
Image Mapping

Matiu Carr∗

May 2, 2008

Figure 1: Image mapping

1 Introduction

The mapping of bitmaps (two dimensional arrays of colour values) to surfaces
in the Radiance application involves the use of the colorpict pattern type.

As described in the manual it takes the form

modi�er colorpict pattern_name

7[+] redfunc greenfunc bluefunc imagename func�le ufunc vfunc [trans.]
0
A1 A2 A3 ...An

∗PDF by Axel Jacobs

1

gward
Text Box
Nov. 14, 1993

Colorpict is a pattern: it is used as a modi�er for a material, which can then
be applied to a surface. By itself it will produce no visual results.

Colorpict brings together a set of functions, stored in the �le func�le, and
applies these to the bitmap imagename.

Func�le is a text �le. Picture.cal and cyl_wrap.cal are examples of �les that
contain function de�nitions for use with colorpict, they are appended to the
example Radiance script below. The manual describes these function �les as
auxilliary �les.

The functions contained within the function �le transform the colour of the
image (redfunc, greenfunc and bluefunc: function �les that can modify the red,
green and blue components of the pixels in an image), and its geometry (ufunc
and vfunc).

Ufunc and vfunc provide the means by which Radiance indexes into a bitmap
during the rendering process.

2 Example

a blue sky with white clouds
void colorfunc skycolour1
4 cloud cloud one cloudy.cal
0
0

use the colour maps to create glow sources (no shadow casting)
skycolour1 glow skyglow1
0
0
4 1 1 1 0

create the sky
skyglow1 source sky
0
0
4 0 0 1 360

the other stu�:

a light source
void illum sun_light
1 skyglow1
0
3 1.2 1.2 1.2

sun_light source sun
0
0
4 1 1 2 180

2

a plane
an object

materials:

a general shiny (glossy) material
void plastic shiny
0
0
5 1 1 1 .1 0

a tile picture mapped onto a horizontal plane
this serves as an example of a tiled bitmap
shiny colorpict �oor
9 red green blue marble_�oor.pic picture.cal tile_u tile_v -s 2
0
1 1

Figure 2: Marble �oor

a general white material
void plastic white
0
0
5 1 1 1 0 0

a wood picture wrapped around a cylinder
this serves as an example of a bitmap mapped cylindrically to a surface
white colorpict wood
9 red green blue wood.pic cyl_wrap.cal u v -s 3.5
0
2 590 290

3

Figure 3: Wood

a scanned image mapped onto a wall behind the wooden wobbly thing
this is an example of speci�cally positioning a bitmap in space
white colorpict fresco
17 red green blue klimt.pic picture.cal pic_u pic_v -s .75 \
-t -.375 .35 0 -rz 180 -rx -90
0
1 2

Figure 4: Gustav Klimt: Danae

an image to provide a backdrop cylindrically mapped to a large tube
void colorpict hillspic
13 red green blue hills.pic cyl_wrap.cal u v -s 20 -t 0 0 -10
0
2 773 200

4

Figure 5: Panorama of hills

hillspic dielectric hills
0
0
5 1 1 1 1 0

the geometry
�oor ring ground_plane
0
0
8 0 0 0
0 0 1
0 30

!genbox wood lintel 4 .05 .2 |xform -t -2 -1.525 3
!genbox wood lintel 4 .05 .2 |xform -t -2 -1.025 3
!genbox wood lintel 4 .05 .2 |xform -t -2 -0.525 3
!genbox wood lintel 4 .05 .2 |xform -t -2 -.025 3
!genbox wood lintel 4 .05 .2 |xform -t -2 .475 3
!genbox wood lintel 4 .05 .2 |xform -t -2 .975 3
!genbox wood lintel 4 .05 .2 |xform -t -2 1.475 3

!genrev wood wobble '2*t' '.15+.1*sin(t*PI*8)' 32 -s

fresco polygon picture
0
0
12 -.375 -1.299 .25
.375 -1.299 .25
.375 -1.299 1.75
-.375 -1.299 1.75

hills tube distant_view
0
0
7 0 0 0
0 0 20
30

5

3 picture.cal

Picture.cal is a standard set of functions provided as part of the Radiance
distribution.

Two useful sets of function de�nitions are the pic_u,pic_v and tile_u,tile_v
pairs.

The pic_u,pic_v pair map the image into space such that it lies parallel to
the XY plane, with the bottom left hand corner of the image sitting on the Z
axis (ie. x=0,y=0).

The smallest dimension of the image (in the case that the image is not square)
will now have a length of 1 unit in Radiance space, while the larger will have
a length equal to the ratio of the longest dimension to the shortest.

It is then possible to scale and move this image through space using the trans-
formation tools available in Radiance.

The positioning of the Klimt image (Danae) is an example of this procedure.
Imagine the image placed at the origin. It is twice as tall as it is wide. This
means that in Radiance space it is 1 unit long and 2 units tall. The �rst
transformation performed is -s .75. This scales the image down 75% about the
origin. The next transformation moves the image so that the Y axis passes
through its centre. It is then rotaed 180o about the Z axis followed by a 90o

rotation about the X axis to bring it to an upright position, with its base 0.35
units above the origin.

Figure 6: Transforming the Klimt image

6

Having positioned the image here, imagine a tube extending perpendicular to
the image in both directions with a rectangular section the same as the pro�le
of the image. This de�nes the space within which the image will map on to
surfaces: ie. any surface that has this pattern assigned to it will have the
image mapped onto it where it cuts this tube.

Where a surface falls outside of this image space it is coloured black, sometimes
punctuated with �ecks of colour from the edges of the image.

Figure 7: Mapped image

The tile_u, tile_v pair is similar to the pic_u, pic_v pair except that the
image is tiled to in�nity in the plane of which it forms a subregion.

The image is placed at the origin as with the pic_u, pic_v pair.

The tile_u, tile_v pair requires a parameter. This is a real number equal to
the ratio of the longest side length to the shortest (in the diagram above this
would be /). This ratio (once again as it was with the pic_u, pic_v pair)
determines the size of the image (in Radiance units), as it is mapped into the
space of a scene.

The checkered �oor pattern in the example script places a square image of
a chessboard pattern, doubles its linear dimensions (so that each checker is
0.25 Radiance units long) and applies this image map to a prede�ned shiny
material, all to create the e�ect of a polished marble �oor.

7

Figure 8: Tiling an image

{
picture.cal

Calculation of 2d picture coordinates.
Picture is projected onto xy plane with lower left corner at origin.

A1 Ratio of height to width for tiles.
A2 Average red value for fadered or grey for fadegrey
A3 Average green value for fadegreen
A4 Average blue value for fadeblue
}

pic_u = Px;
pic_v = Py;

tile_u = mod(pic_u,max(1,1/pic_aspect));
tile_v = mod(pic_v,max(1,pic_aspect));

match_u = tri(pic_u,max(1,1/pic_aspect));
match_v = tri(pic_v,max(1,pic_aspect));

stag_u = if(pic_aspect - 1,
frac(if(frac(pic_v/pic_aspect/2) - .5,pic_u,pic_u+.5)),
mod(if(frac(pic_v/2) - .5,pic_u,pic_u+.5/pic_aspect),
1/pic_aspect));
stag_v = tile_v;

pic_aspect = if(arg(0) - .5, arg(1), 1);

fadered(r,g,b) = fade(r, A2, T*.1);
fadegreen(r,g,b) = fade(g, A3, T*.1);
fadeblue(r,g,b) = fade(b, A4, T*.1);
fadegrey(r,g,b) = fade(grey(r,g,b), A2, T*.1);

8

4 cyl_wrap.cal

Cyl_wrap.cal is included here as an example of an image mapping auxiliary
�le not included as part of the standard Radiance distribution.

Conceptually this mapping procedure takes an image and rolls it around the
z axis such that it will be "the right way around" when looked at from the
outside.

As mentioned above, the ufunc, vfunc functions determine how an image is
indexed according to particular conditions during rendering.

The diagram below shows the outline of an image, de�ned by vertices abcd.
The x (or horizontal) dimension of the image is given by . The y (or vertical)
dimension is given by .

Lets call the ratio of the larger dimension to the smaller of this image rect.

So, for this particular image: rect = /

Image mapping in Radiance, treats the image as a rectangular �eld of colour
values indexed by coordinates u and v, where u serves as the horizontal index,
and v as the vertical.

If the horizontal dimension of the image is the smaller then u extends from 0
to 1 and v extends from 0 to rect. If the vertical dimension is the smaller, this
is reversed.

Ufunc and vfunc must produce values within these ranges to yield a "sensible"
result.

Figure 9: uv mapping

Cyl_wrap.cal uses the point where a ray hits the surface with the image
mapped onto it (given by Px,Py,Pz), to calculate the values for u and v. v

returns a value equal to Pz.

9

u, on the other hand, has a more complex derivation. Imagine a line drawn
from the origin of a plane to the point Px,Py.

Let us call the smallest angle formed between this line and the ray starting at
the origin and running along the positive x axis theta.

Now let us give theta a sign according to whether the line from the origin to
Px,Py is above or below the x axis: positive for above, and negative for below.

u is given by multiplying the ratio of theta to the angle of a full revolution
(2π) by the maximum value that u can have (1 or rect -as de�ned above).

Figure 10: Cylindrical mapping

By scaling and translating the original mapping space, it is possible to posi-
tion the cylindrical map anywhere it is needed, and, as with the functions in
picture.cal, the mapping projects through space.

Cyl_wrap.cal is used in the example to map a wood pattern onto the tall vase
in the centre of the composition, and this mapping is used again for the rafters
hovering above the assemblage.

A small picture of hills around Helensville is wrapped around the inside of a
large tube enclosing the model, giving the e�ect of a

{
cyl_wrap.cal
by Matiu Carr

10

2d coordinate mapping onto a cylinder

A1 = x dimension of picture
A2 = y dimension of picture
}

pPx = if(Px-FTINY,Px,if(Px+FTINY,FTINY,Px));

theta = atan2(Py,pPx);

u = theta* if(A1-A2,A1/A2,1)/(2*PI);
v = Pz;

11

	Introduction
	Example
	picture.cal
	cyl_wrap.cal

