
RADIANCE
System

Overview
• Collection of over 100 individual programs

• Programs communicate via standard file types

• Basic file types:
• Scene description files
• Function files
• Data files
• Font files
• Octree files (binary)
• Ambient files (binary)
• Picture files (binary)
• Plot files

• Basic operations:
• Generate a scene object, sky description, etc.
• Compile scene description into an octree
• Compute radiances, irradiances, glare, etc.
• Manipulate and plot computed values
• Render scene from a particular viewpoint
• Filter picture
• Display picture

• Import/Export options:
• CAD import translators
• Image import/export translators

Basic File Types

Scene Description Files
• ASCII files containing:

• Primitives
• Aliases
• Inline Commands
• Comments
• White Space (i.e. free format)

• A Primitive is a basic Radiance Object
• surface
• material
• pattern
• texture

Example

green sphere ball
0
0
4 10 15 -5 1.5

• An Alias associates a new name with
 a previously defined primitive

Example

void alias wall_color
 blue

Basic File Types Scene Description Files

• Inline Commands simply
 take the output of a command as
 more scene input

Examples

!gensky 6 21 12 -a 42 -o 118

!genbox white room 15 35 5 | xform -t -5 10 0

!xform -e -rz 60 -t 15 8 2 object.rad

• A Comment is any line beginning with a
 pound sign ('#') and is generally ignored

Examples

This is a comment which contains some
information that is useful to the user
but has no meaning for the software.
Comments cannot appear in the middle
of a primitive or alias or inline command.
Sometimes a program inserts a comment for
a special purpose, though it is usually
just to let the user know that it
generated the output being examined.

• White Space (i.e. spaces, tabs, newlines,
 form feeds) are used only to separate words

Example Scene:

this is the material for my light source:

void light bright
0
0
3 100 100 100

this is the material for my test ball:

void plastic red_plastic
0
0
5 .7 .05 .05 .05 .05

void alias ball_material red_plastic

here is the light source:

bright sphere fixture
0
0
4 2 1 1.5 .125

here is the ball:

ball_material sphere ball
0
0
4 .7 1.125 .625 .125

the wall material:

void plastic gray_paint
0
0
5 .5 .5 .5 0 0

a box shaped room:

!genbox gray_paint room 3 2 1.75 -i

Basic File Types

Function Files
• ASCII files defining variables and functions
 for procedural patterns and textures, data
 coordinate mapping, procedural surface
 definitions and data manipulation

• The expression language used by
 Radiance is a Turing-equivalent
 functional language

• Turing-equivalent is a fancy way of saying,
 "anything that can be expressed in a standard
 programming language can be expressed
 in this language"
• The term functional language means that the code
 consists of definitions of things in terms of
 other things rather than operations to be
 carried out in a particular sequence
• Execution is the result of some outside call
 for a particular evaluation, which precipitates a
 chain of evaluations yielding the desired result

• The basic data type understood and supported
 by the language is double precision real

• Externally defined variables and functions
 give the expressions meaning and power

{
 winxmit.cal - window transmittance function.

 Rdot is predefined as the cosine of the angle
 between the output direction and the surface
 normal (of the window).
}

winxmit = 1.018 * Rdot * (1 + (1 - Rdot*Rdot)^1.5);

Example Pattern Function:

Corresponding Scene Description:

skyfunc definition:
!gensky 7 12 +15 -a 42

window distribution function:
skyfunc brightfunc window_dist
2 winxmit winxmit.cal
0
0

light for window, using 88% normal transmittance:
window_dist light window_illum
0
0
3 .88 .88 .88

the actual window:
window_illum polygon window
0
0
12
 5 0 3
 10 0 3
 10 0 7
 5 0 7

{
 woodtex.cal - wood grain texture

 A1 = roughness (0 < roughness < 1).
}

xgrain_dx = 0;
xgrain_dy = A1 * Rdot * sin(wztexang);
xgrain_dz = A1 * Rdot * cos(wztexang);
wxtexang = PI * fnoise3(Px/10, Py, Pz);

Example Texture Function:

Corresponding Scene Description:

A woodgrain texture:
void texfunc xwoodtex
4 xgrain_dx xgrain_dy xgrain_dz woodtex.cal -s 0.1
0
1 0.3

xwoodtex plastic xwood
0
0
5 0.333 0.173 0.072 0.019 0.04

!genbox xwood box 10 5 8 -r .25

Basic File Types

Data Files

• A data file contains 1-dimensional (scalar)
 values on an N-dimensional grid

• Most data files are used for light fixture
 photometry, but they can be used to
 specify any pattern or texture

• Data files contain only ASCII encodings of
 integer and real numbers separated by
 white space (i.e. free format)

• The first number is an integer indicating the
 number of dimensions, followed by that
 number of dimension specifications,
 followed by the actual data

• A dimension specification is either a starting
 and ending value followed by the number
 of points, or two zeroes followed by the
 grid (ordinate) values

Example Photometry Data File (taskD.dat):

2
0 0 11
 0 5 15 25 35 45 55 65 75 85 90
0 180 5

229 229 229 229 229
244 240 228 219 213
280 262 222 193 181
329 284 208 165 153
386 318 190 138 126
345 316 169 109 100
211 209 140 76 70
113 99 89 45 40
65 48 29 20 21
25 18 4 6 7
1 0 0 0 0

Number of dimensions

Theta values, uneven steps from 0 to 90

Phi values, 0-180 by 45

Data values,
running through
phi at each theta

Corresponding Scene Description:

void brightdata light_dist
7 flatcorr taskD.dat source.cal src_theta src_phi2 -rz -90
0
0

light_dist light light_output
0
0
3 .0418 .0418 .0418

light_output polygon lens
0
0
12
 -18 11.75 -1.875
 18 11.75 -1.875
 18 6 -1.875
 -18 6 -1.875

The function flatcorr and the variables
src_theta and src_phi2 are defined in
the function file "source.cal" located in
the standard library directory

Basic File Types

• Font Files

• Octree Files

• Ambient Files

• Picture Files

• Plot Files

• ASCII integer encoding, white space delimited
• Defines polygonal glyph in [0,255] box for each character
• Used for text patterns and mixtures and by psign
• Currently only one text font provided, helvet.fnt

• Binary encoding (but portable between systems)
• "Frozen" form includes scene data in compact format
• Used to accelerate ray tracing and for instancing
• Data structure dependent only on geometry

• Binary but portable
• Contains view-independent illumination information
• Used for sharing data between views and processes
• Can be converted to/from ASCII form by lookamb

• Binary but portable
• Contains dimensions, orientation and RGBE 32-bit pixels
• Generated and used by renderers and filters
• Run-length encoding reduces file size

• Portable ASCII and binary files
• Contains 2-dimensional point and curve data and functions
• Used mostly by older metafile graphics programs
• Converters to PostScript and Targa for convenient output

Basic Operations

Generators

• genbox

• gensurf

• gensky

• xform

• Others

• Generates a rectangular box
• Options for beveled or rounded edges and corners

• Generates an arbitrary 3-dimensional surface
• Works from functions or data
• Optional smoothing (surface normal interpolation)

• Standard CIE clear, overcast or intermediate sky
• Options for latitude, longitude, time zone, etc.
• Absolute accuracy requires measured sky data

• Not really a generator -- used to move objects around
• Input is one or more Radiance scene files
• Supports arrays and, with inline commands, hierarchy

• genblinds
• gencat
• genprism
• genrev
• genworm
• replmarks

Venetian blinds
Catenary (e.g. hanging chain)
Arbitrary prism (i.e. extruded polygon)
Surface of revolution (using cones)
Curve with varying thickness (cone-spheres)
Replaces small polygons with objects

Basic Operations

Scene Compilers

• oconv
• compiles scene description files into an octree
• octree is required by Radiance for rendering
• octrees also used for instancing, creating object libraries
• oconv also allows incremental compilation
• options for maximum objects in set, maximum
 resolution, and scene boundaries

• getbbox
• computes bounding box for scene
• oconv computes bounding cube, so usually unnecessary
• much faster than oconv if only bounding box is needed

Basic Operations

Compute Values

• rtrace
• basic computation engine
• computes individual radiances and irradiances
• input and output in alternative formats
• many other values available as general ray query
• often run as subprocess by other programs

• mkillum
• computes output distributions of "secondary" sources
• input is Radiance scene description
• output is modified scene description and data files
• runs rtrace as a subprocess to do the real work

• findglare
• locates and quantifies potential glare sources in a scene
• input is Radiance octree and/or picture file
• output is list of glare sources and vertical illuminances
• output is used by glare evaluation program, glarendx
• runs rtrace to compute luminances not found in picture
• usually accessed through interactive front end, glare

This is covered later in
"Computing Other Values"

Basic Operations

Rendering

• rview
• interactive rendering program
• starts at low resolution, works to improve
• process may be interrupted with any command
• changes to scene require restarting program

• rpict
• batch rendering program
• most efficient in time and memory
• highest quality output
• can create multiple pictures for animation

• rpiece
• batch parallel and distributed rendering program
• breaks picture into small pieces
• calls rpict to render each piece
• cooperates across network file system
• most efficient on large, expensive pictures
• requires working NFS lock manager (rare, it seems)

Basic Operations

Filtering Pictures
• pfilt

• most basic and essential filter
• performs anti-aliasing through size reduction
• adjusts exposure
• removes Monte Carlo sampling artifacts (speckle)
• optional color correction and balancing
• optional star filter effects
• works on incomplete pictures

• pcomb
• general programmable filter
• takes any number of input pictures
• performs any operation that can be defined locally
• uses same expression language as function files

• Others
• normpat
• pcompos
• pflip
• protate
• psign

• pinterp
• takes one or more pictures and creates a new view
• usually used for interpolation of animated frames

"normalize" a picture for use as a pattern
general picture cut and paste
flip a picture left to right, top to bottom
rotate a picture 90 degrees clockwise
create a picture with some text

Basic Operations

Getting Information

• getinfo
• reads the standard ASCII information header
 in a Radiance binary file
• can read bounding cube from an octree
• can read image dimensions and orientation
 from a picture

• lampcolor
• computes RGB radiance of light source
• takes simple geometric dimensions and lamp type
• useful in creating simple diffuse light sources

• pextrem
• finds minimum and maximum pixels in a picture

• raddepend
• finds scene file dependencies
• calls getbbox then checks file access times

• lookamb
• converts Radiance ambient files to/from ASCII form

Import/Export:

Input Translators

• CAD Data Files

• arch2rad
• archicad2rad
• dxfcvt
• thf2rad

• CAD Internal Export Functions
• Vision3D is a shareware CAD program with Radiance export
• DesignStudio is a commercial CAD package with export
• torad is an AutoLISP program that loads directly into AutoCAD

imports Architrion text format files
imports ArchiCAD RIB files
imports AutoCAD version 10 DXF files
imports GDS things files

• Geometry Data Files
• tmesh2rad converts triangle mesh data to Radiance

• Luminaire Data Files
• ies2rad converts IES standard luminaire files to Radiance

Import/Export:

Image Translators
• The following translators convert from Radiance

• ra_pict
• ra_pixar
• ra_ps
• ra_gif

Macintosh PICT2 (24-bit) format
PIXAR image format
PostScript 8-bit greyscale
Compuserve 8-bit GIF

• The following translators convert both ways
• ra_bn
• ra_ppm
• ra_pr
• ra_pr24
• ra_rgbe
• ra_t16
• ra_t8
• ra_tiff

Barneyscan format
Poskanzer Portable Pixmap format
Sun 8-bit rasterfile format
Sun 24-bit rasterfile format
Radiance uncompressed format
Targa 16-bit and 24-bit formats
Targa 8-bit format
Tagged Image File Format (greyscale and 24-bit)

General Capabilities
and Features

• Accurate calculation of luminance

• Models both electric light and daylight

• Supports a variety of reflectance models

• Supports complicated geometry

• Takes unmodified input from CAD systems

• most basic lighting unit
• ∫ Luminance = Illuminance
• luminance "map" = picture

• uniform treatment of illumination sources
• not limited to terrestrial simulations

• reflectance can be any arbitrary BRDF
• arbitrary transmittance functions also
• optimized calculation for common materials

• curved surfaces and detailed geometry
• no limit to geometric complexity other than memory
• calculation time grows slowly with number of surfaces

• no meshing or joining of surfaces necessary
• no unreasonable surface-normal orientation requirements

General Capabilities
and Features

• Light-backwards ray-tracing technique
• start from point of measurement
• work backwards towards light source(s)
• main advantage is efficiency for radiance calculations
• hierarchical octrees produce fast ray intersections
 in complicated environments

• Efficient calculation of indirect illumination
• indirect irradiance values are calculated only as needed
• values are stored and interpolated
• interpolation uses gradient formula for better accuracy
• values are view-independent and reusable

• Efficient calculation of direct illumination
• adaptive sampling for scenes with many light sources
• automatic subsampling of large area sources
• automatic processing of "virtual" light sources
• user-directed processing of "secondary" light sources

• Support for color, patterns and textures
• uses basic RGB color model
• patterns and textures may be procedural or data-driven
• patterns also used for light source output distributions

• Parallel processing support

Calculation Procedures

• Monte Carlo indirect calculation

• Deterministic direct calculation

• User-directed processing of "secondary" sources

• standard Monte Carlo techniques are too expensive, so...
• indirect irradiance values are "cached" and interpolated

• rays are followed directly to light sources
• when there are many sources, only some rays are followed
• especially large sources are subdivided for better sampling
• reflected rays are follwed towards "virtual" light sources

• windows, skylights, etc. pose a special sampling problem
• better efficiency is achieved by treating them as sources
• the user specifies which surfaces to treat, Radiance
 does the rest

Q: What is being computed?
A: Light bouncing around until it hits a certain point.

Q: What is the most straight-forward calculation?
A: A Monte Carlo simulation of photons, i.e.

...and repeat about a billion times!

Calculation Procedures

Monte Carlo

Eye

Light source

Q: Is there a faster way?
A: Almost anything would be faster. One simple
 trick is to start from the eye instead of the
 light source. That way, we only calculate those
 rays which are likely to affect the final result, i.e.

Eye

Light source

Calculation Procedures Monte Carlo

Q: That looks too easy. Aren't we forgetting
 something?
A: Yes, we are. Diffuse interreflection between
 surfaces is being left out.
Q: What do we do about it?
A: We go back to Monte Carlo, but only every
 now and then, i.e.

Eye

Light source

...notice that only some of the rays traced from
 the eye result in Monte Carlo evaluations

Calculation Procedures Monte Carlo

Direct

Q: What is meant by the "direct" component?
A: It is that component that arrives (more or
 less) directly from light sources.

Q: Why is the direct component treated
 separately?
A: Because its contribution is the most
 significant and if it is computed carefully,
 the whole calculation will be more efficient.

Q: What is a light source in Radiance?
A: Light sources include the usual electric
 lights, sun, certain specular reflections
 of light sources, and sometimes window
 systems and skylights. They are recognized
 by their material type.

Q: When is the direct component computed?
A: Every time a ray reaches a scattering
 surface.

Calculation Procedures

Calculation Procedures Direct

• Source sampling would normally grow
 linearly with the number of light sources

• We want to avoid linear growth, so we
 only sample those sources which might
 have significant influence on the current point

Test Point

Spot pointed
 at us

Spot pointed
 away from us

Bright, distant
 source

Dim, distant
 source

Source
behind us

Occluding object

Q: Which sources should we test?

Potential Visibile?

Yes

No

No

Yes

Sum of Tested

1053

750

600

520

100

30

11

6

2

0

0

1573

x 0.65

30%

100%

20%

60%

15%

90%

75%

Remainder Estimate

43

Maximum Remainder

149

90%

55%

65%

95%

History

Calculation Procedures Direct

Q: How do we make these determinations
 in general?
A: We sort potential direct contributions
 and test them in order, i.e.

Calculation Procedures Direct

• Large sources are adaptively subdivided

• A source that is small relative to its
 distance will not be subdivided

Calculation Procedures Direct

Mirror

Virtual source caused
by mirror reflection.

Source reflection in mirror A
cannot intersect mirror B, so no

virtual source is created.
A

B

Source rays cannot reach
mirror surface, so no virtual
source is created.

• Virtual Light Sources

Calculation Procedures

Secondary Sources

• Secondary sources are objects
 that for one reason or another transfer
 a large amount of light into our space

• Radiance does not have the intelligence
 to figure out what objects should and
 shouldn't be treated as secondary sources

• It is therefore up to the user to decide if
 and when an object should be made into
 a secondary light source

• It is not technically necessary to do
 anything special about such objects,
 but it can make the calculation more
 efficient

• Once the user has submitted an object for
 treatment as a secondary source, mkillum
 computes its distribution and the
 renderers do the rest

Calculation Procedures Secondary
Sources

Mirrored upper surface

Light distribution
on window

Light distribution
on ceiling

A crossection of office space
with mirrored light shelf

Validation Work

• Radiance has been compared to measurements
 and to other simulation programs

• An initial validation study compared Radiance
 to Lumen Micro, SUPERLITE , and scale
 models measured in a sky simulator

• A more recent study compared Radiance
 calculations to scale model measurements
 taken under beam illumination

• Another form of validation compared
 Radiance renderings to actual photographs

• Others have also compared Radiance to
 their own simulations and measurements

	RADIANCE System Overview
	Basic File Types
	Scene Description Files
	Function Files
	Data Files
	Other File Types

	Basic Operations
	Generators
	Scene Compilers
	Compute Values
	Rendering
	Filtering Pictures
	Getting Information

	Import/Export:
	Input Translators
	Image Translators

	General Capabilities and Features
	Calculation Procedures
	Monte Carlo
	Direct
	Secondary Sources

	Validation Work

