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ABSTRACT

A new method for improving the accuracy of a diffuse interreflection calculation
is introduced in a ray tracing context. The information from a hemispherical sampling
of the luminous environment is interpreted in a new way to predict the change in irra-
diance as a function of position and surface orientation. The additional computation
involved is modest and the benefit is substantial. An improved interpolation of irradi-
ance resulting from the gradient calculation produces smoother, more accurate render-
ings. This result is achieved through better utilization of ray samples rather than addi-
tional samples or alternate sampling strategies. Thus, the technique is applicable to a
variety of global illumination algorithms that use hemicubes or Monte Carlo sampling
techniques.

1. Introduction

Global illumination can be simulated using both ray tracing and radiosity algorithms. Both approaches
typically rely on calculations of patch irradiances which are used to revise other patch irradiances itera-
tively or to render a final imaget. In most radiosity algorithms, patch radiosities are considered
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tirradiance is the energy flux per unit area arriving on a surface. Radiosity is the emissive flux per unit area, plus the
irradiance times the diffuse surface reflectance.



constant during the solution stage, and bilinear interpolation (Gouraud shading) is used to compute pixel
values during rendering. It has been shown that these piecewise-constant approximations are quite inac-
curate, and that much more accurate approximations can be simulated using linear, quadratic, and
higher order approximation [Heckbert91b]. Linear approximations have recently been implemented for
3-D radiosity [Max92] and 2-D radiosity [Heckbert91a] [Lischinski91].

Higher order approximations require more information about the irradiance function in order to be
worthwhile, however; one must increase either the number of samples or the information content of
each sample. If higher order interpolation were used without additional information, the resulting shad-
ing would look smoother, but it would be objectively no more accurate than standard bilinear interpola-
tion.

Rather than increase the number of samples, as more brute-force algorithms have done, our method
increases the information content of each sample to include estimates of the first derivative, or gradient,
of the irradiance.

In this paper, we will show how the irradiance gradient at a point can be computed during a standard
Monte Carlo evaluation of irradiance at almost no additional cost. The key to this innovation is the
wealth of information contained in a sampling of the hemisphere. During the sampling process, the dis-
tances, brightnesses, and directions of the visible surfaces are all known, and from this knowledge it is
possible to deduce with reasonable accuracy how the irradiance will change with respect to position and
orientation of the test surface element. The gradient approximation given here is based on minimal,
intuitive assumptions of geometric continuity.

Knowing the irradiance gradient along with the irradiance value at a point allows us to justify a bicubic
or like-order interpolation method, and produces not only smoother but significantly more accurate
results. The irradiance gradient method will be demonstrated in the context of a meshless irradiance
caching scheme [Ward88b], though the technique may also be applied in mesh-dependent radiosity
algorithms.

2. The RADIANCE Simulation

Radianceis a physically-based lighting simulation system developed over the past seven years at the
Lawrence Berkeley Laboratory in California and the Ecole Polytechnique Federale de Lausanne in
Switzerland. The software is free and publicly available from anonymous ftp sites at both locations.
Since the algorithm described in this paper has been implemented in the contextRddiancepro-

gram, it is necessary to briefly explain the workings of this simulation before delving into the irradiance

gradient calculation itself.

Radianceis basically a light-backwards ray tracing program [Whitted80] that uses irradiance caching to
efficiently account for diffuse interreflection between surfaces. The basic algorithms usatiance
are described in [Ward88a] and a general overview of the software is provided in [Ward90]. Basically,
Radianceuses ray tracing in a recursive evaluation of the radiance equationt:
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where:

0 is the polar angle measured from the surface normal

¢ is the azimuthal angle measured about the surface normal

L, (6,,@¢) is the reflected radiance (watts/steradian/n‘?eter in Sl units)

L;(6;,@) is the incident radiance

f(6;,9:6, ,@) is the bidirectional reflectance-transmittance distribution function (ster'&dian )

TThe radiance equation is essentially Kajiya's rendering equation [Kajiya86] with the notion of energy transfer between
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To reduce the variance between samples and speed convergence of Monte Carlo integration, light
sources are accounted for separately using an adaptive sampling scheme [Ward91]. As in most ray
tracing algorithms, specular contributions are computed with separate rays in the appropriate directions.
Once the direct and specular contributions have been removed from the integral, the indirect diffuse
contribution is computed using a Monte Carlo sampling of the hemisphere. Since this "indirect irradi-
ance" value is view-independent, and it changes slowly over surfaces in most scenes, it is more efficient
to perform the calculation only occasionally, caching the computed values for local interpolation. This
caching of irradiance samples is a significant optimization of more brute-force Monte Carlo ray tracing
algorithms such as Kajiya's [Kajiya86].

In the meshless caching scheme described in [Ward88b], the location of the computed indirect irradi-
ance values is determined by the proximity and curvature of the surfaces, and does not fall on a regular
grid, so a weighted sum is used in place of a more standard bilinear interpolation. Furthermore, since
values are only computed as needed by the algorithm, extrapolation may occur in a region where no
previous values existed, until the need for a new value is strong enough to trigger another Monte Carlo
calculation. This process can result in some rather disturbing artifacts in a single pass scanline render-
ing, as shown if_Figure da. The commonly applied solution to this problem involves a low-resolution
overture calculation to fill the desired view with indirect irradiance values prior to the final high-
resolution pass. Although this prepass requires only a modest additional expense, it is rather annoying
that it should be required by an otherwise elegant rendering algorithm.

The benefit of calculating the irradiance gradient is two-fold for the caching scheme udraldignce.

First, we are able to produce more accurate interpolated values because we can use the gradient infor-
mation effectively in a higher order interpolating function. Second, we are able to produce more accu-
rate extrapolated values and thus greatly reduce caching artifadts. _Figdre 1b shows the same single-
pass calculation, this time using estimates of the irradiance gradient to more accurately extrapolate
values in unsampled regions of the image. We emphasize that the second image took approximately
the same time to produce as the first, and used the same hemisphere samples to compute the irradi-
ances. The only difference is that the second image extracted additional information from the hemi-
sphere samples to deduce the irradiance gradient at each sample point, and these gradients were used to
better interpolate and extrapolate irradiance values for the image. (Since the test environment contains
no specular surfaces and no direct illumination sources, changes in the diffuse interreflection calculation
are more evident here than in most scenes.)

plots interpolated irradiance values for a vertical line passing just under the right side of the
sphere. The difference between the actual irradiance and the cubic interpolation is too small to see in
this plot, but the poor match of the linearly interpolated irradiance is clearly evident. The relative
errors shown il Figure 1d amply demonstrate that a cubic interpolation of irradiance based on gradient
information is much more accurate than a standard linear interpolation.

2.1. Indirect Irradiance Calculation

The indirect irradiance is calculated iRadiance using a fixed number of samples in a uniformly
weighted, stratified Monte Carlo sampling:

M-1N-1

LS
E=——5 3L )
MN i3 k=0 ]

where:
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L « is the indirect radiance in the directiof; (@) = |sin BYE 21 N

X;,Y are uniformly distributed random variables in the range [0,1)

two points replaced by energy passing through a point in a specific direction.



M-N is the total number of samples ahd= 1M

Note that sample rays that intersect light sources must be excluded from the above summation because
direct illumination is accounted for in a separate step. The resulting sum is the indirect contribution to
irradiance at a specific point on a surface.

Irradiance samples, consisting of a point, a normal vector, and an irradiance value, are stored in an
octree for later interpolation. This irradiance octree is separate from the octree used to optimize ray-
surface intersection. In the original implementation, interpolation was a simple weighted sum over
usable irradiance values. The weight of a sample decreased as the interpolation point or normal vector
deviated away from the sample’s point and normal. A sample was considered usable if the estimated
error of its contribution to the approximation was less than a user-specified accuracy tolerance. The
error was estimated from the local geometry using the "split sphere model" to compute an upper bound
on the magnitude of the irradiance gradient.

The split sphere model is only a crude estimate of the gradient magnitude. It may be sufficient to
decide the spacing of irradiance calculations, but to improve our interpolation we need to know the
actual irradiance gradient, not just a directionless upper bound. Fortunately, the information we need is
already contained in the hemisphere sampling.

3. The Gradient Calculation

Since the irradiance in a scene is a function of five variables, three for the position and two for the
direction, the irradiance gradient should be a five-dimensional vector. For computational convenience,
we will compute instead two separate three-dimensional vectors. One will correspond to the expected
direction and magnitude of thetational gradient and the other to the direction and magnitude of the
translational gradient. Both gradient vectors will lie in the base plane of the sample hemisphere,
which is the tangent plane of the sample. Thus, each vector will in fact represent only two degrees of
freedom. This representation of the gradient is used because we only interpolate across a surface.
Furthermore, the irradiance above and below most surfaces is discontinuous, and the gradient with
respect to displacement in the polar direction is therefore undefined.

Our calculations of the rotational and translational irradiance gradients are based on very simple obser-
vations about the sampled environment. The sampling of rays over a hemisphere tells us much more
than the total light falling on the surface. It tells us the distance, direction, and brightness of each con-
tribution.

The directions and brightnesses tell us how irradiance changes as the sample hemisphere is rotated
because they indicate how the cosine projection of those contributions affects the overall sum. To take
a simple example[_Figure |2a shows a single contributing surface. The background is assumed to be
darker than the surface. If we rotate our sample hemisphere to face this surface, its contribution
becomes proportionally larger than other contributions. If we rotate away from the surface, its overall
contribution is diminished. By summing over all such potential changes, we can compute the total rota-
tional gradient for the hemisphere.

For the translational gradient, the distances to the contributing surfaces must be considered because
occlusion plays an important role. [n_Figure]2b, a darker surface occludes a brighter surface in the
background. As the sample hemisphere is moved to the right in the diagram, the influence of the
brighter background surface becomes stronger, and therefore the translational gradient is positive in this
direction. By summing over at all such changes, we can compute the overall gradient with respect to
translation.

As an example of the kind of information available during the hemisphere sampling, see Figure 3. Fig-
ure[3h shows a projected hemisphere as seen from a point on the floor of a conferencg room. Figure 3b
is a false color image showing the distances to the surfaces as determined by a ray tracing calculation.
If we were to move towards the chair in the upper left of the image, we would note a decrease in the
overall irradiance as the chair's dark underside covered more of our view of the celling. Fidure 3c
shows a uniformly weighted stratification of about 2000 samples as computed byRab&nce



interreflection calculation. Notice that the light sources appear dark, as they must be excluded from the
indirect contributions. Notice also that this image appears very crude as a rendering, yet it contains
many more samples than are typically used to calculate the indirect irradiance.

3.1. The Rotational Gradient

The rotational gradient formula simply sums the differential of the cosine for each contribution sample.
For the hemisphere sampling given in Equation (2), the formula is:
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M-1
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where:
Vi is the base plane unit vector in tigg + % direction

The tangent function appears in the summation because the differential of the cosine is negative sine
and our sampling contains the cosine weighting implicitly, thus it is necessary to multiply the sample
values by the tangent (sine over cosine) to get back a sine weighting.

3.2. The Translational Gradient

To compute the translational irradiance gradient, we consider how the projected solid angle of each of
the MN hemisphere cells is affected by a translation of the hemisphere center. The change in projected
solid angle, when multiplied by the radiance of a cell, will give the change in that cell’s contribution.
This rate of change is determined in part by the distance to the contributing surface. The closer the
surface, the higher the rate of change with respect to a displacement perpendicular to the boundary
between neighboring cells. In fact, it is always the distance toctbser surface that determines the

rate of change in occlusion, since the relative motion of a foreground surface is greater than that of a
background surface.

shows the projection of a stratified hemisphere sampling onto the tangent plane of the surface.
Each cell has an equal projected solid angle ﬂ’ﬁ;N—steradians), thus each cell should cover the same

area in this diagram. To determine how the irradiance changes with translation in this tangent plane,
we sum the marginal changes for each cell. For cell (j,k) shown in the diagram, we consider two
approximately perpendicular directions. (Note that we have shown the sample direction at the center of
the cell, but in fact it lies at some random location in the cell.) One direction is polar, the other is
azimuthal. Computing the marginal change in irradiance for this cell reduces to computing the margi-
nal change in the two highlighted cell walls with respect to translation.

The change in irradiance with respect to translation for each cell wall is simply the length of the cell
wall multiplied by the rate of motion of the wall with respect to motion in a specific direction. For the
wall separating the two adjacent cells with the sayethe length of the cell wall is given by the
integral of cosf) from 6; to 6, . This is simply (si); - sing ). For motion perpendicular to this

wall (ie. in the directionvy_ defined below), it is simple to show that motion of the cell wall is propor-
tional to ¥Min(rj . k-1), Wherer;  is the intersection distance in cell (j,k). Thus, the change in irra-
diance with respect to motion along_for cell (i,j) is:

Sin61-+ - Sirﬁj_

Min(rj i, T k-1)

{ —
Lk — Ljx)

Since we have computed the change in the location of the cell wall, we must use the difference in the
adjacent radiance samples to determine how this will affect the overall irradiance sum.

For the cell wall separating the two adjacent cells in the polar direction, the length of the cell wall is

ZN—nsirBJ—_. The motion of the wall with respect to the vector perpendicular to itdjedefined below)



Figure @. Cells of an example hemisphere sampling.

cogH;
i- . . . .
W One cosine comes from the projection of the hemisphere’s tangent into the
ikolj-1k)
plane, and the other cosine comes from the reduced chanfeasa function of angle. (A rigorous
proof of this formula is left as an exercise for the reader.) Combining these terms, we arrive at the fol-

lowing formula for the change in irradiance with respect to motion al@népr the cell (i,j):
21 Sinej_'COS’Zej_
—_— (i —Li-

N Mln(rj’k,rj_l’k) ik ! l’k)

Combining these terms into a sum over all cells, we arrive at the following formula for the translational
irradiance gradient:

is equal to

. N-1| orM-1 SinG; -cOSH;_ M-1 Sin;, — sing;_

E= Oc—— - Lk — Lj-ix) + Vi - Lk = Ljx-2 4)
t kgo N ng Mln(rj‘k,rj_lyk) ! i1 _jgo Mln(rj'k,rj'k_l) o !

where:

Uy is the unit vector in thep, direction

Vk_is the unit vector in thep, + g direction
. - g L
8;_is the polar angle at the previous boundary; ’s'\y( M

8;, is the polar angle at the next boundary,‘%‘k/%
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@_is the azimuthal angle at the previous boundany%

I is the intersection distance for cell (j,k)

This summation has been regrouped to usedifferencesin radiance between neighboring samples,
summing over the boundaries rather than the cells themselves. This yields a much simpler formula.

3.3. Applying Gradients to Interpolation

If the irradiance were being interpolated on a mesh, it would be straightforward to apply the rotational
and translational gradients in a bicubic interpolation. However, the meshless interpolation used by
Radiancedemands a slightly different approach. The method we have chosen uses the same weighted
average and even the same weights as the original method, but with the irradiance values adjusted by
their corresponding rotational and translational gradients. This in effect increases the order of the inter-
polation. The interpolation does not have a polynomial basis, however, so it is difficult to compare to
more conventional forms.

The irradiance interpolation using the gradient vectors calculated by Equations (3) and (4) is as follows:
>w(P) | E + (A xn)0E + (P-P)OE
S

E(P) = 5
® 2 wi(P) ©
S

W (P) = ———— 1 = weight of sampld
[P -Pil N
|

P is the test point position

fi is the surface normal at the test point

E; is the irradiance value at samgle

P, is the position of sample

fi is the surface normal at samile

R is the harmonic mean distance to objects visible figm
Sis the set of valid irradiance value§,:w; (P) > Ya}

a is a user-selected accuracy goal

Note that our calculation of the irradiance gradient is not used to determine the spacing of samples.

Such an approach would tend to bias the calculation, since areas that just happened to have small irradi-
ance gradients would be sampled at low density, even though there could still be sudden changes in the
irradiance value due to nearby surfaces. It is better to use the split sphere model to respond to the larg-
est expected gradient in determining the sample density, so that we do not miss anything important.

However, we may still want to use the more accurate formula (4) to increase the sample density where

the split sphere model underestimates the gradient.

The interpretation of the irradiance gradient allows one to perform the calculation separately for each
sample wavelength, or to combine into a spectral average. The latter was chosen for our implementa-
tion to save on storage costs, although this may be an unwarranted compromise in some contexts.



4. Conclusion

The irradiance gradient can be calculated from the same hemisphere samples used to compute the point
irradiance. The extra computational cost is negligible compared to the cost of computing the samples,
and the benefit is greatly improved interpolation accuracy. This may sound like we are getting some-
thing for nothing, but in fact we are only better utilizing the information already available from a hemi-
sphere sampling.

shows a room with daylight entering through a doorway. This image was computed without

irradiance gradients in a two-pass calculation using interpolated values. Fidure 5b shows the same
scene rendered using irradiance gradients to effectively increase the order of interpolation. Notice that
the second image is smoother around the doorway, where the indirect component is most influential.
Both images took roughly the same time to compute.

The gradient calculation as described in this paper is appropriate to any global illumination method
where surface brightnesses are being sampled over a hemisphere, such as a gathering radiosity or Monte
Carlo algorithm. Z-buffer methods such as the hemicube also yield the information necessary to com-
pute gradients, so the approach is not limited to ray tracing algorithms.

It may also be possible to use hemisphere sampling information to speed convergence of a progressive
radiosity or shooting Monte Carlo algorithm by noting the arrangement of visible surfaces and subdivid-
ing shooting patches where a shadow boundary is indicated. Since the final radiance of samples is not
known in such a technique, subdivision would have to be based mainly on geometric considerations.
Nevertheless, the information contained in a hemisphere sampling is considerable, and it seems wasteful
to ignore it.
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6. Software Availability
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Figure 1a. Irradiance extrapolation without gradients.

Figure 1b. Irradiance extrapolation with gradients.
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Figure 1c. Comparison between actual irradiance and interpolated values under diffuse
sphere.

Figure 1d. Relative error due to interpolation under diffuse sphere.



Figure 2a. As our point is rotated counter-clockwise,
the surface's contribution increases.

—

Figure 2b. Translational Gradient. As our point
moves to the right, irradiance increases.



Figwre 3a. A hemispherical wiew from the

the floor of & conference roOOm,

Figuwre 3b. The distances o suriaces
visible in Figure 3a.

Figure 3c. A sitratified Wonte Carlo
sampling of the iame hemispharse.



Figure 4. Cells of an example hemisphere sampling.



Figure 5a. Interpolation without gradients.

Figure 5b. Interpolation with gradients.



