
__
Radiance Source Tree Roadmap Greg Ward Larson 1

Radiance Source Tree Roadmap

src/

cv/ scene format translators

mgflib/ MGF parser library

gen/ generators, scene manipulators

ot/ scene compilers

rt/ renderering programs

util/ utility programs

px/ picture filters and translators

libtiff/ TIFF library

cal/ calculation utilities

cal/ .cal utility files

calc/ calc program

common/ shared source files

rcalc/ rcalc program

util/ data utility programs

common/ shared source and headers

meta/ 2D graphics package

lib/ compiled libraries

Figure 1. Radiance source directory tree.

The Radiance source tree is divided into six main subdirectories
corresponding to the principal program categories, plus a src/common/
subdirectory for shared header and library modules. Two other
subdirectories, src/cal/ and src/meta/, build programs that were not
initially part of the standard distribution. Additional subdirectories of the
main subdirectories contain auxiliary libraries that we will describe later.

__
Radiance Source Tree Roadmap Greg Ward Larson 2

Let us start first with a list of the programs built in each of the six main
source subdirectories, shown in Table 1.

Directory Category Programs
src/cv/ Scene Format

Translators
arch2rad ies2rad lampcolor mgf2inv
mgf2meta mgf2rad mgfilt nff2rad
obj2rad rad2mgf thf2rad tmesh2rad

src/gen/ Generators,
Scene
Manipulators

genblinds genbox genclock genprism
genrev gensky gensurf genworm
mkillum replmarks xform

src/ot/ Scene Compilers getbbox oconv
src/rt/ Renderers lookamb rpict rtrace rview
src/px/ Picture Filters

and Translators
falsecolor macbethcal normpat oki20
oki20c paintjet pcomb pcompos pcond
pdfblur pextrem pfilt pflip pinterp
pmblur protate psign pvalue ra_avs
ra_bn ra_gif ra_pict ra_ppm ra_pr
ra_pr24 ra_ps ra_rgbe ra_t16 ra_t8
ra_tiff ra_xyze ttyimage ximage
xshowtrace

src/util/ Utility Programs dayfact debugcal findglare getinfo
glare glarendx objline objpict objview
rad raddepend ranimate rlux rpiece
trad vwright xglaresrc

Table 1. The six main Radiance source subdirectories and the programs
built there.

The easiest way to explain how Radiance programs are built is to select
two example programs from each subdirectory, one typical and one atypical,
and describe their compilations. We will begin with the src/cv/
subdirectory (scene format translators), then move through the others in the
order given in Table 1. Be sure to read the beginning of the next section, as it
gives information that is valuable but not repeated later. Also, the src/rt/
subdirectory (rendering programs) will be treated specially, with some hints
on adding new device drivers to rview and creating new scene primitive
types.

__
Radiance Source Tree Roadmap Greg Ward Larson 3

Scene Format Translators

The two example programs we will describe from the src/cv/
subdirectory are obj2rad and mgf2rad, which correspond to a typical and an
atypical scene converter, respectively.

In any Radiance source directory, you may use rmake to build individual
programs or install all the programs for that directory using the special target
"install". The rmake command is itself a short shell script that calls make
with the appropriate options and variable settings as determined by makeall
for this particular system. Let us look at a typical rmake script:

#!/bin/sh
exec make "SPECIAL=tiff" \
 "OPT=-O2" \
 "MACH=-DALIGN=double -cckr" \
 ARCH=sgi "COMPAT=malloc.o strcmp.o" \
 INSTDIR=/usr/local/bin \
 LIBDIR=/usr/local/lib/ray \
 "$@" -f Rmakefile

The variables used by rmake to control compilations in the various
Rmakefile's are:

SPECIAL Specific modules to compile on this machine, which
would normally be skipped.

OPT Compiler optimization options, which may affect
performance but should not affect correctness.

MACHCompiler options needed to get Radiance to work on this
machine.

ARCHThe name of this machine architecture, which is used by some
modules for more specific compilations.

COMPAT C library modules that should be replaced by Radiance-
specific versions either for performance or correctness reasons.

INSTDIR The destination directory for executable binaries.

LIBDIR The central library directory for auxiliary Radiance files.

MLIBAlternative C math libraries.

CC The C compiler command name.

__
Radiance Source Tree Roadmap Greg Ward Larson 4

These settings may be altered manually if for some reason makeall
misses something by editing the rmake file in the destination directory
(INSTDIR).

The obj2rad program translates Wavefront .OBJ format files into
Radiance. It uses the routines in trans.c to read in a user's rule file for
mapping materials onto surfaces. (See the obj2rad man page or
doc/notes/translators for details.) Additional routines in
tmesh.c are used for smoothing triangulated meshes. Running "rmake
obj2rad" results in the following compilations:

% rmake obj2rad
 cc -O2 -DALIGN=double -cckr \
-I../common -L../lib -c obj2rad.c
 cc -O2 -DALIGN=double -cckr \
-I../common -L../lib -c trans.c
 cc -O2 -DALIGN=double -cckr \
-I../common -L../lib -c tmesh.c
 cc -O2 -DALIGN=double -cckr \
-I../common -L../lib -o obj2rad obj2rad.o \
trans.o tmesh.o -lrt -lm

Note the appearance of -I../common and -L../lib on each
compile line. These are necessary to find the common header files in
src/common/ and the common libraries in src/lib/. Specifically,
obj2rad.c refers to standard.h, which is in src/common/, and
obj2rad loads the following modules from the src/lib/librt.a library:

header.c - reads and writes info. headers
fgetline.c - gets backslash-escaped lines
fvect.c - handles 3D vector math
savestr.c - saves shared, read-only strings
badarg.c - checks argument types
words.c - checks word formats
eputs.c - puts message to stderr
quit.c - calls exit(1)
strcmp.c - replacement for strcmp(3)

These descriptions (or something like them) may be found in the
src/common/README file, and each source directory should contain an
up-to-date list of source files and one line descriptions of each. Additionally,
each source directory contains a tags file, which may be used by vi to
quickly go between function and macro definitions in that directory (and

__
Radiance Source Tree Roadmap Greg Ward Larson 5

src/common/). This is the easiest way to understand a program, by
locating all of its constituent parts. Be careful, though, since some function
names appear more than once, and the tag command may not always take you
to the correct definition. When in doubt, check the SCCSid at the top of the
file and compare it with the executable with the what command.

The translator mgf2rad is slightly more complicated, since it is based on
the Materials and Geometry Format*, which has its own parser library. This
library is built in the src/cv/mgflib/ subdirectory then moved to
src/lib/libmgf.a prior to linking. The compilation looks like this:

% rmake mgf2rad
 cd mgflib ; rm -f libmgf.a ;
 make libmgf.a CC=cc \
 CFLAGS="-O2 -DALIGN=double -cckr \
'-DMEM_PTR=char *' -DNOPROTO" ; \
 cp libmgf.a ../../lib
 cc -O2 -DALIGN=double -cckr \
'-DMEM_PTR=char *' -DNOPROTO -c parser.c
 cc -O2 -DALIGN=double -cckr \
'-DMEM_PTR=char *' -DNOPROTO -c context.c
 cc -O2 -DALIGN=double -cckr \
'-DMEM_PTR=char *' -DNOPROTO -c xf.c
 cc -O2 -DALIGN=double -cckr \
'-DMEM_PTR=char *' -DNOPROTO -c object.c
 cc -O2 -DALIGN=double -cckr \
'-DMEM_PTR=char *' -DNOPROTO -c lookup.c
 cc -O2 -DALIGN=double -cckr \
'-DMEM_PTR=char *' -DNOPROTO -c badarg.c
 cc -O2 -DALIGN=double -cckr \
'-DMEM_PTR=char *' -DNOPROTO -c words.c
 cc -O2 -DALIGN=double -cckr \
'-DMEM_PTR=char *' -DNOPROTO -c fvect.c
 ar rc libmgf.a parser.o context.o \
xf.o object.o lookup.o badarg.o words.o fvect.o
 ranlib libmgf.a
 cc -O2 -DALIGN=double -cckr \
-I../common -L../lib '-DMEM_PTR=char *' \
-DNOPROTO -c mgf2rad.c
 cc -O2 -DALIGN=double -cckr \
-I../common -L../lib -o mgf2rad mgf2rad.o \
tmesh.o -lmgf -lrt -lm

* The Materials and Geometry Format was developed by the authors as a neutral exchange format for
lighting simulation and rendering. For further information, see the MGF web site at
"http://radsite.lbl.gov/mgf/HOME.html".

__
Radiance Source Tree Roadmap Greg Ward Larson 6

The first part calls make in the mgflib/ subdirectory and moves
libmgf.a to src/lib/, and the second part compiles and links
mgf2rad.c and tmesh.c to the necessary libraries.

Generators and Scene Manipulators

Most generator programs rely on little else besides the basic C module
containing the main function, since generating Radiance scene files can be
accomplished easily with simple calls to printf(3). In some cases, as
with gensurf, the generator uses the functional language, and therefore needs
some of the cal* modules from the src/common/ directory (compiled
into the src/lib/librt.a library). Unlike generators, scene
manipulation programs, such as replmarks and xform, read as well as write
scene descriptions, and may require additional library support. The most
exotic program built in this directory by far is mkillum, which not only reads
in scene descriptions, but calls rtrace as a subprocess to compute radiance
distributions for surfaces. We will use mkillum as our example of an unusual
compilation for the src/gen/ directory, and genrev will serve as our more
typical example.

The compilation of genrev looks something like this:

% rmake genrev
 cc -DALIGN=double -cckr -O2 \
-I../common -L../lib -c genrev.c
 cc -DALIGN=double -cckr -O2 \
-I../common -L../lib -o genrev genrev.o -lrt -lm

The functional language modules used from src/common/ are
caldefn.c, calfunc.c, and calexpr.c. These modules allow
genrev to parse and evaluate variable and function definitions that describe
the parametric shape of a surface of revolution. Many programs utilize these
same library modules and use the functional language in different capacities.

As promised, the compilation of mkillum is more complicated, and is
broken into three main modules, mkillum.c, mkillum2.c and
mkillum3.c, which share the common header file mkillum.h. The
compilation looks like this:

__
Radiance Source Tree Roadmap Greg Ward Larson 7

% rmake mkillum
 cc -DALIGN=double -cckr -O2 \
I../common -L../lib -c mkillum.c
 cc -DALIGN=double -cckr \
-O2 -I../common -L../lib -c mkillum2.c
 cc -DALIGN=double -cckr -DSPEED=60 \
-O2 -I../common -L../lib -c mkillum3.c
 cc -DALIGN=double -cckr \
-O2 -I../common -L../lib -o mkillum \
mkillum.o mkillum2.o mkillum3.o -lrt -lm

This program relies quite heavily on the modules in src/common/,
including the following:

error.c - error reporting function
getpath.c - search for full path to file
process.c - administrate subprocess
urand.c - low-discrepancy sequence
generator
otypes.c - determine primitive type
readfargs.c - read primitive argument list
face.c - initialize polygon primitive
multisamp.c - multi-dimensional LDS
cone.c - initialize cone/cylinder/ring
mat4.c - 4x4 matrix computations

Using these routines, mkillum is able to read in Radiance scene files and
generate ray samples for rtrace to compute outgoing radiance values. These
are then collected into data files, which are referenced in a modified scene
description and sent to the standard output.

Scene Compilers

There are currently two programs compiled in the src/ot/ directory,
genbox and oconv. The oconv program generates an octree for the given
scene file(s), which is then used to accelerate the ray tracing process. The
genbox program is a gutted version of oconv whose sole purpose is to
compute the bounding box of one or more scene files. The compilation of
oconv looks like this:

__
Radiance Source Tree Roadmap Greg Ward Larson 8

% rmake oconv
 cc -DSTRICT -DALIGN=double -cckr \
-O2 -I../common -L../lib -c oconv.c
 cc -DSTRICT -DALIGN=double -cckr \
-O2 -I../common -L../lib -c sphere.c
 cc -DSTRICT -DALIGN=double -cckr \
-O2 -I../common -L../lib -c writeoct.c
 cc -DSTRICT -DALIGN=double -cckr \
-O2 -I../common -L../lib -c o_face.c
 cc -DSTRICT -DALIGN=double -cckr \
-O2 -I../common -L../lib -c o_cone.c
 cc -DSTRICT -DALIGN=double -cckr \
-O2 -I../common -L../lib -c o_instance.c
 cc -DSTRICT -DALIGN=double -cckr \
-O2 -I../common -L../lib -c bbox.c
 cc -DSTRICT -DALIGN=double -cckr \
-O2 -I../common -L../lib -c initotypes.c
 cc -DSTRICT -DALIGN=double -cckr \
-O2 -I../common -L../lib -DMEMHOG -c readfargs.c
 cc -DSTRICT -DALIGN=double -cckr \
-O2 -I../common -L../lib -c malloc.c
 cc -DSTRICT -DALIGN=double -cckr \
-O2 -I../common -L../lib -o oconv oconv.o
writeoct.o sphere.o o_face.o \
o_cone.o o_instance.o bbox.o readfargs.o \
initotypes.o malloc.o -lrt -lm

The -DSTRICT option makes sure that oconv generates tight bounds
around its surfaces. Without this, oconv would produce octrees slightly faster
(especially if there are many cones), but rendering times might be
significantly longer in certain cases. Even though the readfargs.c
module is compiled in the src/lib/librt.a library, it is recompiled here
with the -DMEMHOG flag to avoid the memory overhead associated with
malloc() by substituting bmalloc() instead.

Once oconv has been built, getbbox requires only a few special-purpose
modules, init2otypes.c and readobj2.c. These substitute certain
function assignments and scene parsing code to avoid storing the model in
memory like the standard routines. Also, the library-compiled
readfargs.c is used because memory is being freed shortly after it is
read. The compilation looks like this:

__
Radiance Source Tree Roadmap Greg Ward Larson 9

% rmake getbbox
 cc -DSTRICT -DALIGN=double -cckr \
-O2 -I../common -L../lib -c getbbox.c
 cc -DSTRICT -DALIGN=double -cckr \
-O2 -I../common -L../lib
 cc -DSTRICT -DALIGN=double -cckr \
-O2 -I../common -L../lib -c init2otypes.c
 cc -DSTRICT -DALIGN=double -cckr \
-O2 -I../common -L../lib -o getbbox getbbox.o
readobj2.o bbox.o init2otypes.o -lrt -lm

Rendering Programs

As one might expect, the compilation of the rendering programs is the
most complicated. There are many object files local to the src/rt/
subdirectory and many library modules linked in as well. Other modules have
symbolic links to the sources in src/common, but are recompiled locally to
enable or disable specific features and optimize performance.

Rather than reproducing the long and tedious compile here, let us look in
some detail at src/rt/Rmakefile instead. This will give us better
insight into what is going on and how we might make modifications to the
code or the compilation process. Rmakefile begins with the following
variable settings, which will often be overridden by the rmake script:

OPT = -O
MACH = -DBSD
CFLAGS = $(MACH) $(OPT) -I../common -L../lib
SPECIAL = aed
CC = cc
MLIB = -lm

The CFLAGS variable is usually left alone, and affected indirectly instead
by the settings of the MACH and OPT variables. An exception to this might
occur if a particular C compiler wants a space between its -I and -L options
and their arguments. These options are essential to the compiler finding the
Radiance-specific header and library files it needs.

Rview Device Drivers

Skipping down a bit, we reach the variables corresponding to device
drivers needed for the rview program:

__
Radiance Source Tree Roadmap Greg Ward Larson 10

#
Device drivers for rview (see also devtable.c):
#
DOBJS = devtable.o devcomm.o editline.o \

x11.o x11twind.o colortab.o
DSRC = devtable.c devcomm.c editline.c \

x11.c x11twind.c colortab.c
DLIBS = -lX11

These are the objects that will be linked directly into rview, and which
ones are needed is determined by the contents of src/rt/devtable.c:

/*
 * devtable.c - device table for rview.
 */

#include "driver.h"

char dev_default[] = "x11";

extern struct driver *x11_init();

struct device devtable[] = { /* supported
devices */

{"slave", "Slave driver", slave_init},
{"x11", "X11 color or greyscale display", x11_init},
{"x11d", "X11 display using stdin/stdout", x11_init},
{0} /* terminator */

};

Originally, rview supported more devices than X11, and through the
routines in src/rt/devcomm.c, it still can. One of these routines is
slave_init(), which sets up stdin and stdout to act as
communication channels between rview and its parent process, through
which control commands are taken in and display commands are sent by
rview. Another routine, comm_init(), permits unlinked device drivers to
be used through UNIX interprocess communication channels (i.e., pipes).
The simple driver protocol is defined and described in src/rt/driver.h.
Creating a new device driver means following the templates for the requisite
device driver routines, and either linking it into rview directly via devtable
or as a separate process by linking to the routines in src/rt/devmain.c.

As an example of this, let us look at the original X Version 10 driver,
which may be linked in a separate program executable for ancient systems
that still support it. In src/rt/Rmakefile, we find the following lines:

__
Radiance Source Tree Roadmap Greg Ward Larson 11

$(DEVDIR)/x10: x10.o xtwind.o colortab.o \
devmain.o editline.o
 $(CC) $(CFLAGS) -s -o $(DEVDIR)/x10 \
x10.o xtwind.o devmain.o colortab.o \
editline.o -lX $(LIBS)

x10.o: x10.c
 $(CC) $(CFLAGS) -Dx_init=dinit -c x10.c

Since the X10 library cannot be linked to the same program that links to
the X11 library (due to name collisions and numerous other problems), this
driver must be a separate executable. Other drivers could share the same
name space as the rest of rview, but putting them in a separate executable
might still make sense if they are rarely used and/or take up a lot of program
memory whether they are used or not, as is the case with the SunView driver.
The special compilation of a separate driver executable requires redefining
the initialization routine because the main() function in
src/rt/devmain.c always calls dinit() as its driver initialization
routine. This shows up in the define used for compiling x10.o above.

The src/rt/Rmakefile variable DEVDIR determines where driver
executables are stored. This can be a standard location, but is usually a
subdirectory of the Radiance DESTDIR executable directory so that they are
not accidentally invoked by a user, and regular programs are not mistaken by
rview for drivers.

If desired, a driver compiled separately in this way may be entered into
devtable with comm_init() as its initializing routine so that it shows
up when rview -devices is run, but this is not necessary. Any driver given to
rview with the -o option that is not found in devtable will be handed to
comm_init() as a possible external driver program name.

Rendering Modules And Version String

Getting back to src/rt/Rmakefile, we see the definition of several
variables to hold the many source and object files of the rendering programs.
The commonalty between rtrace, rpict and rview is evident in the three
variables that define their differences:

__
Radiance Source Tree Roadmap Greg Ward Larson 12

RTOBJS = rtmain.o rtrace.o duphead.o persist.o \
preload.o $(ROBJS) Version.o

RPOBJS = rpmain.o rpict.o srcdraw.o duphead.o \
persist.o preload.o $(ROBJS) Version.o

RVOBJS = rvmain.o rview.o rv2.o rv3.o \
freeobjmem.o $(DOBJS) $(ROBJS) Version.o

Here we see that each program has its own special module, called
respectively, rtrace.o, rpict.o and rview.o. In addition, rtrace and
rpict link to duphead.o, persist.o and preload.o, which are
needed for persistent and parallel execution (the -P and -PP options). The
rview link includes rv2.o, rv3.o, freeobjmem.o and the device driver
objects (DOBJS) mentioned earlier. The module Version.o is special and
deserves some mention here.

The source file src/rt/Version.c indicates the current renderer
version, and usually looks something like this:

/*
 * This file was created automatically during
make.
 */

char VersionID[]="RADIANCE 3.1a lastmod Sat Jul 27
09:01:38 PDT 1996 by greg on hobbes";

This file is created automatically and is used to identify the particular
version of the Radiance renderer. In src/rt/Rmakefile, we see this
module is dependent on all the common rendering source and header files.
Thus, any change to any of the constituent source code will cause
src/rt/Version.c to be rebuilt with the name of the user compiling the
new version and when it was compiled.

Adding a New Primitive Type

One of the most common source modifications is adding a new scene
primitive type. This involves changes first to src/common/otypes.h,
where all the primitives are defined and named. This header file is used by a
number of Radiance programs, including oconv, xform and the renderers
rtrace, rpict and rview. If the new primitive being added is a material,
pattern or texture, it may not be necessary to modify the code to oconv or
xform unless changes in coordinates somehow affect the parameters, in

__
Radiance Source Tree Roadmap Greg Ward Larson 13

which case an appropriate routine must be added to src/gen/xform.c.
If the new primitive is a surface type, then it will be necessary to write an
octree intersection function in the src/ot/ directory as well as a
transformation routine in src/gen/xform.c.

A material, pattern or texture primitive means that new code must be
added to src/rt/ to implement whatever it is the new primitive does. A
new link is then added to src/rt/Rmakefile and
src/rt/initotypes.c.

Picture Filters and Translators

More programs are built in the src/px/ subdirectory than any other.
This is due partly to the many interesting and orthogonal operations that may
be performed on picture files, and partly to the plethora of other image
formats available for translation. In fact, the current release of Radiance
supports only a small subset of the existing image formats, and anyone who
wants to volunteer their services in creating new ones will get nothing but
encouragement.

Returning to our earlier expository style, we pick two programs from the
src/px/ directory and explain their compilations. The first program, pfilt,
is the main picture filter for anti-aliasing, exposure setting and resizing. The
command rmake pfilt yields the following:

% rmake pfilt
 cc -O2 -DALIGN=double -cckr -I../common \
-L../lib -c pfilt.c
 cc -O2 -DALIGN=double -cckr -I../common \
-L../lib -c pf2.c
 cc -O2 -DALIGN=double -cckr -I../common \
-L../lib -c pf3.c
 cc -O2 -DALIGN=double -cckr -I../common \
-L../lib -o pfilt pfilt.o pf2.o pf3.o -lrt -lm

From the src/lib/librt.a library, the following modules are also
loaded into pfilt:

__
Radiance Source Tree Roadmap Greg Ward Larson 14

badarg.c - check arg list against format
color.c - routines for scanline i/o
fropen.c - find and open a library file
fvect.c - routines for float vectors
getlibpath.c - return standard library path from
image.c - routines for image generation
lamps.c - load lamp data
resolu.c - read and write image resolutions
rexpr.c - regular expression parser
spec_rgb.c - convert colors and spectral
ranges
words.c - routines for recognizing words

Many of these modules are needed for reading lamp data for color
balancing. Specifically, fropen.c, getlibpath.c, lamps.c,
rexpr.c and spec_rgb.c are not needed except to support the pfilt -t
option. The main module needed are color.c for reading and writing
picture scanlines.

The second program we will look at is the image translator, ra_t8, which
converts Radiance pictures to and from 8-bit Targa format. The compile
looks like this:

% rmake ra_t8
 cc -O2 -DALIGN=double -cckr -I../common \
-L../lib -c ra_t8.c
 cc -O2 -DALIGN=double -cckr -I../common \
-L../lib -c clrtab.c
 cc -O2 -DALIGN=double -cckr -I../common \
-L../lib -c neuclrtab.c
 cc -O2 -DALIGN=double -cckr -I../common \
-L../lib -o ra_t8 ra_t8.o clrtab.o neuclrtab.o \
-lrt -lm

The module src/px/clrtab.c implements Paul Heckbert's median-
cut color quantization and src/px/neuclrtab.c implements Anthony
Dekker's neural-net quantization, respectively [Heckbert82][Dekker94].
(Thanks to both these authors for their help in implementing these routines.)
The other routines loaded from the standard library are:

color.c - routines for scanline i/o
colrops.c - integer operations on COLR data
header.c - information header i/o
resolu.c - read and write image resolutions

__
Radiance Source Tree Roadmap Greg Ward Larson 15

The routines in src/common/colrops.c are important for
improving the performance of the program by avoiding floating point
operations and conversions on the Radiance picture scanlines. These routines
are also used in the conversion of 24-bit color images, and a convenient
starting point for writing new image translators is the skeletal converter
src/px/ra_skel.c.

Utility Programs

The src/util/ subdirectory builds programs that do not fit
conveniently into any of the previous categories. Some of these programs
perform handy little functions like computing new views from old ones
(vwright), while others are executive interfaces capable of integrating and
coordinating other Radiance programs (rad, trad and ranimate). Since this
is really a miscellaneous collection, there are really no typical or unusual
programs. Instead, we give examples of two subclasses of utilities. The first
example is rpiece, a program that runs rpict to do something that it could not
do as easily by itself. The second example is an executive program that
coordinates rendering tasks, rad.

The program rpiece is a control program for running rpict in parallel on
one or more hosts. Its compilation looks like this:

% rmake rpiece
 cc -DALIGN=double -cckr -O2 -I../common \
-L../lib -c rpiece.c
 cc -DALIGN=double -cckr -O2 -I../common \
-L../lib -c Version.c
 cc -DALIGN=double -cckr -O2 -I../common \
-L../lib -o rpiece rpiece.o Version.o -lrt -lm

The only thing unusual about this compilation is the inclusion of
Version.c, which is actually a symbolic link to src/rt/Version.c,
the module automatically built during compilation of the renderers to indicate
what version of the software is being created. This is the only example of a
link to a source module someplace besides src/common/. This module is
used by rpiece to indicate the software version in the header of its output
picture.

As our example of an executive program in src/util/, we look at
rad, whose compilation looks something like this:

__
Radiance Source Tree Roadmap Greg Ward Larson 16

% rmake rad
 cc -DALIGN=double -cckr -O2 -I../common \
-L../lib -c rad.c
 cc -DALIGN=double -cckr O2 -I../common \
L../lib -c loadvars.c
 cc -DALIGN=double -cckr -O2 -I../common \
-L../lib -o rad rad.o loadvars.o -lrt -lm

The src/util/loadvars.c module is common to both rad and
ranimate, and contains routines for reading control files with variable
assignments, as described in their respective manual pages. Links to the
src/lib/librt.a library provide a few additional capabilities, but most
of the utility of this and the other executive programs is provided by the
running of the other Radiance programs such as oconv, mkillum, rpict and
pfilt.

Conclusion

We have given an overview of the principal Radiance source directories
and examples of some program compilations with the hope that this will start
the interested reader in their investigation of the code itself. We hope that the
relatively simple organization of the source code into a src/common/
subdirectory with shared headers and source files and six logically organized
program categories will simplify the understanding of the system. We did not
discuss the presence of other file types besides C program source, but certain
auxiliary files (e.g., *.cal), C-shell and Tcl/Tk scripts are included also in
the source directories either because they are needed by C programs or they
are program source in and of themselves.

	Radiance Source Tree Roadmap
	Scene Format Translators
	Generators and Scene Manipulators
	Scene Compilers
	Rendering Programs
	Picture Filters and Translators
	Utility Programs
	Conclusion

