Radiance 4.2 Changes for 2014

Greg Ward
for Lawrence Berkeley National Lab

Highlights

Official 4.2 release (finally!)

Improved Perlin noise function
Improved sampling appearance in rpict
New “origin” command in rvu

Hessian-based error control for irradiance
caching

New getinfo -c option
rcollate and rmtxop utilities manipulate matrices
rfluxmtx program to simplify rcontrib operation

Radiance 4.2 Release

Last official release (4.1) was November 2011

Most people continue to use the CVS HEAD,
which is also compiled and available from
NREL

Even so, it’s good to make it official when a
stable point is reached

It seemed like it was time

Improved Perlin Noise Function

* Original implementation did not follow
Perlin’s version very closely

— not as band limited as it should be

— had issues with over-range values

* New implementation based on Perlin’s
improved version from 2002 SIGGRAPH
— translation from java by Rahul Narain
— much nicer output

Improved Perlin Noise Function

Original implementation New & improved version

Blue regions are outside (-1,1) range

Improved Perlin Noise Function

Marble using original noise Marble using improved noise

Improved RPICT Sampling

e With -u0 (default) option, rpict uses anti-
correlated sampling

* Original implementation gave pixels a
“brushed” appearance

* New implementation uses a 2-D Hilbert space-
filling curve to improve appearance

Improved RPICT Sampling

Old “brushed” look New “screen door” look

Improved RPICT Sampling

Old “brushed” look New “screen door” look

Easier to see section from windscreen

New RVU “origin” Command

Suggested by John Mardaljevic

Provides a convenient means to get “fly on
the wall” view

Helpful for debugging light leaks, etc.

Usage:
origin [xoyo zo [xd yd zd]]

Without arguments, use cursor to choose surface to look away from...

RVIEW “origin” Command

Follow “origin” command by selecting
the surface position where you want
your new view point to be placed,
looking in the direction of the surface
normal.

The “up” vector will be changed
automatically if the normal vector
coincides with the current one, unlike
other view commands.

68 0 O

; origin
Pick point on surface for new origin

X/ shipfull.oct

RVIEW “origin” Command

The new view will have the same type
and size as the previous one, to be
consistent with other rvu commands.

This can be changed with a subsequent
“view” command.

256 refining, ..
512 sampling,..
done; [view -vth -vh 180 -wv 180 |

X shipfull.oct

RVIEW “origin” Command

Oftentimes, the user will want to
change the view to a hemispherical
fisheye or similar to study the light
arriving at the surface point.

view -vth -vh 180 -vv 180

256 refining, ..
512 sampling,..

X shipfull.oct

Hessian-based Error Control in
Irradiance Cache

The Hessian matrix holds 2" order derivatives
or “curl” of a multi-dimensional scalar
function

In Radiance, we can use it to bound errors in
the indirect lighting calculation

The Hessian tells us what errors to expect as
we extrapolate a cached irradiance value

This in turn tells us how closely to space our
calculations to maximize efficiency

Schwarzhaupt et al., 2012

From the ACM SIGGRAPH Asia 2012 conference proceedings.

Practical Hessian-Based Error Control for Irradiance Caching

Jorge Schwarzhaupt* Henrik Wann Jensen' Wojciech Jarosz*
UC San Diego UC San Diego Disney Research Ziirich

Reference Reference (Irradiance) Pure Split-Sphere Bounded Split-Sphere Radiometric Hessian ~ Geometric Hessian ~ Occlusion Hessian
RMSE: 0.0901 RMSE: 0.0290 RMSE: 0.0912 RMSE: 0.0105 RMSE: 0.0071

Figure 1: Our new Occlusion Hessian significantly outperforms both the Pure and the Bounded Split-Sphere (clamped to the gradient and
150px max spacing) for irradiance caching. It also performs significantly better than the recently published occlusion-unaware Hessian error
metrics by Jarosz et al. [2012].

Original Split Current Radiometric Geometric Occlusion

Sphere from Method Used Hessian of Hessian of Hessian of

Ward et al. in Radiance Jarosz et al. Jarosz et al. Schwarzhaupt
1988 2012 2012 et al. 2012

Improved Sampling of Hemisphere

Theta/Phi Sampling Pattern

<7
-

Shirley-Chiu Sampling

Example Scene

e —

NRC cubicle office with 3M daylight redirecting film

Irradiance Cache Comparison

Old cache value placement New cache value placement

Approx. 1/3 as many values for similar accuracy

iser Model (1)

Cru

Hessian

Original

Cruiser Model (2)

B e

Original Hessian

Cruiser Model (3)

Original Hessian

Cruiser Model (4)

£

-
-
-

Original

Issue with T-junctions

LT TTTTITI,

Old value placement Evaluation point safe from other side

T

Issue with T-junctions

[

New value placement Evaluation point sees other side

Result: indirect illumination where there should be none

Issue with T-junctions

* Nearly fatal flaw, unnoticed by authors

— spoke with Wojciech & Henrik; they said it did not
show up in any of their test scenes (no T-
junctions)

— most fixes reintroduce issue with packed corners
e After 3 or 4 failed attempts, | found a fix
— add visibility check on certain cache values

— store “corral” flags identifying possible occluders
— solves issue without crowding values in corners

T

Issue with T-junctions

L1

New value placement Short ray test finds obstruction

Only test when corral says there’s a hazard

Assigning Corral Flags

Set of 32 corral flags indicate potential occluders

These directions will be checked with short rays before extrapolation

Results Comparison

Schwarzhaupt et al. With corral check

Changes from User Perspective

Old ambient files will not be recognized
— new structure adds elliptical radii & corral flag
— more compact representation

Adjusted -aa to match old behavior, rather
than target actual accuracy

— too sensitive and difficult to control otherwise
Other options are essentially the same
Compile with -DOLDAMB to get old behavior

New getinfo -c¢ Option

* Hacker’s option to manipulate data segment

* Runs the given command after header, as if:
(getinfo < file ; \
echo Scommand ; \
getinfo - < file | Scommand)
* Example:
getinfo -c rcalc -if -of -e ‘'S1=10*S1’ < input.mtx > output.mtx

New rcollate and rmtxop Comands

* General multi-component matrix operations
* rcollate “reshapes” matrix data, changing
N,xM; matrix into N,xM, matrix (same
number of elements)

— can “transposes” matrix elements NxM = MxN
— adds/removes/manipulates header

* rmtxop loads matrixes into double arrays,
concatenates, scales, sums, transforms

Matrix File Format

#?RADIANCE

gendaymtx -of nycOl.spl.wea
LATLONG= 42.75000000 -73.80000000
NROWS=146

NCOLS=8760

NCOMP=3

FORMAT=float

followed by binary float data,
row is outer sort, then columns, then components

The file above is 146*8760*3*4 bytes = 14.6 Mbytes

rcollate Details

* Never interprets data elements
— fast: ASCIl components are copied as text blocks
— can transpose very large matrix by mapping file
— useful for feeding rcalc & converting its output
— however: cannot convert data between formats

* Flexible regarding information header
— can work without header (-h)
— can add missing header (-hi)
— can remove unwanted header (-ho)

rcollate Examples

Feed rcalc one RGB record at a time & remove header:
rcollate -oc 1 -oh input.mtx | rcalc -e ‘$1=$1+$2+%$3’

Transpose a 100x25 2-comp. float matrix w/o headers:
rcollate -h -ir 100 -ic 25 -ff2 -t input.mtx > output.mtx

Add a header to binary data as required by rmtxop:
rcollate -ih -ir 30 -ic 19 -fd3 input.mtx | rmtxop ...

rmtxop Details

 Reads matrix data, operates in memory

— minimal header information needed:
e NCOMP, NROWS, NCOLS, format

— also accepts Radiance pictures and BSDF (XML) files
— writes ASCII, float, double, and RGBE formats

— has as many as 3 matrices in RAM at a time
 uses double type (8-bytes/component) for all input

* More flexible than dctimestep

— but somewhat less memory- & time-efficient
* dctimestep uses float data, optimizes matrix multiplication

rmtxop Examples

Convert matrix BSDF to picture:
rmtxop -fc bsdf.xml > bsdf.hdr

Concatenate matrix from stdin and write as ASCII:
.. | rmtxop -fa left.mtx - > output.mtx

Convert RGB matrix to grayscale and add another:
rmtxop -c .3 .6 .1 rgb1.mtx + gry2.mtx > gryout.mtx

Concatenate three matrices, transposing second:
rmtxop inp1.mtx -t inp2.mtx inp3.mtx > out.mtx

New rfluxmtx Program

Long-promised front-end to rcontrib

Simplifies common operations
— generates hemispherical surface samples
— sets rcontrib bin variables and *.cal files

Generalizes sampling for light pipes, etc.

Replacement for genklemsamp
— will also simplify genBSDF implementation

Basic rfluxmtx Operation

fluxmtx [-v][rcontrib options] sender.rad receiver.rad [-i system.oct][system.rad ..]

* Most options are simply passed to rcontrib
— the -v option reports on execution

* Sender file contains single sender object

— special comments identify sampling basis

* Receiver file contains one or more objects
— similar comments indicate sampling bins

* System files given to oconv before
receiver.rad

Comparison to genklemsamp

oconv -w -f material_detailed.rad simple.rad \
dummysky.rad > dumbsky.oct
genklemsamp -vd -0.415671599 0.909514773 0 -c 20000 \
material.rad bg4wind.rad \
| rcontrib -n 2 -¢ 20000 -faf -e MF:4 -f reinhart.cal \
-b rbin -bn Nrbins -m skyglow \
@rtc_dmx.opt dumbsky.oct \
> bg4.dmx
rm dumbsky.oct

rfluxmtx-w -n 2 -c 20000 -ff @rtc_dmx.opt bg4wind.rad \
dummysky.rad -w material.rad simple.rad \
> bg4.dmx
rfluxmtx: opening pipe to: rcontrib -fo+ -n 2 -w -ab 2 -ad 300 -fdf -c 20000 \
-f reinhartb.cal -p MF=4,rNx=0,rNy=0,rNz=-1,Ux=0,Uy=1,Uz=0 \
-bn Nrbins -b rbin -m skyglow -b 0 -m groundglow -y 145\
'loconv -f -w material.rad simple.rad dummysky.rad'
rfluxmtx: sampling 145 directions

Sender File

rfluxmtx -v -n 2 -c 20000 -ff @rtc_dmx.opt
bg4wind.rad \
dummysky.rad -w material_detailed.rad simple.rad \
> bg4.dmx

#H@rfluxmtx h=kf u=+z

Translucent_20 polygon zone02.rad00014b
0

0

12
-0.733460650921 11.5416867963 0.762
-0.733460650921 11.5416867963 2.7178
0.652638345832 12.1751696194 2.7178
0.652638345832 12.1751696194 0.762

No need to define material “Translucent_20”

BEFORE

rfluxmtx -v -n
bg4wind.rad \

Receiver File

2 -¢ 20000 -ff @rtc_dmx.opt

dummysky.rad -w material_detailed.rad simple.rad \
> bg4.dmx

void glow skyglow

0
0
41110

#H@rfluxmtx h=u

void glow groundglow
0

0

41110

skyglow source sky

0
0
4001360

groundglow source ground
0

0
400-1180

Separate (uniform) ground source

H@rfluxmtx h=r4 u=+Y

void glow skyglow
0

0

41110

skyglow source sky
0

0

4001180

Advantages of rfluxmtx

Simpler operation
— manages rcontrib parameters/order
— generates source sample rays

Handles non-planar sources & receivers

Unifies hemispherical sampling methods

— consistent application of Tregenza & Reinhart sky,
Klems hemispherical bases, Shirley-Chiu disk

Sender & receiver need not be parallel
Receiver may be reused as subsequent sender

Pass-through Mode

* Specify -’ in place of sender file, e.g.:

sample generator | rfluxmtx [options] -
receiver.rad

* rfluxmtx executes rcontrib, but does not
generate sample rays
— standard input is sent to rcontrib directly

* Same behavior as executing command
reported by -v option
— provided primarily as a convenience

Example Pass-through Mode

vwrays -ff -vf back.vf -x 600 -y 600 \
| rfluxmtx -v “vwrays -vf back.vf -x 600 -y 600 -d" -n 4\
-ffc -ab 12 -ad 50000 -Iw 2e-5 - window.rad testroom.mat testr
rfluxmtx: running: rcontrib -fo+ -n 4 -ab 12 -ad 50000 -lw 2e-5 -x 600 -
-ld- -ffc -c 1 -0 vmx/window_%03d.hdr -f klems_full.cal \
-bn Nkbins -b 'kbin(0,1,0,0,0,1)' -m windowglow \
'loconv -f testroom.mat testroom.rad window.rad’

#@rfluxmtx h=kf u=Z o=vmx/window_%03d.hdr

void glow windowglow
0

0
4 111 O

windowglow polygon window
0

0

Conclusions

Radiance 4.2 release is official
Includes new Hessian-based “ambient” calc
Many(!) other improvements since 4.1

New rfluxmtx program present, but still
undergoing bug fixing & improvements

— Keep up-to-date with CVS HEAD if interested
Photon-mapping integration building on 4.2

