indicate we want the window to include three of the window
segments, and follow the array option with the translation vector
(0,2,0) that indicates we'll be installing window segments 2 feet
apart along the y-axis. All other windows in the cabin can be built in
similar fashion.

xform Command for Building Northeast Window

!xform -e -n northeast_window -rz 90 -t 27.5 11 0 \
-a 3 -t 0 2 0 window.norm

Our cabin model takes advantage of a
previously defined bathroom in a file
called "bathroom", so we won't need
to to model any bathroom surfaces,
and can just drop the whole bathroom
scene description into our model
without going to the trouble of
describing every surface.

Bathroom

We will need to define the north
bedroom wall to go around the bathroom, and can do this easily
using a polygon description of all the vertices on either side and
above the closet (which is 6.5 feet high). We'll need to more fully
describe the bedroom closet next.

We need to add some substance for
the bedroom closet, since all that
currently exists is the perimeter of the
bathroom model with the polygon
we've just defined showing it's
infinitely thin thickness around the
closet door opening. The bedroom
closet can be built using the genbox
command, provided we then open up
the polygon face of the box that

Bedroom Closet & Wall

should open into the bedroom so we end up with a five-sided box.

- 41 - 7/10/97 Draft

Scene Descriptions

North Bedroom Polygon Wall

wood_panel polygon nbed_wall
0
0
24 0 11 0

6 11 0
6 11 6.5
11 11 6.5
11 11 0
11.75 11 0
11.75 11 15
0 11 15

We will build the closet out of wood_panel material, with
dimensions of (5, 2.75, 6.5), and invert it so the surface normals
point inwards (where it will be seen) using the "-i" option of genbox.
From the vi editor we can issue the ":r" read command in front of
our inline genbox command, so the output of the genbox command
will be entered directly into the edited cabin file, allowing us to
comment out the closet door opening (y values will be equal to 11).
We'll need to translate the generated box using xform, since it is
created with it's lower left corner sitting on the origin.

genbox Command for Building Bedroom Closet

:r !genbox wood_panel closet 5 2.75 6.5 -i | xform -t 6 11 0

We also need to remember to change the material type for the closet
floor, since genbox automatically assigned the wood_panel material,
and that won't match our other floors made of wood_floor. All we
need to do is find the closet polygon that has z values equal to zero,
and change the material type from wood_panel to wood_floor.

The finishing touch on the closet is to add a closet shelf and a closet
dowel. We can use the genbox command for the shelf, and create a
cylindrical type of surface.

Closet Shelf

!genbox light_wood closet_shelf 5 1 .08333 | xform -t 6 12.25
5.33

- 42 - 7/10/97 Draft

Scene Descriptions

Closet Dowel

light_wood cylinder closet_dowel
0
0
7 6 12.25 5

11 12.25 5
.052

Details help make models look "real".
By adding doors with brass
doorknobs, we'll add an element of
realism to our cabin scene. Genbox
can be easily used to generate the
doors, and xform can be used to
"hang" the door correctly in the
doorframe. Since there's more than
one door in the cabin scene, and the
doors don't all open the same way,

Doors

we'll make a separate "door.norm" file. The door.norm file will
allow us to easily place the doors where we want them. The door
jamb primitives can be included in our "cabin" file of other scene
structures, since door jambs are relatively simple structures that
don't require much effort to place correctly in the scene.

The door jambs can be created using either genbox or genprism.
Genprism is a bit more straightforward, since one command can be
used to create the entire structure.

When creating the door jamb, it's important to follow the right hand
rule to determine where the surface normal will point (away from
the extrusion direction), and therefore what sequence to use for
entering vertices. Our extrusion direction will be downward, into
the page, so our surface normal is up, and that means when our
right hand's thumb points up, the fingers curl around in a counter-
clockwise fashion in the xy plane. (Genprism always works with xy
coordinates). Because the extrusion is 7 inches down (in the
negative z direction), the length "-l" vector will be (0,0,7).

- 43 - 7/10/97 Draft

Scene Descriptions

Door Jamb

y

x
(.2,0)(-1.8,0) (37.8,0)(35.8,0)

(37.8,79.5)(-1.8,79.5)
(.2,77.5) (35.8,77.5)

7" wide

Bedroom Door Jamb

Bedroom Door Jamb

!genprism door_paint beddoor_jamb 8 -1.8 0 .2 0 .2 77.5\
35.8 77.5 35.8 0 37.8 0 37.8 79.5 -1.8 79.5\
-l 0 0 -7 | xform -t 0 0 .5 -s .08333\
-rx 90 -rz 90 -t 12.25 7 0

- 44 - 7/10/97 Draft

Scene Descriptions

Cabin Door

35"

35"

76"

(1,0,.5) (1,1.375,.5)

z

x

y

2"

.5"

3"

Brass Doorknob

.8" .3"

The measurements of our doorknob components are illustrated
here. The doorknob consists of three distinct pieces: the spherical

- 45 - 7/10/97 Draft

Scene Descriptions

doorknob, the conical knobstem, and the knobplate ring. These
three simple surfaces can be generated using the sphere, cone, and
ring surface types, respectively.

Cabin Door

Cabin Door File for a door, called "door.norm".
Scale is in inches. Origin is at floor, 1" below bottom of door
and .5" from hinge edge of door. This door fits in a frame
slightly less than 36" by 78". The materials door_paint and
brass need to be defined.

!genbox door_paint door 35 1.375 76 | xform -t .5 0 1

brass sphere inner_doorknob
0
0
4 33.125 -1.5 36 1

brass cone inner_knobstem
0
0
8 33.125 0 36

33.125 -.53 36
.8 .3

brass ring inner_knobplate
0
0
8 33.125 -.01 36

0 -1 0
1.5 .8

Now that our basic doorknob parts are defined for one side of the
door (the inner side), we'll need to add a doorknob to the other side
of the door. This can be fairly easily accomplished before the
"door.norm" file has been saved, using xform's mirror option as an
inline command, to read in the entire door.norm file so far, and
mirror it about the y-axis by the thickness of the door (1.375
inches).

- 46 - 7/10/97 Draft

Scene Descriptions

Mirroring Inner Door Knob

:.,$w!
:$r !xform -a 2 -my -t 0 1.375 0 door.norm

These commands must be executed from the start of the doorknob
description (the line that reads "brass sphere inner_doorknob") in
the "door.norm" file, to indicate that only the doorknob parts
should be written to a file, and then used for the following xform
command. The results from this command will produce primitives
containing the correct values for the mirrored doorknob parts,
which we can edit in vi to names that begin with "outer", to indicate
their position on the other side of the door in the "door.norm" file.

Now we're ready to place a door in the cabin. The bedroom door
can use the "door.norm" file, as long as we remember to use a
scaling factor with xform's "-s" option to convert from inches to
feet. We'll put the door in the scene in an open position using the "-
rz" rotation around the z-axis, so we'll be able to look through the
bedroom door when we start generating images of our cabin. When
we place the door in the bedroom, we'll need to remember to
provide xform with the translation coordinates of (11.9, 10, 0). The
x coordinate is slightly less than 12, to allow for the door to open a
little distance away from the door jamb. We'll use the "-e" option to
expand the results of our xform command, and we'll name our
bedroom door "bedroom_door".

Bedroom Door

!xform -e -n bedroom_door -s .08333 -rz -165 \
-t 11.9 10 0 door.norm

The front door can be created using the "door.norm" file also, using
xform's mirror option to move the doorknob to the other side of
the door, and to place the door in the correct location. The front
door can be placed in a closed position, or it can be rotated around
the z axis by some amount.

- 47 - 7/10/97 Draft

Scene Descriptions

The cabin's roof can be created using
genprism, since it will have a
thickness. We could use two-
dimensional polygons instead of
genprism, but genprism is quick and
easy. We'll use a lighter color wood
for our interior ceiling, for better light
distribution, and the white enamel
material for the trims. The top of the
roof will be shingles eventually (when

Roof

we get around to doing patterns), so we'll call the north roof and
south roof different names.

We'll start the genprism command with the material type
"white_enamel", even though we'll be changing the material type for
the top two roof surfaces and the bottom two ceiling surfaces, since
six of the ten surfaces will use the white_enamel material. We'll set
the roof on the xy plane in such a way that the origin will intersect
the inside top part of the cabin's wall; this means the roof will need
to extend below the x-axis and into the negative along the y-axis.
We'll use the right hand rule to determine what sequence to enter
our vertices, so that the surface normal points down, and can
therefore determine whether our extrusion length value of 29 feet
along the z-axis will be the opposite direction (positive).

Cabin Roof

y

x

(9,10)

(9,9)

(-1.5,-1.5) (19.5,-1.5)
(19.5,-.5)(-1.5,-.5)

- 48 - 7/10/97 Draft

Scene Descriptions

Creating a Roof with genprism

:r !genprism white_enamel roof 6 -1.5 -1.5 -1.5 -.5\
9 10 19.5 -.5 19.5 -1.5 9 9 -l 0 0 29\
| xform -rz 90 -ry 90 -t -1 0 8

By using the ":r" command in our "cabin" file, and entering the
genprism command, we'll get the resulting primitives written into
the "cabin" file immediately. We'll need to remember to change the
material types for the north and south roofs, and the north and
south ceilings. This is also a good time to change the names of the
roof surfaces to meaningful names (north_roof, south_roof,
north_ceiling, etc).

Roof Materials

Cabin Roof Materials

void plastic white_enamel
0
0
5 .5 .5 .5 .02 .08

void plastic light_wood
0
0
5 .5 .3 .2 0 0

void plastic north_shingle
0
0
5 .3 .2 .1 0 0

- 49 - 7/10/97 Draft

Scene Descriptions

The fireplace is simply a combination
of genbox-generated surfaces, with a
hole in the chimney for the hearth and
fireplace opening. The tricky part of
building the fireplace is remembering
to invert the fireplace opening
surfaces so their surface normals
point inwards, and to cut "holes" in
the boxes where the fireplace opening
is.

Fireplace

Once the fireplace box has been inserted into the chimney box, we
can comment out the surface of the fireplace that should open out
into the inside of the cabin. Even after we've done this, we'll need to
remember to open up the corresponding portion of the chimney
box.

Cabin Fireplace

2'

6'

1.25'

2'

1.5'

Generating a Fireplace with genbox

:r !genbox cinderblock fireplace 1.5 2 1.5 -i \
| xform -t 26.25 6 1.25

We can insert the necessary vertices into the chimney's polygon
description, using the right hand rule (surface normal points into

- 50 - 7/10/97 Draft

Scene Descriptions

the room, so points need to be entered counter-clockwise around
the outer edge of the chimney surface).

Cabin Fireplace

(8.5,19) (5.5,19)

(8.5,-3) (5.5,-3)

(5.5,1.25)

(6,2.75)
(8,2.75)

(8,1.25)
(6,1.25)

The cabin furniture can be made
quickly from genbox commands, for
the most part. The end table in the
livingroom has a two foot by two foot
square top (two inches thick), and has
two inch by two inch legs. The genbox
"-r" rounding radius option is very
useful in creating softer looking
cushions for the sofas, chairs, and the
bed (simply follow the "-r" with the

Furniture

rounding radius desired: "-r 1"). The surface primitives for the sofa
and chair can be put into files called "sofa.norm" and "chair.norm",
to more easily accommodate placement of the completed objects
(since there is more than one sofa and chair) in the cabin scene
using xform.

- 51 - 7/10/97 Draft

Scene Descriptions

Cabin Chair

y

x(0,0)

30"

33"
20"

17"

25"

5"

17"

Cabin Sofa

20"

60"

17"

33"

22"

12"

The most interesting piece of furniture, and by far the most
complex, is the bedroom dresser. We can create a separate file for
the dresser ("dresser.norm"), to keep this dresser for possible
future use in other scenes. Since we'll want to add a woodgrain
pattern to the dresser later on, we can edit the output of genbox to
change the material type identifiers as we create the dresser.
Woodgrain patterns run in a straight line; we'll need to select which
way we want the grain to run for the dresser and livingroom table
(eg: xpine along the x-axis for the top and front of the dresser, and
zpine along the z-axis for the dresser's sides). Another detail to
keep in mind with the dresser is the mirror surface; it should be
located just in front of the wooden frame (which can be made of
zpine).

- 52 - 7/10/97 Draft

Scene Descriptions

Dresser

20"

32"

2"

36"

30"

29

10"

10"

4"

5"

28"

34"

x

y

z

Most of the dresser can be built using the genbox commands, but
the brass handles have curved corners than can't be built with
cylinders or boxes. The handles can be thought of as consisting of
five separate pieces: three cylinders, and two quarter-circles. We'll
want to create a temporary file for this handle and one for the
drawer, so we can easily place the handles on the drawers, and then
place the drawers on the dresser.

- 53 - 7/10/97 Draft

Scene Descriptions

Dresser Drawer Handle

1" 3"

1"

1"

1"

1" 1"
Radius = .25"

y

x

Genworm can be used to create the quarter-circles, since we know
the equation for a unit circle (from 0 to 2 π) to be: x=cosine theta,
y=sine theta. The right and left bends on the handle can be created
separately, since they correspond to different parts of the circle
equation (zero to π/2, and π/2 to π). The x(t) and y(t) functions
are given in terms of the unit circle formula, as the circle ranges
from zero to π/2, and z(t) is zero. The radius of the handle is .25
inches, and five segments will be created (the curve isn't perfectly
smooth).

A coatrack has been included in the cabin scene, to provide us with
an opportunity to practice both our genworm and genrev
commands. The coatrack stands 65 inches tall, and has a curved
base that measures 14 inches across and 5 inches in height. The
four curved top portions of the coatrack have two prongs each, the
top measuring 4 inches extended from the center pole, and the
bottom measuring 3 inches. The unusual shape of our coatrack
necessitates that we guess at the formula required for specifying its
curve; we can use a hermite curve function, a third order
polynomial, to assist us.

- 54 - 7/10/97 Draft

Scene Descriptions

Coatrack

65"

We'll specify two hermite curves to describe the bell-like surface of
the coatrack base, because the base has two inflection points (it's a
combination of two S-shaped curves). We'll give genrev the
functions describing the outline of the base's curve, and genrev will
break up the surface of revolution into a number of segments, each
of which is a cone. We'll give genrev the functions z(t) and r(t)
along with the number of segments we want, and we'll use hermite
functions to define the z and r functions.

We know the starting point for our coatrack base curve is at
(z,r)=(0,7), and the final end point of the second curve is at
(z,r)=(5,0). We can pick some point in the middle as an end point
for the first curve, and a starting point for the second curve, such as
(z,r)=(3,2). We can now define our hermite curves for genrev,
either with two separate genrev commands, or one combined genrev
command. The advantage of using one combined genrev command
is that we can avoid a base with a crease in it, where two genrev
command curves meet. The combined genrev command requires an
"if then else" format, in order to specify which curve should be used
as the independent variable t increases from zero to one. The
connecting point for the two curves occurs when t is approximately
.7, so for values of t equal to or less than .7, we want to use the first
hermite curve, and for values of t greater than .7 we'll use the
second hermite curve. The "-e" option in the genrev command
indicates that an expression follows (in this case, our hermite curve
functions). The "-s" option in the genrev command indicates that
we desire smoothing for the generated curve, so the ridges between

- 55 - 7/10/97 Draft

Scene Descriptions

segments don't show up as sharp corners. The starting and ending
direction vectors are picked by trial and error; those shown here are
the final values used in the cabin scene.

genrev Command for Brass Base

!genrev brass base 'if (t-.7, z2((t-.7)/.3), z1(t/.7))'\
'if (t-.7, r2((t-.7)/.3), r1(t/.7))' 11 -s\
-e 'z1(t)=hermite(0,3,5,3,t); r1(t)=hermite(7,2,0,-1,t)'\
-e 'z2(t)=hermite(3,5,3,0,t); r2(t)=hermite(2,0,-1,-5,t)'

The brass hooks can also be generated using hermite curves, since
once again, we know start and end points, but have no real function
for how the hooks curve around. The hooks will be generated with
genworm, and once again we'll just use trial and error to get the
correct starting and ending direction vectors. Since there is more
than one hook (there are four), we can create a "hook" file, and use
xform to place the hooks around the central cylindrical pole. For
our hook, we'll work in the xz plane, so that all y values are zero.
We'll use (x,z)=(4,6.5) for the top part of the hook, and (x,z)=(3,2)
for the bottom part, working in an xz plane that will have to be
adjusted by adding 56 to all z values before we place the hook on
the pole. The radius of the hook will be .25 inches, and we'll use 10
segments.

genworm Command for Brass Coat Hook

!genworm brass hook 'hermite(3,4,-12,12,t)' '0'\
'hermite(58,62.5,-9,6,t)' .25 10

Since we've written the coatrack hook data to a "hook" file, we can
now use xform with it's array option to place four of these hooks
evenly around the top of the coatrack pole. We can use the "read"
command in the vi editor to bring the results of this command into
our file for the coatrack, where the results are named "hook", and
the "hook" file is read in as input:

Using xform Array to Place Hooks

:r !xform -n hook -a 4 -rz 90 hook

- 56 - 7/10/97 Draft

Scene Descriptions

We can finish the coatrack by putting spherical brass balls at the
ends of our hooks, and on the top part of the coatrack pole.

Instances

The environment immediately
surrounding our cabin model provides
us with the opportunity to use
instancing (for planting the trees),
and one very large polygon for
creating the ground surface
surrounding the cabin. We saw how
instances of trees could be taken from
the "tree.oct" file in the example given
earlier in this chapter, and planted
wherever we wanted them in our
scene (be careful not to plant any
trees inside the cabin).

Environment

The ground we'll be planting trees in is a flat polygonal surface,
centered around the cabin's foundation, whose center coordinates
are (13,9,-1.5), and extending a sufficient distance in every
direction (about 100 feet from the cabin to each edge) to give the
appearance of continuous ground around the cabin.

Textures

One of the simplest textures available
for our use is one that perturbs all
three coordinates randomly with a
three-dimensional noise function,
without requiring us to keep track of
surface normal orientations. We can
use this "noise3" function to add a
puckering texture to our bedroom
bedspread. We'll start by writing the
"puckered" primitive, which is a

Puckered Bedspread
void texfunc puckered
6 puck_dx puck_dy puck_dz \

pucker.cal -s .5
0
1 .2

puckered plastic rose_spread
0
0
5 .4 .03 .03 0 0

texfunc, and using it to modify our "rose_spread" material on the
bed. We start by naming the three variables we'll need for
perturbing our three dimensions, "puck_dx", "puck_dy", and
"puck_dz", and naming the calculation file where we'll define these

- 57 - 7/10/97 Draft

Scene Descriptions

functions, "pucker.cal". We'll space the textures about six inches
apart, on average, so we'll use the "-s" scaling option with .5 feet.

The Texture File "pucker.cal"

{
This puckered texture is used on the Cabin
Bedspread to provide it with a bumpy look.
A1 - The degree of puckeredness

}
puck_dx = A1 * noise3a(Px,Py,Pz);
puck_dy = A1 * noise3b(Px,Py,Pz);
puck_dz = A1 * noise3c(Px,Py,Pz);

Our "pucker.cal" file defines each of the three coordinate variables
("puck_dx", "puck_dy", and "puck_dz") in terms of our degree of
puckeredness, A1, entered as the real variable with a value of .2 in
our texfunc primitive above. The noise3 function has an
autocorrelation distance of 1 and a magnitude of 1 (ranging from
values of -1 to 1) which we multiply our A1 variable by. The
comments for ".cal" files are enclosed in curly brackets.

Patterns

Our cabin model contains a variety of possibilities for using
patterns; we can hang pictures of previously scanned images (or
Radiance images) on the walls, use brick patterns for the chimney
and porch, apply an oak floor pattern to the floors, put a shake
pattern on the roof for shingles, and use a procedural woodgrain
pattern on the bedroom dresser and livingroom table.

The picture on the livingroom wall will be taken from a scanned
image of a photograph taken in Alberta, called "alberta.pic". The x
and y dimensions for the picture can be displayed with the:

getinfo -d!$

command, when in the directory containing the image. In this case,
the y dimension is 231, and the x is 150. The smaller dimension is
scaled to be equal to one, so the larger dimension is 231/150.

We'll start by putting a flat polygonal matte behind the picture, to
prevent bleedthrough of the wall into our picture. We're going to

- 58 - 7/10/97 Draft

Scene Descriptions

blow the image up to a width of three feet, for a poster-sized image.
The poster should be placed just slightly in front of the wall (which
is located at x=12.25), and we can figure out the height of the
poster by multiplying the 231/150 ratio by our width of three feet
(to get 7.62 feet).

We'll use a material called
"photo_paper" to print our photo on,
and we can save this primitive in our
"materials" file. We can now use this
same material for any other pictures

Photo Paper Material
void plastic photo_paper
0
0
5 .82 .82 .82 0 0

we'd like to use in the cabin (such as a forest picture called
"richgrove.pic" in the bedroom).

The data pattern that takes an image, such as our picture file, is
called colorpict. We'll call our poster "alberta_image", based on the
"alberta.pic" scanned image. The file containing standard
coordinates for pictures from scanned patterns is called
"picture.cal", and is stored in the system Radiance directory
(/usr/local/lib/ray, on most machines).

Alberta Poster Data Pattern

Pictures

void colorpict alberta_image
17 clip_r clip_g clip_b alberta.pic picture.cal

pic_u pic_v -s 3 -rx 90 -rz 90
-t 12.251 2.5 3

0
0

alberta_image alias alberta_photo
photo_paper

alberta_photo polygon alberta_poster
0
0
12 12.251 2.5 3

12.251 5.5 3
12.251 5.5 7.62
12.251 2.5 7.62

The pattern primitive contains a scaling factor of 3, since the
"alberta.pic" data file is scaled to one, and our poster is three feet
wide. The red, green, and blue values are "clipped", so that they

- 59 - 7/10/97 Draft

Scene Descriptions

won't exceed reflectance of one and start glowing, and the "pic_u"
and "pic_v" variables indicate that we want to start our picture at
the xy intersection point (0,0), face-up.

Our wood floor pattern comes from a data file called "oakfloor.pic",
which has y/x dimensions of 96/166. This image contains seven
slats, and we'll scale this smaller dimension so that these seven slats
measure 14 inches (s=1.1667). The larger dimension will then be
14*(166/96), or 24.208 inches. We had already defined a primitive
for the wood_floor in materials with a modifier of void; now we will
change the word "void" to "oakfloor_pat", and change the RGB
values to an overall reflectance of 20%, so the material has a neutral
effect at first (we can change the values later on, to adjust color
intensities).

Wood Floor Pattern

void brightfunc dusty
4 dirt dirt.cal -s 2
0
1 .15

dusty colorpict oakfloor_pat
9 red green blue oakfloor.pic picture.cal

tile_u tile_v -s 1.1667
0
1 .578313253

oakfloor_pat plastic wood_floor
0
0
5 .2 .2 .2 .02 .05

The one real argument in the "wood_floor" primitive is the aspect
ratio of our oakfloor pattern (96/166), and tile_u and tile_v need
these ratio figures to place the pattern on the floor. The "dusty"
primitive throws dirt on the floor, making a slightly uneven (and
therefore, more natural) coloration. The dirt periodicity is spaced
every 2 feet, and the degree of dirtiness is 15%.

The roof shingles can be applied to the roof in a similar fashion, for
the most part, except that we need to pay special attention to
orienting the pattern to match the angle of the roof (45°), and the
direction (either north or south facing) will require rotation about
the z-axis for the north shingles.

- 60 - 7/10/97 Draft

Scene Descriptions

The woodgrain patterns for furniture, such as the bedroom dresser
and the livingroom table, can be generated procedurally, using
brightfunc. We have already given careful consideration to the
direction we want our woodgrain to go for the dresser and table,
using the material names xpine, ypine, and zpine to correspond to
the direction of the grain. Now we can name our procedural wood
patterns names like "ywoodpat", to correspond to the grain that
runs along the y-axis. The scaling of .025 is the distance between
the woodgrains we've set, and we'll use a darkness magnitude of
30%. We can use aliases to relate the wood patterns with our xpine,
ypine, and zpine material modifiers.

Procedural Woodgrain Pattern

void brightfunc xwoodpat
4 xgrain woodpat.cal -s .025
0
1 .3

xwoodpat plastic xpine
0
0
5 .7 .25 .08 0 0

void brightfunc ywoodpat
4 ygrain woodpat.cal -s .025
0
1 .3

ywoodpat alias ypine
xpine

Light Sources

Until we add a light source, our scene will appear completely dark.
It's generally a good idea to add the sun as a light source, and the
sun's light contributions to our scene will depend on where and
when the scene is being viewed.

One of the first input files we'll want to build before we start
generating images, regardless of whether or not we've used a CAD
system, is the file containing the information about our scene's
location. Radiance uses this information to correctly position the
sun for the location and time provided. Our cabin is located in

- 61 - 7/10/97 Draft

Scene Descriptions

Jasper, Alberta, with lattitude 52.53° and longitude 118.05°, and
standard meridian 105°. Radiance has defaults set for the San
Francisco bay area, so we'll need to provide gensky the information
about our cabin's location. We'll select a date and time of July 12th
at noon for a summer day, and put all the information into a file
called "summerday". We can easily create other files based on
different times of day and year, to view our model under a variety of
daylight conditions.

In addition to the gensky command, the sky distribution is given as a
brightness function, skyfunc, and defined in two primitives. For a
hemispherical blue sky, a skyfunc primitive for a blue sky
("sky_glow") is defined, and then used to modify the source called
"sky" that has a hemispherical (180°) shape. There can also be
some light from the ground, which we can call "ground_glow",
eminating from a source called "ground".

Summerday File Information

The sky over our little cabin scene in Jasper, Alberta
Canada at 12 noon (standard time) on July 12th.

!gensky 7 12 12 -a 52.53 -o 118.05 -m 105

skyfunc glow ground_glow
0
0
4 1 .8 .5 0

ground_glow source ground
0
0
4 0 0 -1 180

skyfunc glow sky_glow
0
0
4 .8 .8 1 0

sky_glow source sky
0
0
4 0 0 1 180

The cabin windows currently don't include interreflection
calculations from the sky, so we'll add an optional optimization

- 62 - 7/10/97 Draft

Scene Descriptions

(illum) to the windows to turn them into secondary light sources.
This addition of secondary light sources is not really absolutely
essential for viewing the scene, but it does improve the efficiency of
the program's lighting calculations, and since we know that some
light is coming through the windows after first bouncing around,
our simulation will benefit from our use of this knowledge. Without
any light sources whatsoever, everything in our scene is dark. With
just the sun, the program checks to see if the object is in shadow; if
not, the program calculates brightness at that point. If the object
being viewed is in shadow, the program uses the constant ambient
value we specified. This results in the scene appearing to consist of
flat colors, if only ambient light exists with no direct light. The
ambient value for outdoor scenes must correlate to the actual
amount of light bouncing around, which is much higher for outdoor
scenes than indoor scenes.

Currently, our cabin model has windows that only let in the direct
light from the sun, and doesn't allow for the windows to provide an
additional brightness from interreflection. If we give the window
panes the same brightness as the sky at that point, we will help to
illuminate more than just the bright patches of sunshine from direct
sunlight in the cabin's interior. We still want to be able to see
outside the window (and not be viewing a white light source), so
we'll use illum. Illum allows us to see through the window panes,
and allows other rays in the calculation to pass through it so the
sun's rays still come through, even though illum is a light source.
We'll use "plain_glass" as the default glass material, which will be
visible whenever being viewed through (so we can see to the other
side). To give the windows the same distribution as the sky, we'll
use a modifier (pattern and brightness) with gensky. Gensky always
produces a description of a modifier, called skyfunc, for that
particular time of day and year.

- 63 - 7/10/97 Draft

Scene Descriptions

Changing Window Glass to Illum in "daywindows"

Adding illumination sources to cabin windows
to provide sky light for the cabin scene interior.

skyfunc brightfunc winbright
2 winxmit winxmit.cal
0
0

winbright illum window_illum
0
0
3 .88 .88 .88

It's important to note that the glass surfaces must be oriented with
their surface normals pointing toward the interior of the cabin
space, to function properly as light sources for the interior. We'll
use the right hand rule to determine surface normals for these
window illumination sources, and we can use gensurf to create these
illuminating windows, since we may decide later on to change the
number of illumination sources per window from one to some more
accurately representative number (although that will sacrifice speed
and efficiency for accuracy).

- 64 - 7/10/97 Draft

Scene Descriptions

Illuminating South Facing Windows

z

x

y

The above diagram shows how the surface normal points towards us
(the thumb) when we curl our fingers up along the z-axis, and then
out to the left, along the x-axis. For the southeast and southwest
windows then, t in gensurf will correspond with the x-axis, and s
with the z-axis.

Polygons for Window Illumination

Polygons for window illumination surfaces,
for the south_east window, using gensurf.

!gensurf window_illum southwest_window \
'5.5 + t*(10.5-5.5)' '0' '3 + s*(6-3)' 1 1

Gensurf provides us with a very useful way to break these illum light
sources into sub-sources later on, since gensurf defines a curved
surface which is defined parametrically in terms of (s,t) functions.
Since our s and t correspond to z and x, all y-values will be zero.

- 65 - 7/10/97 Draft

Scene Descriptions

The width of the window along the x-axis varies from 5.5 to 10.5
feet, and the window's height along the z-axis varies from 3 to 6 feet
as s and t both vary from zero to one. A six-inch allowance has
been made along the x-axis for the window sills. The number of s
divisions and t divisions will be one this time, since we're starting
off with one illumination source per window.

We can add lights to our cabin scene
using both IES files and our own light
source creations. We can put
floodlights in the bedroom and
livingroom of the cabin to illuminate
the posters, and use overhead lights in
the bedroom and livingroom for
general illumination. We can use the
same sorts of lights to mount on the
side of the wall in the bathroom and

Cabin Lights

over the front porch, giving us a total of three different types of
lights in this scene.

We can use an IES file ("ies06") that contains information for the
floodlights, and run the ies2rad program from the command line to
convert the ies file to Radiance format. We can rename the file
"flood.ies", to provide a slightly more descriptive name.

Converting IES Files to Radiance Format

%ies2rad -m .25 -df -t default create/flood.ies

The "-m" option in the ies2rad command indicates that a multiplier
of 25% is being used on the ies file values; the "-df" option specifies
that we want our dimensions in feet (the default is meters); and the
"-t" option stands for lamp type information (such as color,
depreciation, and lamp specifications). The "default" indicates that
we want a white fixture (so we would need to provide color with the
"-c" option, if we didn't want white). The "create/flood.ies" grabs
the input file "flood.ies" from our create subdirectory and puts the
output files in our current directory (unless we use the "-l" or "-p"
options), automatically naming the output files "flood.rad" and
"flood.dat".

- 66 - 7/10/97 Draft

Scene Descriptions

We'll want to surround the light
source with a fixture of some type, so
we'll build a shroud for the floodlight
in a file called "flood.shroud", using
two cylinders and two rings. The
cylinders and rings will rise up along
the z-axis, and we can consider the z
origin to be near the bottom of the
shroud, perhaps .05' inside of the
larger cylinder (since we'll want our
light recessed into the shroud just a
bit).

Floodlight Shroud

.5'

.375'

.3'

.75'

z

The next step will be centering the floodlight over each of our
posters, which are centered at (x,y,z)=(12.251,4,5.31) and
(.001,4,5.2205) for the livingroom and bedroom posters,
respectively. We'll be placing the floodlight in our "lights" file, using
the "flood.rad" and "flood.shroud" files as input. Assuming that we
want to place our floodlights about 3 feet away from the posters (in
the x direction), we can determine the desirable height above the
poster to be about five feet. Once we're happy with where we want
to place the floodlights, we can use xform to name the light, drop
the floodlight down to center (where the light source will be
recessed), and rotate and place the floodlight right where we want
it. We'll also want to add the finishing touch of a support for the
floodlight, so it doesn't appear to be dangling in thin air.

Bedroom Spotlight in "lights" file

!xform -n bedroomspot -e -t 0 0 -.5 -ry 30 -t 3 4 11\
flood.rad flood.shroud

brass cylinder bedroomspot.support
0
0
7 3 4 11

3 4 12.1
.02

- 67 - 7/10/97 Draft

Scene Descriptions

The bedroom overhead light can be
created fairly quickly, using the
radiance calculation discussed earlier
in this chapter for a spherical source.
Our 100 watt bulbs of 6 inch radius
have an output of 1750 lumens, and if
we work through all the calculations
for radiance, we end up with RGB
values of 10 w/sr/m2. We can now
create the primitives describing our
bedroom overhead light that describe
the light source, the shape of the
spherical source, and the brass
support pole that attaches the
overhead light to the ceiling. The two
overhead lights in the livingroom can

Bedroom Overhead Light

void light big_globe_light
0
0
3 10 10 10

big_globe_light sphere bedlight
0
0
4 6 5.5 8 .5

brass cylinder bedlight.support
0
0
7 6 5.5 8.5

6 5.5 13.6
.02

be built exactly the same way we built the bedroom overhead light,
using the "big_globe_light" modifier for the spheres used in the
livingroom, and adding their supports.

Our front porch light and the identical bathroom lights can be
created similarly to how we built the overhead lights, with the
exception that they will be side-mounted to walls with a brass cone.
The small globe lights used for the porch and bathroom can be given
greater output (using 14.5, instead of 10 for RGB values).

- 68 - 7/10/97 Draft

Image Generation

Image Generation

Introduction

Ray tracing simulates the behavior of light by tracking the path of
light from its presumed destination to one or more sources,
following the ray's path around the scene. Image generation is the
process where this simulation takes place, based on the input files
provided to the ray tracing software that contain the material,
object, and light source descriptions.

The most frequently desired output, and the type for which
Radiance is tailored, is the color image. A color image is a two-
dimensional array of radiance values rendered by projection from a
three-dimensional scene, similar to a photographic image. The
Radiance values are broken into spectral components, nominally
red, green, and blue. The renderer RPICT produces picture files in
batch mode, and RVIEW calculates and displays images interactively.
RTRACE provides other lighting calculations and information, such
as illuminance or light source distributions.

There are commonalities between the Radiance rendering programs
(RPICT, RVIEW, and RTRACE), which share many of the same
command options (please refer to the RPICT manual page for a list).

Scene Compilation

Radiance uses octrees to generate its images in the most efficient
way possible, since this technique handles complex environments
very well by sorting objects in the scene before the rays are traced.
In an octree sort, the space in the scene is recursively divided into
cubes which contain no more than a certain number of objects
specified to the program. A ray is then followed through the
resulting "octree", and intersection calculations are performed only
on those objects which lie in the cubes intercepting the ray, instead
of across the whole scene. Octrees can greatly reduce the time
required for ray-tracing complex scenes; the time required for this
type of intersection calculation increases as the cube root of the
number of objects, making it suitable for very densely crowded
environments.

- 69 - 7/10/97 Draft

Image Generation

OCONV is used to create an octree from a list of object files. Each
surface is recursively intersected with the cubes in the growing
octree until all objects have been done and the octree is complete.
The requirement that surfaces be intersected with cube faces makes
the task of implementing a new surface type somewhat more
involved than it would be without an octree conversion. This
drawback is more than compensated for by the increased speed
during ray tracing using an octree sort. Options for changing the
maximum octree resolution and the maximum number of objects
per elemental cube are provided. Optimal speed of ray tracing is
related to these values, but they are not critical.

The user should be aware of possible errors that may arise when
using OCONV, as well as OCONV formats. It is important to use the
correct order of files when running OCONV, so that modifiers are
defined before they are used. If the files are out of order so that
materials and other modifiers are referred to before they've been
defined, an error message is printed about an undefined modifier,
and OCONV aborts.

This example oconv command creates an octree called "oct/cabin"
from the files called: "materials", "cabin", "bathroom" and
"furniture".

Creating an Octree with OCONV

%oconv materials cabin bathroom furniture > oct/cabin

Octrees that are frozen contain data structures that can no longer
be changed. The "-f" option of oconv freezes the octree by storing
all the octree information as it currently exists in a binary file
format at the end of the octree file (roughly doubling the file size),
which facilitates faster scene loading. The chief disadvantage of
freezing octrees is that any changes made to materials won't be
reflected in an octree that has been frozen, so if you want to change
a material to be more to your liking, you'll have to redo the octree
as well.

When oconv is run, it creates a "bounding cube" minimum cube that
surrounds the whole scene. The example of the octree for the cabin
shown above has created a boundary that surrounds the cabin, but

- 70 - 7/10/97 Draft

Image Generation

does not include the forested areas to be added later around the
cabin. When the forested areas are added, the bounding cube area
will grow larger.

Unfrozen octrees are dependent on scene files; scene files are
needed any time the octree is to be used. Care is needed any time
files related to an unfrozen octree are changed or moved, to ensure
that the octree will still be intact when needed. Frozen octrees are
the best way to create libraries of objects, since they have the
advantage of not requiring all the scene files to be stored with them
(one frozen octree file contains all the information required to
generate that scene).

Octrees are meant to be machine independent. OCONV creates
binary, machine-independent files, so it's simple to move Radiance
files from one machine to another.

Batch

RPICT follows rays of light through an image plane and into the
scene compiled in an octree, to produce a high-quality picture file.
To produce such a high-quality image of a scene, one starts by
selecting a view point and view direction, much as we would do if we
were to walk into the scene and take a picture with a camera.
Generating an image can take anywhere from a few minutes for a
low resolution test to many hours for a publication quality image;
RPICT may be run overnight to produce high resolution pictures
suitable for presentation.

RPICT Program variables fall into several categories:

View The direction and field of view are selected for the
image desired. A view up vector determines the
orientation of the picture.

Resolution The horizontal and vertical resolution determine the
detail of the picture, and strongly influence the time
required for its computation. Image plane sampling
reduces the time for high resolution pictures. By
specifying a grid of sample points, the program will
only trace rays between points if they differ by more
than a specified amount. Jittering rays through
each pixel avoids aliasing at high contrast edges.

- 71 - 7/10/97 Draft

Image Generation

Direct Calculation Normally, sources are treated as if they eminate from
a point. Jittering a ray to a source by an amount
proportional to the source's size produces a more
accurate rendering of the scene. Unfortunately, this
technique causes problems for image plane
sampling, since adjacent pixels receive slightly
different values. Pictures using source sampling
therefore take longer than the same picture using
point sources.

New "-dj", "-dt", and "-dc" options are available;
please refer to the RPICT manual page for a list.

Indirect Calculation The ambient, or interreflected component, is
calculated using a Monte Carlo technique. Each
calculation produces a specified number of rays.
Computed ambient levels are stored in a table and
used for interpolation on nearby values. The
distance at which an interpolated value is considered
valid is set by the user. This method produces
accurate interreflected components at a modest
expense.

Limits on Recursion To prevent tracing unnecessary rays, limits are
placed on the spawning of new rays. A limit on the
depth of recursion prevents more than a given
number of reflections to occur. A minimum ray
weight stops rays whose contribution to the final
value would be below a certain level.

Based on our chosen view point and view direction coordinates, we
can either calculate the view direction vector by subtracting the
view point coordinates from the point being viewed (also called the
"look at point", or the "view center"), or we can estimate some view
direction vector that's close enough.

RPICT Example

% rpict -vp 5 4 6 -vd 0 1 0 test.oct > test.pic &

The "-vp" option stands for view point, and the "-vd" stands for view
direction. This example shows how a view direction of looking due
north up the y-axis has been selected, with a direction vector of
(0,1,0). The resulting Radiance image is written to the file called
"test.pic", and the "&" option indicates that we wish this job to run
in the background, since it may take a while to complete. Once

- 72 - 7/10/97 Draft

Image Generation

you've started this job running in the background, you can log out
and go home if you wish, and the job will keep running.

You will see a bracketed number printed by the C-shell command
interpreter immediately preceding the RPICT command; this is the
process id [PID] that can be used later to check the progress or kill
the program. If for any reason you wish to kill the program, you
may do so using the "kill" command, and following it with the
process id number (12 in this example).

Killing an RPICT Process

% kill 12

When running a long RPICT job, it's a good idea to provide RPICT
with an error file (named something like "errfile") where it can
write out any errors and progress reports during the rendering.

Specifying an RPICT Error File

% rpict -e errfile

Progress and error reports can now be checked at any time by
printing the file name you specified (in this case, "errfile") with the
"cat" command.

Viewing an RPICT Error File

% cat errfile

RPICT has a "-av" option for setting the ambient value, but this
option is best left to the default (of zeroes) if we don't have any
idea what it should be. A correct ambient value selection produces
shadows that aren't too light or too dark, but look pretty realistic
for the scene.

If you have a view file you wish to use for generating a high-
resolution image in batch mode, you can do so using the "-vf"
option and providing RPICT with the name of the view file. If you

- 73 - 7/10/97 Draft

Image Generation

know the ambient values for the scene, those can also be specified
with the "-av" option.

Using RPICT with a View File

% rpict -vf vf/myview -av .5 .5 .5 test.oct > test.pic &

Interactive

Interactive image generation is an important feature of Radiance
that permits quick error checking, view determination, and lighting
evaluation. Few things are more frustrating than waiting several
hours for an image, only to discover errors in the input. In a matter
of minutes, RVIEW produces a low-resolution image clear enough to
spot any serious mistakes, and gives the user mobility to find errors
visible only from certain vantage points. One may increase the
resolution selectively to concentrate on more interesting parts of
the image. The same freedom of movement and study permits
crude lighting and visibility evaluation (eg: contrast and glare).
Since a full calculation is being performed at a reduced resolution,
absolute accuracy is maintained. Luminance values may be queried
at any point in the scene, with instant results. Once the scene is in
order and one or more good views have been determined, RPICT may
be run overnight to produce high resolution pictures suitable for
presentation.

RVIEW Example

% rview -vp 2.25 .375 1 -vd -.25 .125 -.125 -av .5 .5 .5 test.oct

Just as we used them in RPICT, the "-vp" and "-vd" options can be
used to specify the view point and view direction vector, and the "-
av" option specifies the ambient light present in our scene. A list of
RVIEW's options and their default values may be reviewed using the
following command:

- 74 - 7/10/97 Draft

Image Generation

Viewing RVIEW Option Defaults

% rview -defaults

Once you've found a view point and direction that you especially
like, take the opportunity to save that view using the "view"
command from within RVIEW, and select a name for that good view.
Many different views can be saved this way, and higher-resolution
images produced later on.

Saving a View in RVIEW

: view vf/ext.se

In the following example, the "-vf" option indicates that we will be
getting view information from a file, and the "vf/ext.se" immediately
following is the file name for the view file we saved. The octree
being used is "oct/dayext", and the "&" symbol indicates that we
want to start this rview process in the background, so we can check
on it later.

RVIEW Example

% rview -vf vf/ext.se oct/dayext &

Other Lighting Calculations

Of course, images are not the only output desired from a lighting
simulation. RTRACE provides a convenient interface for obtaining
other kinds of information from the calculation. Individual radiance
values may be computed and combined to get luminance, contrast
rendering factors, equivalent sphere illumination, glare indices, or
any other lighting metric. Besides radiance, irradiance, intersection
point, surface normal direction, and other calculations are available.
Typically, RTRACE is run from a shell script or other program. For
example, the utility MAKEDIST calculates a source distribution from
a geometric specification by calling RTRACE. By connecting certain
display drivers to RTRACE, additional information may be computed
interactively at selected image locations, such as the illuminance on
a surface or the ray propagation tree.

- 75 - 7/10/97 Draft

Image Generation

Tutorial Example

Scene Compilation

Since we'll want to create many different octrees for viewing the
interior and exterior of the cabin at different times of the day and
year, we'll start by creating a basic cabin interior octree called
"oct/cabin". The following oconv command creates this octree
from the "pattmats", "cabin", "bathroom" and "furniture" files. This
octree can now be used as a starting point for all future generated
interior images of the cabin.

Creating a Cabin Octree

% oconv pattmats cabin bathroom furniture > oct/cabin

A second oconv command uses "oct/cabin" as input to change the
octree into a frozen octree, and add new surfaces from the
"summerday" and "daywindows" files, and to create the octree
called "oct/summercabin". The "-i" option indicates that the input
octree will be named next ("oct/cabin", in this case). The resulting
octree will provide us with everything we need to generate images or
perform calculations on the cabin, taking into account our
illuminated windows and the gensky for a summer day.

Creating a Summer Day Octree

% oconv -f -i oct/cabin summerday landscape daywindows \
> oct/summercabin

Provided that we had the gensky information for a winter day stored
in a file called "winterday", we would be able to create a cabin
octree for a snowy day in January:

- 76 - 7/10/97 Draft

Image Generation

Creating a Winter Day Octree

% oconv -f -i oct/cabin winterday landscape daywindows \
> oct/wintercabin

Batch

Once an octree for our cabin on a summer day has been created
with OCONV, a high-quality image can be rendered with RPICT. To
produce such a high-quality image of our scene, we'll first want to
examine the floor plan and pick a view point and view direction,
much as we would do if we were to walk into the cabin and take a
picture with a camera.

We can choose an example view point and view direction of standing
in the bedroom doorway, looking towards the fireplace. The
coordinates of a person standing in the doorway are approximately
(12,8.5,5.5), and the approximate point we'd be looking at is
located at (27,7,5.5). We can either calculate the view direction
vector by subtracting the view point coordinates from the point
being viewed, or we can estimate some view direction vector that's
close enough, such as (1,-.2,0) since we're looking more or less
straight ahead in the x direction, and only slightly down in the y
direction.

Creating an RPICT Summer Cabin Picture

% rpict -vp 12 8.5 5.5 -vd 15 -1.5 0 \
oct/summercabin > pic/summercabin &

The "-vp" option stands for view point, and the "-vd" stands for view
direction. This example shows the more precise technique of
subtracting view point coordinates from the view center, but a
rougher approximation would work just as well. The resulting
Radiance image is written to the file called "pic/summercabin", and
the "&" option indicates that we wish this job to run in the
background, since we expect it to take a while to complete.

- 77 - 7/10/97 Draft

Image Generation

Interactive

We can use RVIEW in much the same way we would use RPICT, except
that once we start RVIEW, we'll be able to issue commands to move
around in the scene and change our view point and view center.
We'll also be able to change the ambient light settings, to see if the
shadows are too dark or not dark enough.

Other Lighting Calculations

We can use RTRACE to examine our cabin scene and calculate
luminance values at various points, at different times of the day and
year. These calculations can help us determine how we might wish
to change the light sources in our cabin.

- 78 - 7/10/97 Draft

Image Manipulation

Image Manipulation

Introduction

Several Radiance programs assist the user in viewing and
understanding program output, such as pictures and data files. A
picture is essentially a luminance map with color. With each picture
element, known as a pixel, a red, green and blue value are
associated. The green value corresponds to luminance and the red
and blue values add color.

The storage required by an image is a function of its resolution and
its complexity. It is not difficult to produce an image which takes
more than 10 megabytes of disk space. Therefore, the
representation of an image in a file is an important consideration.
Currently, the programs use image files which represent colors in
four bytes. The first three bytes are red, green, and blue values, and
the fourth byte is a common exponent. By using a common
exponent, it is possible to represent very large and very small
luminance values in the same picture at minimal cost. Another
means of saving space used by the programs is called run length
encoding. If many adjacent pixels in a scanline have the same value,
the value and a count is given instead of all the pixels. This saves a
lot of space on pictures of low complexity, and some space on
complex images.

The Radiance picture file format uses a floating point representation
for greater accuracy. Pictures may be scaled in brightness, resized,
anti-aliased, and composited digitally with different filters provided.
Drivers display the pictures on monitors or make copies on film,
video, or paper. Some display programs can superimpose numerical
information on images at selected locations for more accurate
evaluation.

Image Display & Conversion

A device driver is needed to make a picture file viewable on the
device (piece of hardware) being used. Different display programs
are required for different devices. The two basic categories of
devices are display and hardcopy.

- 79 - 7/10/97 Draft

Image Manipulation

A display device, such as a graphics terminal, allows quick viewing
of a picture. This type of device also permits interaction. For
example, the driver for the X window system allows the user to
display specific luminance values at points on the image.

Hardcopy devices produce permanent records of the Radiance
calculation. Sometimes a hardcopy device is available as an adjunct
to a display device. If this is not the case, it is necessary to have a
separate driver to produce an image remotely. A simple driver for
dot matrix printers is provided as well as a more sophisticated
driver for the Dicomed film recorder. Usually, film recorder output
is the highest quality available, and the most expensive.

Conversion to different image file formats is provided by a number
of different utilities:

RA_PR Convert to/from standard 8-bit Sun rasterfiles
RA_PR24 Convert to/from standard 24-bit Sun rasterfiles
RA_T8 Convert to/from 8-bit Targa images
RA_T16 Convert to/from 16 and 24-bit Targa images
RA_BN Convert to/from Barneyscan image format

Image Processing Filters

Once a picture has been produced, it is usually desirable to filter it
for viewing. Radiance provides the user with several picture filters:
PFILT, PCOMPOS, and PCOMB.

PFILT allows a picture to be rescaled for a specific device, and will
set the exposure for the frame. Rescaling allows a picture produced
at one resolution to be viewed on a device with a different
resolution. The exposure is set by normalizing the picture to a given
average value; this avoids graphics output which is too light or too
dark. The program also performs anti-aliasing using an algorithm
which defocuses the image. (This process can be time consuming
for high resolution pictures.) Another option provided by PFILT is
the ability to produce star patterns around particularly bright areas
of the picture. This simulates what happens in a conventional
camera under extreme lighting conditions.

PCOMPOS provides the user with a "cut and paste" feature for
assisting image composition. It crops an image, and allows sections
to be more closely examined.

- 80 - 7/10/97 Draft

Image Manipulation

PCOMB combines Radiance images with mathematical functions on
pixel values.

Other Utilities

PVALUE is a program which extracts red, green and blue values from
a picture file. PVALUE converts between different image
representations for analysis (not display). Its output can be used by
calculation programs (such as rcalc or awk) to get specific
information about an image.

PSIGN generates labels.

PROT rotates images.

To obtain the illuminance at a surface, one can run through the
Lambertian approximation to luminance backward. This will be
exact for purely diffuse surfaces, and in error for surfaces with
specularity. A simple method for obtaining illuminance values at a
number of points in a scene is to include small white objects with
purely diffuse surfaces in the description. The illuminance at these
objects will then be equal to their luminance multiplied by π.

The program to get information about a data file is called GETINFO.
This comes in extremely handy, since most data files are unreadable.

- 81 - 7/10/97 Draft

Image Manipulation

Tutorial Example

Image Display & Conversion

Image Processing Filters

Other Utilities

- 82 - 7/10/97 Draft

Advanced Topics

Advanced Topics

Introduction

Radiance is an extremely powerful and complex set of programs,
whose capabilities have only been touched on briefly so far in this
manual. In this chapter, some of Radiance's more intriguing and
useful features will be explored.

Auxiliary Files

Auxiliary files used in textures and patterns are accessed by the
Radiance programs during image generation. These files may be
located in the working directory, or in some library directory.
Common auxiliary file types include data files, font files, and
function files.

Data files contain n-dimensional arrays of real numbers used for
interpolation. Typically, definitions in a function file determine how
to index and use interpolated data values.

Font files list the polygons that make up a character set. There are
no comments in font files, and all numbers are decimal integers.
The ascii codes can appear in any order. N is the number of
vertices, and the last is automatically connected to the first.
Separate polygonal sections are joined by coincident sides. The
character coordinate system is a square with a lower left corner at
(0,0), lower right at (255,0), and upper right at (255,255).

Function files contain the definitions of variables and functions
used by a primitive. The transformation that accompanies the file
name contains the necessary rotations, translations, and scalings to
bring the coordinates of the function file into agreement with the
world coordinates. Many variables and functions are already
defined by Radiance, and they are listed in the file "rayinit.cal". The
following variables are particularly important:

Dx, Dy, Dz Incident ray direction
Px, Py, Pz Intersection point
Nx, Ny, Nz Surface normal at intersection point
T Total distance traveled by ray

- 83 - 7/10/97 Draft

Advanced Topics

Rdot Cosine between ray and normal
arg(0) Number of real arguments
arg(i) primitive's real arguments

It's important to use unique variable and function names, since they
are stored together in the same table. Also, the key variable in a
primitive using a function file must only be defined in that file, since
its presence is used to determine if the file has been loaded by the
program.

Using Make

The Unix Makefile is a file that provides the Radiance user with an
easy way to execute commands correctly and in the proper
sequence, and is extremely useful for keeping programs updated.
For our purposes, a series of oconv commands and an rview
command can all be executed automatically for a given view and
scene description with some ambient variable settings, once we've
specified these commands to the file called "Makefile".

- 84 - 7/10/97 Draft

Advanced Topics

Unix Makefile

#
Makefile for Cabin Scene
#

VIEW= -vf vf/plan

SCENE= summercabin

AMB= -av .01 .01 .01

view: oct/$(SCENE)
 rview $(VIEW) $(AMB) oct/$(SCENE)

oct/summercabin: oct/cabin summerday landscape daywindows\
pattmats

oconv -f -i oct/cabin summerday landscape daywindows >\
oct/summercabin

oct/wintercabin: oct/cabin winterday landscape daywindows\
pattmats

oconv -f -i oct/cabin winterday landscape daywindows >\
oct/wintercabin

oct/nightcabin: oct/cabin lights pattmats
oconv -f -i oct/cabin -r 8192 lights > oct/nightcabin

oct/cabin: cabin bathroom furniture
oconv -b -100 -100 -100 225 -r 8192 \

pattmats cabin bathroom furniture > oct/cabin

oct/cabin: window.norm door.norm chair.norm sofa.norm\
coatrack.norm

oct/nightcabin: flood.rad

The "VIEW", "SCENE", and "AMB" variables are assigned the values we
choose (in this case, a floorplan view of our daycabin scene), which
are then used later in the Makefile. We can easily change these
values, in order to create a different scene, or include other file
information. The "oct/cabin" entries are needed for
"oct/summercabin", which in turn are needed for "view". The
"view" filename didn't really exist until we defined it here in our
Makefile; it contains the rview command that will generate a view of
our scene for us.

To get our plan view of the cabin from the summercabin octree, we
now can simply type "make". A big advantage of using the Makefile

- 85 - 7/10/97 Draft

Advanced Topics

is that it saves us from typing oconv every time we make a change to
one of our input files; the Makefile maintains all changes for us
automatically.

Simulation Options

Animation

PINTERP does interpolation for animation.

- 86 - 7/10/97 Draft

Advanced Topics

Tutorial Example

Coordinate Mapping

The roof shingles can be applied to the roof in a similar fashion, for
the most part, except that we might want to use noise functions to
vary our coordinate locations so that the lines between shingles
don't look too unnaturally straight. We'll also need to pay special
attention to orienting the pattern to match the angle of the roof
(45°), and the direction (either north or south facing) will require
rotation about the z-axis for the north shingles.

North Shingle Pattern

dirty colorpict nshake_pat
13 red green blue shingle.pic shake.cal shake_u shake_v

-s .7 -rz 180 -rx -45
0
1 1.7037037

nshake_pat plastic north_shingle
0
0
5 .15 .08 .05 0 0

The "shake.cal" file being referred to will be our own customized
version of the "picture.cal" file we've used before, with shake_u and
shake_v acting as our variables. We can use the smooth noise
function to vary the horizontal coordinates, and fractal noise (which
has higher frequencies and looks rougher) for the vertical
coordinate variation. Our "shake.cal" file will need to show how
these noise functions will be defined for shake_u and shake_v. The
ratio of the tile height to width for our shake pattern is 1.7037037,
and it's important to use all the numbers after the decimal point, in
order to assure the best possible job placing the tiles. This ratio will
be used as a variable (A1) in our shake.cal file.

- 87 - 7/10/97 Draft

Advanced Topics

Using Noise Functions to Vary Shake Coordinates

{
A1 - Ratio of height to width for tiles

(where height is always equal to 1)
}

shake_u = mod(Px+.1*noise3(Px,Py,Pz), max(1,1/A1));
shake_v = mod(Py+.05*fnoise3(Px,Py,Pz), max(1,A1));

Shake_u will determine the coordinates for indexing the pattern in
terms of its width (along the x-axis), and shake_v works on the
pattern's height coordinates. We aren't using too much variation in
either case; we've specified 10% variation along the width with the
smooth noise function, and 5% variation along the height with the
fractal noise. The max function takes two arguments and returns
the larger of the two (either the max width or max height), and the
mod function then takes two arguments (one of them being the
coordinate plus some noise, and the other being the maximum) and
returns the remainder of the first divided by the second. The result
is the shake pattern being placed just a little up or down and to the
left or right each time it is "tiled" in place.

Textures

We can add more realism to our cabin scene with a wall texture.
Our wood paneled walls can be patterned with a procedural
function, and textured with grooves between the boards. We'll start
by visualizing what we want our wall panels to look like; the panels
will be vertical, six inches wide, with V-shaped grooves .5 inches
wide between the panels.

Wall Texture
1/12

1

Ideally, we'd like to use this texture for all of our wall orientations,
without ever having to specify "this is an xz texture" or "this is a yz
texture". Even though it may seem more complex to set up such an
adaptable texture, it's worth doing, because we didn't expand all our

- 88 - 7/10/97 Draft

Advanced Topics

genprism-generated wall surfaces (as we would need to do to
determine which way the walls face).

We'll need some variable (either x or y) to break up our wall, using
the mod function. We can use the surface normal orientation to
determine if our wall is running along the x-axis or y-axis. The
surface normal orientation is provided to us by Radiance as
(Nx,Ny,Nz); the x-aligned walls have surface normals in the y-
direction (Nx=0), while the y-aligned walls have surface normals in
the x-direction (Ny=0). We'll edit a file called "paneltex.cal" to
define our paneltex function.

Panel Texture Function

{
This file creates a wall texture, using panels that run
vertical (along the z-axis) with grooves that are 1/12
as wide as the panel segments. This texture is
designed to work with all xz and yz wall orientations.

}
paneltex_dx = if(panel_isx, panel_pert(Px),0);
paneltex_dy = if(panel_isx, 0, panel_pert(Py));
paneltex_dz = 0;
panel_isx = .5-Nx*Nx;
panel_pert(v) = if (1/24-frac(v),

-1,
if(frac(v)-23/24,

1,
0));

The purpose of our function is twofold; first, we need to determine
what segment of the panel we're in (the left side, middle, or right
side), and second, we need to apply the correct surface normal
perturbation to each segment (computing the perturbation for the
normal along v, regardless of whether we're on an x-aligned or y-
aligned wall).

- 89 - 7/10/97 Draft

Advanced Topics

Once we've completed describing the
texture function, we're ready to apply
it to our walls with a procedural
woodgrain pattern. This list of
modifiers starts with our procedural
function pattern, "zwoodpat", which
modifies our functional texture
"woodpaneltex", which in turn
modifies our "wood_panel" material.
The final result will be a much more
realistic looking wall surface for our
cabin, and all walls will be treated
automatically without any need for us
to expand the surface generators for
all the walls.

Cabin Wall
Cabin Wall Material

void brightfunc zwoodpat
4 zgrain woodpat.cal -s .05833
0
1 .15

zwoodpat texfunc woodpaneltex
6 paneltex_dx paneltex_dy \

paneltex_dz paneltex.cal\
-s .67

0
0

woodpaneltex plastic wood_panel
0
0
5 .5 .2 .1 0 .1

Instancing

The environment immediately surrounding our cabin model
provides us with the opportunity to use instancing (for planting the
trees), and gensurf for creating a bumpy ground.

For a bumpy ground surface, we can use the two-dimensional noise
function to take the x and y values and produce a z value for our
gensurf function. We'll want our cabin to be in a fairly flat spot, so
we can modify the amplitude of the z-variation, so it flattens out the
magnitude around the cabin. Since the ground material will be
different in summer than in winter (needles in summer and snow in
winter), we'll call our material something generic ("groundmat"),
and then define it differently in our "summerday" and "winterday"
files.

We'll center our landscape around the center of our cabin's
foundation, which is located at (13,9,-1.5), and create a landscape
that measures 200 feet square in the x and y dimensions, with a
maximum height of eight (8) feet every fifty (50) feet. We'll can
choose the type of function we want for gensurf to use to create
these hills; a sinusoidal (smooth) function will look most natural (as
opposed to a triangular function).

- 90 - 7/10/97 Draft

Advanced Topics

f()=(1-cos)/2
gensurf

Magnitude
Function

=0 π/2 π

Since the gensurf function has an autocorrelation of 1 and a
magnitude of 1, our 200' by 200' landscape will correspond to a
gensurf surface that varies between (s,t)=(0,0) and (s,t)=(1,1).

(s,t)=(0,0)

gensurf
Landscape

(1,1)(0,1)

(1,0)

d

We'll want an equation to show as the distance (d) varies from 0 to
.5 over our gensurf landscape, that our magnitude function for theta
varies from 1 to π. The distance (d) is equal to the square root of
the sum of the squares of (1/2-s) and (1/2-t), and this equation can
be put in terms of theta using the conversion factor of (π/.5) on d,
providing us with the final formula for the gensurf magnitude.

gensurf Landscape

!gensurf groundmat ground '-87+200*s' '-91+200*t'\
'mag(s,t)*noise2(s*4,t*4)*6-1.5' 15 15 -s\
-e 'mag(s,t)=(1-cos(PI/.5*sqrt(sq(.5-s)+sq(.5-t))))/2'\
-e 'sq(a)=a*a' -f noise 2.cal

We can now define our forest floor pattern for our "summerdays"
file, using the dirt function to create a pattern that will modify our
scanned image of the forest floor, which in turn will modify our

- 91 - 7/10/97 Draft

Advanced Topics

"groundmat" material (this example was included as part of the
Scene Description chapter).

Trees will be planted using rview, ximage, and rcalc. We need to
start by running rview to place the trees in a scene that shows a box
called "cabinbox" where the cabin is (for simplicity).

Using RVIEW to Place Trees

% oconv -f summerday landscape cabinbox > oct/dayland
% rview -vf vf/ext.se -av 3 3 3 oct/dayland &

In RVIEW, we'll change to a parallel view by typing in the "view"
command, and then typing "l" for parallel. We can start with a
relatively high viewpoint (13 9 100) above the center of the cabin,
with a view direction looking straight down (0 0 -1). Our view up
will be (0 1 0), to match the same coordinate system we've been
using for the cabin where the y-axis points north. The view
horizontal and vertical size is (200 200), the dimensions of the
whole scene.

Once we've selected all the parallel view parameters we need, we're
ready to use the trace command "t" in RVIEW to pick a ray and get
the (x,y,z) coordinates returned to us. We can either write down
the resulting coordinates, or we can write out this file as "landsat",
and then leave RVIEW with the "quit" command, and run ximage,
with results piped in to RTRACE and our output file of tree locations,
"tree.pts".

Using ximage to Plant Trees

% ximage pic/landsat | rtrace -op oct/dayland > tree.pts &

By using the "-op" option in RTRACE, we're requesting that output
intersection points be given for the rays we pick at the places we
want to plant our trees.

We can use RCALC to take the points we want to plant trees at,
contained in our "tree.pts" file, and use a format file called
"instance.fmt" to create the scene description instance primitives
which can be appended to our "landscape" file.

- 92 - 7/10/97 Draft

Advanced Topics

"instance.fmt" File

void instance tree.${recno}
9 tree.oct -rz ${rand(recno)*360} -s ${.3+.2*rand(-recno)}\

-t ${ $1 } ${ $2 } ${ $3 }
0
0

The variables for RCALC are preceded by the dollar sign symbol, "$",
and are enclosed by curly brackets "{}". The record number in the
input file will be used to number the tree instances, as well as assist
in randomizing the rotation of the tree between 0° and 360° around
the z-axis, and the scaling of the tree to somewhere between 30%
and 50% of the tree size in "tree.oct". Now we're ready to perform
the RCALC command to append the instances to our "landscape" file,
based on the points we picked and saved in "tree.pts":

Using RCALC to Append "landscape" file

% rcalc -o instance.fmt tree.pts >> ../landscape

This RCALC command indicates that output format is desired "-o",
and that the output format file to be used is "instance.fmt". The
input file is "tree.pts", and the ">>" characters indicate that we want
the output to be appended to the following file, "../landscape",
where the "../" characters indicate that the "landscape" file is in the
directory just above.

If we thought we might want to change tree locations, we could use
RCALC differently. Instead of appending instances for each tree to
"landscape", we could have instead had one line command
immediately following the gensurf command in the "landscape" file:

Alternate Use of RCALC for Tree Instancing

!rcalc -o treeinst.fmt tree.pts

This use of the RCALC command would allow us the ability to change
the "tree.pts" file, and not have to delete or change the rest of the
"landscape" file.

- 93 - 7/10/97 Draft

Advanced Topics

Now we can change our Makefile to include the "landscape" file
after "summerday". We'll also need to create a bounding cube
around the cabin for "oct/cabin" that's big enough to show our
surrounding landscape. We'll start by giving OCONV a bounding
cube bigger than the default of the cabin size, and explicitly tell it
to create a bounding cube that will include the entire landscape,
where the x-minimum value is -87, the y-min is -91, and the zmin
can be set to -100, since the bounding cube is a cube measuring
200' in each direction.

Changing Makefile to include "landscape"

oconv -b -87 -91 -100 200 -r 8192 \
pattmats cabin bathroom furniture > oct/cabin

The "-r" option in the oconv command specifies the octree
resolution. The resolution should be greater than or equal to the
ratio of the largest and smallest dimensions in the scene (ie: surface
size or distance between surfaces). The default resolution is 1024,
or 210. The resolution works best with some 2n value, because the
cube gets subdivided by two's.

With a scene size set to 200' and the default resolution of 1024, our
minimum cube size equals the size divided by the resolution, or
200/1024=0.1953', or 2.34". We increased the resolution by about
eight times (23) to 213, or 8192. Now, our minimum cube size is
200/8192=.0244', or .293", which is pretty small. There should be
no problem with any object in our cabin being smaller than .293
inches.

- 94 - 7/10/97 Draft

Glossary

Glossary

Absorptance A measurement of absorption.

Absorption The diminishing of light's intensity at different
wavelengths as it passes through a colored material,
such as stained glass.

Anti-Aliasing Programming techniques used to avoid "jaggies",
unnatural pixel visibility which makes straight lines
appear as staircases.

Bidirectional The ratio of the reflected radiance (intensity) in one
Reflectance direction to the incident irradiance (flux density)
Distribution Function responsible for it from another direction is known as

the bidirectional reflectivity, which is a function of the
direction of reflection divided by the direction of
incidence.

Boundary A description of an object in terms of its surface
Representation boundaries, rather than its volumes.

CAD Systems Computer Aided Drafting systems used by designers,
architects, and engineers.

Constructive Solid An object definition system in which simple
primitives

Geometry are combined by means of regularized Boolean set
operators that are included directly in the
representation, where a whole object is the sum of its
parts and their properties.

- 95 - 7/10/97 Draft

Glossary

Diffuse Reflection The equal scattering of light in all directions by a

surface.

Geometric Model The mathematical representation of objects in a
picture. A polyhedral modeling system represents
shapes as collections of polygonal faces.

Illuminance A measure of the light arriving at a surface.

Image Plane The two-dimensional viewing plane onto which a
three-dimensional scene is projected.

Irradiance The total light energy impinging on a surface.

Lambertian Surfaces Surfaces that are purely diffuse, obeying Lambert's law
of equal emission in all directions.

Luminance The quantity of visible light passing through a point in
a given direction.

Mirror Reflection The bouncing of a light ray by a surface in the mirror
direction.

Monte Carlo A stochastic, or random-sampling multi-dimensional
integration technique.

Parametric Surface Arbitrarily curved surfaces in three-dimensional
space.

Parallel Projection A mapping from the three-dimensional scene to the
two-dimensional image plane in which parallel lines do
not converge towards a vanishing point.

Perspective Projection A mapping from the three-dimensional scene to the
two-dimensional image plane which shows closer
objects as larger.

- 96 - 7/10/97 Draft

Glossary

Pixel The most fundamental picture element; the smallest
alterable square in an image. A dot of color. Each
pixel corresponds to a luminance value received
through the lens by its position on the image plane.

Radiance Radiometric brightness. The amount of light flux
passing through a point in a particular direction.

Ray Propagation Tree The collection of an initial ray and all the rays that it
spawned, and the rays that those rays spawned.

Ray Tracing A technique used for rendering images of three-
dimensional scenes from a computer by following
individual rays of light from the viewpoint backwards
to the light source(s).

light source image

viewpoint

object

Recursion Solving a problem by restating it as a simpler problem
of the same type (eg: n! = n*(n-1)!, 0! = 1).

Reflection The bouncing of a light ray by a surface in the mirror
direction.

Refraction The bending of a light ray as it enters or leaves a
dielectric material, such as glass.

Resolution The number of pixels in an image, usually given as the
number of rows and columns. The color resolution is
the number of possible colors for each pixel.

- 97 - 7/10/97 Draft

Glossary

Right Hand Rule A method for determining or specifying the surface
normal direction (the thumb) from the curved
direction of vertices across the other two dimensions
of space (our fingers). In the following illustration,
vertices entered in the circular direction shown
(counter-clockwise) would result in a surface normal
pointing out of the page in the y-direction.

z

x
y

Run Length Encoding A means of saving space used by ray tracing
programs. If many adjacent pixels in a scanline have
the same value, the value and a count is given instead
of all the pixels.

Specular Reflection The preferred scattering of light by a surface in the
mirror direction. The shine from a surface.

Surface Normal A three-dimensional vector pointing away from a
surface at right angles.

Transmission Light passing through a medium.

- 98 - 7/10/97 Draft

Terms

Terms

Argument A string or real number associated with primitives in
Radiance scene descriptions. The first integer
following the identifier is the number of string
arguments, and is followed by the arguments
themselves.

Bounding Cube A cube that contains all surfaces in the scene. OCONV
must first determine or be given a bounding cube
before it can generate an octree.

Command Expansion The execution of commands contained in a scene
description in lieu of the corresponding command
output. If desired, the "-e" option of xform may be
used to expand all commands, creating a "flat" scene
description.

Cone A cone is cut in two places perpendicular to its axis.
The family of cones in Radiance includes cylinders and
rings as special cases. A cone whose surface normal is
directed inward is called a cup. A cylinder is like a
cone whose radius is constant along its length. A ring
is a flat object defined by a center, a normal direction,
and an inner and outer radius.

Cup An inverted cone (see cone).

Cylinder A cylinder is like a cone whose radius is constant along
its length. A tube is a cylinder whose surface normal
is directed inwards rather than outwards.

Data File A file containing data for Radiance programs; a scalar
field in n-dimensions.

- 99 - 7/10/97 Draft

Terms

Direct Calculation The calculation of illumination due to light coming
directly from sources (rather than reflections
"bounced" off other objects in the scene, or ambient
light).

Frozen Octree All data structures in an octree stay the same once that
octree is frozen (with the "-f" option in oconv).

Function File A file containing a functional procedure.

Generator A program that creates compound objects such as
prisms, patches and surfaces of revolution.

Hierarchy A structure where an object is composed of smaller
objects that may themselves be composed of even
smaller objects. One method for creating scene
hierarchy is to use the xform command to read in
other scene files, transforming them to new positions.
These scene files may contain other xform commands,
thus producing a tree of transformations.

Indirect Calculation A technique for computing interreflections from
objects other than light sources.

Instancing The use of one object many times (in many
"instances") in a scene. Only one description of the
object is required, along with information about the
locations of all the identical objects, thus saving
program memory. The layering of instances is called
"hierarchical instancing".

Intersection Point The point where a ray intersects the surface.

Light Source An origin of illumination in a three-dimensional
graphics scene.

Material Materials determine how each surface in a Radiance
scene interacts with light. Examples of materials are:
light, metal, plastic, and glass.

Modifier Either the identifier of a previously defined primitive,
or "void", to get things started.

Object A collection of one or more surfaces (polygons,
spheres, cones, or light sources) contained in a
description file.

Octree The resulting data structure from a technique that
sorts objects in a scene before the rays are traced, so
the ray tracer can efficiently examine only those
objects in the cubic segments of the scene where rays
are intercepted.

- 100 - 7/10/97 Draft

Terms

Pattern A perturbation of the material color (as opposed to a
perturbation of the surface normal). A pattern affects
its reflectance of an object.

Picture File A type of file used by Radiance that contains
information about a picture.

Pipe A Unix facility for connecting the output of one
program directly as input to another. In the Unix
shell, the pipe facility is represented with the '|'
character.

Polygon An area in a plane enclosed by connected, non-
crossing line segments defined by at least three
distinct vertices.

Polygonal Mesh A set of connected polygonally bounded planar
surfaces. Polygonal meshes can be used to represent
objects with curved surfaces, in an approximate
fashion in which the curved surface is broken into a
number of polygonal segments.

Primitive The fundamental building block of a scene description
that describes a material or pattern surface that's used
by Radiance.

Ring A ring is a flat object defined by a center, a normal
direction, and an inner and outer radius. When the
inner radius of a ring is zero, it is called a disk.

Shell Script A file which contains commands to be executed by a
command interpreter, such as the Bourne shell or the
C-shell.

Sphere A sphere is a three dimensional circular object,
defined by its center point and radius. By default, the
surface normal points away from the center. Spheres
with inward pointing normals are called bubbles in
Radiance.

- 101 - 7/10/97 Draft

Terms

Surface The basic shapes used by Radiance: polygons,
spheres, cones and light sources. An object is a
collection of one or more surfaces contained in a
description file.

Texture A perturbation of the surface normal (as opposed to a
perturbation of the material color). A texture affects
the illumination and highlights of an object.

Translator Converts files from one type to another (eg: converting
a CAD file to a Radiance scene input file). Also called
an importer or exporter.

Tube A cylinder whose surface normal is directed inwards
rather than outwards (see cylinder).

View A particular set of parameters that define a two-
dimensional projection from a three-dimensional
scene.

- 102 - 7/10/97 Draft

Programs

Programs

OCONV A Radiance command used to create an octree from a
list of object files prior to producing picture files or
other lighting calculation information in order to
speed up the process of ray tracing.

RADIANCE A software package for accurately calculating and
displaying lighting. Radiance takes a scene
description with light sources, sun, sky, buildings,
rooms, furniture, etc. and produces spectral radiance
values which can be collected in a "photo-accurate"
color image.

RPICT A Radiance rendering program that produces picture
files in batch mode.

RTRACE A Radiance program that provides a convenient
interface for computing and combining individual
radiance values to get luminance, contrast rendering
factors, equivalent sphere illumination, glare indices,
or any other lighting metric.

RVIEW A Radiance rendering program that produces picture
files interactively.

XFORM A Radiance program that transforms a scene
description from one coordinate space to another.
XFORM performs rotation, translation, scaling, and
mirroring.

- 103 - 7/10/97 Draft

	Table of Contents
	Introduction to Radiance
	Radiance Capabilities
	System Requirements
	Using this Manual

	Radiance Installation
	Scene Descriptions
	Basic Format of Input Files
	Materials
	Surfaces
	Building a Wall with genbox
	Building a Wall with genprism
	Creating Curved Surface with genrev
	Creating Curved Surfaces with gensurf
	Creating Curved Surface with genworm

	Instances
	Textures
	Patterns
	Mixtures
	Antimatter
	Light Sources
	gensky
	Light Spectrum

	Importing from CAD Systems
	Tutorial Example
	Input Files
	Materials
	Surfaces
	Instances
	Textures
	Patterns
	Light Sources

	Image Generation
	Scene Compilation
	Batch
	Interactive
	Other Lighting Calculations
	Tutorial Example

	Image Manipulation
	Image Display & Conversion
	Image Processing Filters
	Other Utilities
	Tutorial Example

	Advanced Topics
	Auxiliary Files
	Using Make
	Simulation Options
	Animation
	Tutorial Example
	Textures
	Instancing

	Glossary
	Terms
	Programs

